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Abstract 

Investigations into the effects of anthropogenic disturbance on greenhouse gas emissions from 

tropical peatlands are relatively well documented. However, the effects of such disturbance on 

fluvial carbon (C) losses has, thus far, been overlooked and remains unaccounted for in these 

ecosystem C budgets. Here, three land-cover classes in Central Kalimantan, Indonesia, were 

investigated in order to determine the effect of tropical peatland disturbance on fluvial organic C 

budgets. 

Intact peat swamp forest (IPSF), moderately disturbed and severely disturbed peat swamp forest 

(DPSF1 and 2) catchments were monitored for one year. Results demonstrate a trend of 

increasing annual total organic carbon (TOC) yields with increasing drainage severity, from 63 in 

IPSF to 105 and 131 g C m-2 y(1 in DPSF1 and 2, respectively. Including this routinely-ignored 

fluvial C loss component in the disturbed peatland ecosystem C budget increases the estimated 

total C loss by 30%. Radiocarbon analysis of dissolved organiC carbon (DOC) reveals that whilst 

DOC leaching from IPSF was derived from recent primary production, DOC leaching from the two 

disturbed sites was comprised of much older C, originating from deep within the peat column. 

The TOC flux from the Sebangau River basin was estimated to be 0.46 teragrams y(1, which upon 

regional extrapolation indicates that Indonesian rivers account for 10% of the global annual riverine 

DOC export to the ocean. There were no significant differences between sites in the quality of the 

organic C lost, but DOC lost from disturbed sites was generally less aromatic than from the intact 

site. It is recognized that a large portion of this labile C will be emitted to the atmosphere via biotic 

decomposition. Since 1990, peatland disturbance has resulted in a 53% increase in fluvial organic 

C export from Southeast Asia, an increase that alone approximates the entire annual fluvial organic 

C flux from European peatlands. 
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"Waktu jaman huran, pambelum kalonen tagantung bara himba akan 
kakare uras ah. 

Andau toh, keadaan himba jituh tagantung dengan kalonen." 

"In the past, we depended on the forest for everything. 
Today, the very existence of the same forest depends on us." 

(Dayak elder, Sebangau, 2009) 

Dayak are the indigenous people of Borneo, within which, Sebangau is one of the largest 
remaining areas of peat swamp forest. 



Chapter One 

Introduction 

1.1 General overview 

To date, the best estimate of the total area of tropical peatlands in the world is 440,000 

km2 (with a range of 387,201 - 657,430 km2
), of which Indonesia alone accounts for just 

under half (206,950 km2
, 47%), making it the largest contributor to the world's reserves 

(Page et a/., 2011). Within Indonesia, the islands of Sumatra and Kalimantan, collectively, 

are estimated to have a peatland area of 130,000 km2 (Wahyunto et a/., 2003; 2004), 

storing a vast reservoir of about 30,000 Tg (1 Tg = 1 g x 1012
) of carbon (Jaenicke, et a/., 

2008). This is equivalent to almost four times the amount of carbon that was released 

globally by the burning of fossil fuels in 2006 (8,000 Tg; IPCC, 2007). Peatlands in 

Southeast Asia, and in particular within Indonesia are subject to the most rapid rates of 

degradation and land use change in the world as a result of strong economic and social 

pressures for timber, land for agriculture and plantations of oil palm and pulp trees (Koh et 

al., 2009). As a consequence, in the last two decades this region's peatlands have 

undergone rapid deforestation (Langner et al., 2007; Langner & Siegert, 2009), 

widespread drainage (Hooijer et al., 2006; 2010) and frequent and intensive fires (Page et 
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al., 2002; 2009a; Langner et al., 2007; Langner & Siegert, 2009). These have caused high 

levels of carbon gas emissions to the atmosphere through loss of biomass, peat oxidation 

and combustion (Page et al., 2002; van der Werf et al., 2004; 2008; Hooijer et al., 2006; 

2010). It was recently calculated that globally, deforestation is the second largest 

anthropogenic source of carbon dioxide (C02) to the atmosphere, after fossil fuel 

combustion (van der Werf et 81., 2009). 

With so much attention given to the emission of gaseous carbon to the atmosphere, 

alternative pathways of carbon loss have been overlooked and, to date, there has been no 

investigation into what effect disturbance of tropical peatlands has on the export of fluvial 

carbon. Globally, the transport and loss of fluvial carbon from terrestrial ecosystems such 

as peatlands into rivers and oceans accounts for approximately 1000 Tg carbon each year 

(Ludwig et al., 1996) and it is an important pathway as it links the terrestrial and marine 

carbon cycles (Meybeck, 1993). Whilst in transport, fluvial carbon also has the potential 

to feed straight back into the atmosphere as CO2 and/or methane (CH4 ) through biotic 

decomposition, or it can remain climatically neutral through benthic deposition and storage 

as riverine and estuarine sediments. The fate of fluvial carbon draining tropical peatlands 

remains largely unknown, but a substantial proportion derived from cool northern peats is 

thought to be emitted to the atmosphere (Cole et al., 2007; Battin et 81.,2009; Tranvik et 

81., 2009). The aim of this thesis is to help answer some of these remaining knowledge 

gaps surrounding tropical peatland disturbance and its effect on 'the forgotten' fluvial 

carbon budget. 

1.2 Tropical peatlands 

Characteristics of boreal and temperate peatlands including rates of carbon sequestration 

and the amount of carbon stored, are well documented (e.g. Turunen, 2003 and refs 

therein). Tropical peatlands on the other hand are less well documented and have only 

recently received increased interest as more information on the size and global 
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importance of these tropical deposits is gathered (Jauhiainen et al., 2005). By area, 

boreal and temperate peatlands have the greatest global extent (Immirzi et al., 1992), but 

due to their large aboveground biomass in the form of peat swamp forest (PSF) and thick 

underlying peat deposits, tropical peatlands contribute Significantly to the global peatland 

resource and terrestrial carbon store (Rieley et al., 1996; Page et al., 1999; 2011). 

1.2. 1 Global distribution 

Tropical peatlands are located in Asia, Africa, the Caribbean and Central and South 

America. Within these regions, most are located at low altitude, but some occur in the 

mountains of Africa, South America and Papua New Guinea. The current best estimate of 

the total area of tropical peatlands is 441,025 km2 (range of 387,201 - 657,430 km2
; Page 

et al., 2011). Over half of this is found within Southeast Asia (Brunei, Indonesia, Malaysia, 

Myanmar, Papua New Guinea, Philippines, Thailand, Vietnam; 247,778 km2
, which 

equates to 56% of the best estimate). The next largest share is found in South America 

(107,486 km2
, 24%), followed by Africa (55,860 km2

, 13%), Central America and the 

Caribbean (23,374 km2
, 5%), Asia (Bangladesh, China, India, Sri Lanka; 6,337 km2

, 1%) 

and the Pacific region (190 km2
, less than 1 %; table 1.1). 

Table 1.1: Area of tropical peatland on a regional basis, expressed as minimum, best estimate 
and maximum values (table adapted from Page et a/., 2011). 

Region Area (km2
) 

Minimum Best estimate Maximum 

Africa 29464 55860 135043 

Asia (Southeast) 236647 247778 336115 

Asia (other) 4804 6337 10936 

Central America & Caribbean 20761 23374 31210 

Pacific 190 190 190 

South America 95335 107486 143936 

Total 387201 441025 657430 
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Of the total global peatland extent (3,997,435 km2), tropical peatlands account for 10% 

(minimum estimate) to 16% (maximum estimate). These tropical peatlands are estimated 

to have a peat volume of 1,758 Giga cubic meters (Gm3
; 1 Gm3 = 1 m3 

x 109
) which 

accounts for up to 25% of the global peat volume (7,093 Gm3
), making a much larger 

contribution to global volume than their area would infer (Page et al., 2011). The most 

recent estimate of the global peatland carbon store is 480 petagrams (Pg; 1 Pg = 1 g x 

1015
) and the total tropical peatland carbon store is 89 Pg (Page et al., 2011). This is 

based on an average peat thickness of 1.5 m and a peat carbon density value of 1100 

tonnes carbon per hectare (t carbon ha·1
; Immirzi et al., 1992). Using a greater mean peat 

thickness of 2.3 m for boreal and sub-arctic peat (Gorham, 1991) and thus a higher 

carbon density value of 1466 t carbon ha-1 results in a larger estimate of the global peat 

carbon store of between 598 and 618 Pg. The tropical peat carbon pool therefore 

accounts for between 14% and 19% of the global peat carbon pool. 

1.2.2 Peatlands in Southeast Asia, Indonesia and Kalimantan 

Of the 247,778 km2 of tropical peatlands found in Southeast Asia, the vast majority are 

found within Indonesia (206,950 km2, 84%). The country with the next largest share is 

Malaysia (25,889 km2, 10%), followed by Papua New Guinea (10,986 km2, 4%), which, 

when combined account for less than 20% of Indonesia's total. Collectively, the remaining 

countries in this region (Brunei, Myanmar, the Philippines, Thailand and Vietnam) account 

for about 1 % (figure 1.1). 
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Figure 1.1: The distribution of peatlands in Southeast Asia (Source: Page et 81., 2004) 

Of the total tropical peatland volume, Southeast Asia has the largest share (1359 Gm3
, 

77%), and within this region, Indonesia accounts for the vast majority of it (1138 Gm3
, 

84%). As with peatland area, Malaysia has the next largest peatland volume (181 Gm3
, 

13%) followed by Papua New Guinea (28 Gm3
, 2%). The remaining countries in this 

region, when combined, contribute less than 1 % to the total Southeast Asian peat volume. 

The Southeast Asia peatland carbon store is estimated to be 69 Pg (77% of the total 

tropical peatland carbon pool). Again, Indonesia accounts for the largest share of the 

tropical peatland carbon pool both within Southeast Asia/the world (57 Pg , 83%/65%), 

followed by Malaysia (9 Pg, 13%/10%), with Papua New Guinea, Brunei, Myanmar, the 

Philippines, Thailand and Vietnam collectively contributing a smaller portion of the total 

(4%/2%). 

Peat thickness in Sumatra and Kalimantan (Indonesia) ranges from 0.5 to 20 m (Page et 

at., 2002), making these peatlands one of the largest near-surface reserves of terrestrial 

organic carbon in the world. Covering around 15% and 11 % of the total land area , 

Sumatra and Kalimantan, respectively, are the two most peat-dominated regions in 

Indonesia. The province of Central Kalimantan contains about 30,000 km2 of peatland , 

making this region one of the largest continuous areas of tropical peatland in the world 

(Vries, 2003). The peatlands within Sumatra and Kalimantan alone are estimated to cover 

130,000 km2 (Wahyunto et at., 2003; 2004) and hold about 30 Pg of carbon (Jaenicke, et 
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a/., 2008). This is almost four times the amount of carbon that was released globally by 

the burning of fossil fuels in 2006 (8 Pg; IPCC, 2007), emphasising the global significance 

and importance of these regional carbon deposits within Indonesia. 

1.2.3 Peat/and characteristics 

Peat accumulation initiated 22,120 14C years before present (BP; radiocarbon dated peat 

from the peat-sediment interface at 8.4 m depth) in the Sebangau catchment (Central 

Kalimantan), making this peat deposit the oldest reported in any Southeast Asian peatland 

(Weiss et a/., 2002). However, Page et a/. (1996) report that depth of peat accumulations 

may reach 13 m at the summit of the peat dome in Sebangau, which implies even older 

deposits of peat may exist. The peat in the Sebangau catchment consists primarily of 

trunks (at different stages of decomposition), branches and roots of trees within a matrix 

of almost structureless organic material that originates from PSF flora, mainly trees 

(Rieley et a/., 1996). The decomposition status of the peat is as follows; fibric (least 

humified) on the surface, hemic (moderately humified) throughout most of its depth and 

sapric (most humified) near to the bottom (Wasten et al., 2008). From a peat core 

sampled in the Sebangau catchment under low pole forest, the following soil 

characteristics were determined; dry bulk density and ash content are low compared to 

mineral soils, ranging from 0.02 to 0.21 g cm-3 and from 0.33% to 1 %, respectively. Mean 

pH of peat samples for the entire length of the core was 3.2 (Page et a/., 1999; Weiss et 

a/., 2002). 

1.2.4 Peat dome structure 

Most tropical peatlands in Southeast Asia form characteristically elliptical domes, with a 

convex surface. Most are ombrogenous, meaning that their water and nutrient supply is 

entirely supplied from rainfall as opposed to lateral transfer from adjacent catchments 

(Page et a/., 2004). The uneven peat dome surface consists of a mixture of hummocks 
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(drier/raised areas) where larger trees grow and hollows (wetter/depressed areas) which 

are characterised by a dense mat of fine tree roots and pneumatophores, commonly 

inundated with water during the wet season (Page et al., 2004). Each peat dome can 

range in size from less than 1 km to more than 50 km in width , commonly forming their 

own watershed that is naturally drained by rivers at both sides of the dome, as illustrated 

in figure 1.2. 

<1 km to >50 km ~ River (natural drainage) 

Figure 1.2: Typical Southeast Asian peat dome structure and natural drainage system. 

The surface level of the peat dome slowly increases with distance from the river, but at a 

very low gradient. Over the entire Sebangau peat dome there is a vertical increase of 0.8 

m for every 1 km away from the river (figure 1.3). This gradient varies and is even lower 

between 5.5 km to 12.5 km from the river (surface elevation of 0.6 m km-1) , but reaches 

greater elevation gradients between 14 km to 17 km from the river (surface elevation of 

1.8 m km-1) . These areas of different elevation gradients often coincide with changes in 

tree species composition , known as phasic community transition zones (see Chapter 

1.2.6; Page et al., 1999). Generally, peat depth increases with distance from river. For 

the first 12 km from the river, peat thickness increases gradually to a depth of 10m and 

reaches its maximum depth of 11 m at the top of the peat dome, 25 km from the river 

(figure 1.3). Peat depth also seems to coincide with phasic community transition . For 

example, mixed swamp forest is located on shallow peat (less than 2 m), while low pole, 

tall interior and very low canopy forest are all found on thick peat (up to 11 m). While the 

peat depth and elevation gradient does not directly affect the overlying phasic community 
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type, it affects other peatland characteristics such as hydrology and organic matter 

dynamics which in turn affect the phasic communities that can be supported . 
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Figure 1.3: Composite profile through a peat dome in Southeast Asia (Sebangau, Kalimantan) 
from the river to the watershed (summit of peat dome). The profile shows the surface level , bottom 
topography (mineral soil) and the intervening peat thickness (vertical scale exaggerated; Page at 
a/., 1999). 

1.2.5 Peatland hydrology 

In general, water tables in the Sebangau catchment are lower than in other Indo-

Malaysian peatlands (Moore et al., 1996). During maximum water table drawdown at the 

end of the dry season in 1994, the water table was 150 cm below the peat surface in the 

tali interior forest. At the same time, the water table was 24 to 40 cm below the peat 

surface in low pole and mixed swamp forest respectively, suggesting that water tables 

remain higher closer to the river. During the rainy season, the water table is at or above 

the peat surface in all forest types except for tali interior forest where it can be as low as 

20 to 30 cm below the peat surface but never above it (Page et al., 1999). According to 

Takahashi et al. (2002), evapotranspiration rates in the PSF of the Sebangau catchment 

vary between 3.2 and 3.6 mm day-1. 
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Hydraulic conductivity varies with peat depth as well as land use. In the Sebangau 

catchment it ranges from 0.48 to 12.48 m day-l, with values in the top layer of peat 

generally exceeding 10 m day-l (Sajarwan et al., 2002). Hydraulic conductivity under 

agricultural land is much lower than under forest and can be as low as 0.00195 m day-l 

(Takahashi & Yonetani, 1997). The surface water itself is acidic (average pH 3.6), very 

low in electrical conductivity (average 50 I-IS cm-1
) and also low in ion concentration (K, 

Ca, Mg, N03_N, P04-P; Page et al., 1999). 

1.2.6 Peatland community 

Intact tropical PSF makes an important contribution to regional and global biodiversity 

both in terms of flora and fauna (Page & Rieley, 1998). The changing phasic communities 

across peat domes provide habitats for a number of rare and threatened species, many 

specialists included, perhaps most notably, the orang-utan. Page et al. (1999) surveyed 

the peat dome west of the River Sebangau and described the five typical intact phasic 

communities of PSF that form the peat dome from the river's edge to the peat dome 

summit. 

1) Located close to the river at the peat dome edge is the marginal riverine forest. It sits 

on shallow organic soils where peat reaches depths of up to 1.5 m and is flooded by river 

water during the rainy season. The average canopy height is 25 to 30 m and the principal 

canopy tree species is Shorea balangeran which is the only species that exceeds a height 

of 35 m. The principle ground vegetation species is Thorachostachyum bancanum, which 

makes up low-growing, species-poor sedge swamp and is present in some of the upper 

River Sebangau basin where riverine forest has been destroyed due to logging and 

burning. 

2) Mixed swamp forest reaches 4 km from the peat dome edge (beyond the limit of river 

flooding) and sits on peat 1.5 to 6 m in thickness. The upper canopy reaches heights of 
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35 m with a closed layer between 15 and 25 m and another more open canopy of smaller 

trees about 7 to 12 m in height. The peat surface is very uneven with trees tending to 

grow on the hummocks and water filling the hollows, particularly in the wet season. 

Stilt/buttress roots and pneumatophores are common. There is a wide range of tree 

species, including Combretocarpus rotundatus, Oactylodadus stenostachys and Shorea 

balangeran. The forest floor supports a dense covering of seedlings and saplings, the 

sedge, Thorachostachyum bancanum as well as climbers, epiphytes, insectivorous pitcher 

plants and orchids. 

3) Low pole forest occurs between 6 and 11 km from the river on peat that is 7 to 10m 

thick. The upper canopy reaches a maximum height of about 20 m with a lower, closed 

canopy at about 12 to 15 m. The principal species in this type of forest are 

Combretocarpus rotundatus and Ca/ophy/lum fragrans, with less Oacty/odadus 

stenostachys. Pandans form a dense, continuous ground cover on peat that is 

permanently waterlogged due to high water table levels. 

4) Tall interior forest occupies most of the upper regions of the peat dome, 12 km from 

the river, on peat up to 13 m thick. The water table is below the peat surface throughout 

the year and can be as low as 1.5 m below the peat surface during an extremely dry 

season. The upper canopy reaches heights of 45 m and is dominated by, amongst 

others, Agathis dammara, Oyera cotu/ata and Shorea teysmanniana. Underneath the 

upper canopy, there are two more layers reaching 15 to 25 m and 8 to 15 m. Due to this 

thick canopy and the resultant low light levels, ground flora is poorly developed except for 

under gaps in the canopy where pandans and a greater abundance of climbers and 

epiphytes are found. 

5) Very low canopy forest occupies a discrete area of about 13 km by 6 km, which is 

encompassed by tall interior forest between the two river systems (Sebangau and 

Katingan) on the summit of the peat dome. Few of the trees exceed 1.5 m in height and 
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the common species include Calophyl/um spp., Combretocarpus rotundatus, and 

Cratoxylum spp. As a result of the open canopy, greater levels of light support a high 

diversity in ground-covering vegetation, where the sedge Thorachostachyum bancanum is 

dominant over pandans. 

1.3 Tropical peatland disturbance 

Since the 1980s an increasing amount of logging activities, drainage, fires, conversion to 

plantations and expansion of small holder agricultural landscape has occurred in tropical 

peatlands around the world, but perhaps none more so than in Southeast Asia (Silvius & 

Diemont, 2007). The global rate of tropical forest loss is 0.52% y(1 and is highest in 

Southeast Asia (0.91% y(1; Achard et al., 2002). The primary drivers of peatland 

disturbance and forest loss in Southeast Asia are strong economic and social pressures 

for timber, land for agriculture and plantations of oil palm and pulp-wood (Koh et al., 

2009). Consequently, in the last two decades, Southeast Asian peatlands have been 

subject to rapid and widespread deforestation (Langer et al., 2007; Langer & Siegert, 

2009), severe drainage (Hooijer et al., 2006; 2010) and frequent and intensive fires that 

often follow such forms of land use change ( Page et al., 2002; 2009b; Langer et al., 2007; 

Langer & Siegert, 2009). 

1.3.1 Carbon balance (sources vs. sinks) 

Under natural conditions with no anthropogenic disturbance, tropical peatlands are a long­

term carbon store. However, increasing levels of disturbance (in all forms mentioned 

above), are impacting on the net carbon balance of peatlands. This balance is dominated 

by five flux components: (i) Net Ecosystem Productivity (NEP), which is the balance 

between Gross Primary Production (GPP) and Respiration (Rplant), as described in 

equation 1.1; (ii) Carbon dioxide (C02) emissions from peat decomposition (as a result of 
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drainage); (iii) CO2 emissions from fire; (iv) smaller quantities of methane (CH4) emissions; 

and (v) fluvial exports of carbon. 

NEP = GPP - Rplant (Equation 1. 1) 

1.3.2 Disturbance effects on the carbon balance 

Peatland drainage artificially lowers the water table which leads to aerobic conditions that 

favour microbial activity in the peat profile above the water table. This results in enhanced 

CO2 loss by peat decomposition (Ueda et a/., 2000; Jali, 2004; figure 1.4). 
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• Water table close to surface 
• Peat accumulates from overlying 

vegetation over thousands of years 

Artificial drainage channels dug: 
• Water table lowered 
• Peat surface begins to subside and 

CO2 emission starts 

Continued drainage: 
• Dry peat decomposes: further CO2 

emissions 
• High fire risk in dry peat: further 

potential for CO2 emissions 
• Peat surface continues to subside 

due to decomposition and 
compaction 

End stage (drained/degraded peatland): 
• Most carbon stored in peat above 

drainage limit released to 
atmosphere 

Figure 1.4: Schematic illustration of how artificial drainage of tropical peatland results in increased 
CO2 emissions and peat dome subsidence over time. The dotted black line represents the water 
table and the grey arrows represent CO2 emissions (adapted from Hooijer et al., 2010). 
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By 2006, almost half (48%) of all tropical peatlands in Southeast Asia were deforested 

and artificially drained due to land development pressures (Hooijer et a/., 2010). In 2006, 

it was estimated that between 355 and 855 Tg CO2 y(1 (97 to 233 Tg of carbon) was 

emitted to the atmosphere from decomposing peatlands in Southeast Asia, with a best 

estimate of 632 Tg CO2 y(1 (172 Tg of carbon; Hooijer et a/., 2010). Indonesia was 

responsible for 82% of these emissions. These carbon dioxide emissions are equivalent 

to 1.3% to 2.9% of the 8,000 Tg of carbon from global fossil fuel emissions during the 

same year (Canadell et a/., 2007). 

Under natural conditions PSF is at very low risk of fire. The water table is close to or 

above the ground surface for most of the year and a moist, humid environment is 

maintained by a dense overlying forest canopy. However, once the canopy is removed by 

logging (and other land clearance activities) and drainage channels are dug, the peat 

profile rapidly dries out. This makes the land far more susceptible to the risk of fire when 

compared to undisturbed, intact PSF (Siegert et a/., 2001). Whilst artificial drainage 

results in a continuous source of CO2 through peatland decomposition, annual fire 

emissions can be of a similar magnitude and far greater during drier EI Nino-years. 

Hooijer et a/. (2006) estimated average annual fire emissions to be 1,400 Pg CO2 y(1 (382 

Tg of carbon) for the years 1997 to 2006. Page et a/. (2002) estimated that 2,970 to 9,423 

Tg CO2 (810 to 2,570 Tg of carbon) were released to the atmosphere in 1997 (EI Nino­

year) as a result of burning peat and vegetation in Indonesia. At the time, this was 

equivalent to 13-40% of the mean annual global carbon emissions from fossil fuels. 

CH4 emissions from tropical peatlands are generally low (Couwenberg et al., 2010), but 

due to the stronger global warming potential of CH4 when compared with CO2 , it is an 

important greenhouse gas and needs to be accounted for in the net carbon peatland 

balance. CH4 emissions show a clear relationship with water table depth in tropical 
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peatlands; for water levels below -20 cm, emissions are generally low and sometimes 

negative (net CH4 uptake from the atmosphere) and at higher water tables, negative 

values are rarer and values tend to be higher, reaching up to 5.9 g CH4 m-2 y(1 (equivalent 

to 4.4 g C m-2 y(1; Couwenberg et al., 2010). Given the relationship between CH4 

emissions and water table depth, artificial drainage and a lowering of the water table may 

actually reduce the CH4 emissions. It is important however to note that any reduction in 

CH4 emissions is significantly offset by an increase in CO2 emissions. 

The remaining flux component to consider is fluvial export of carbon. This flux is 

important as it provides a link between the terrestrial and marine carbon cycles (Meybeck, 

1993). The fate of this fluvial carbon lost from tropical peatlands is also poorly 

understood, but is of high importance as it has the potential to feed back into the 

atmosphere as CO2 and/or CH4 through biotic decomposition (Hope et al., 1994). Fluvial 

carbon loss has been studied extensively in the soils of boreal and temperate forests 

(Mulholland & Kuenzler, 1979; McDowell & Likens, 1988; Michalzik et al., 2001), but has 

yet to be quantified for tropical PSF and in particular, PSF subject to various forms of 

anthropogenic disturbance. 

1.4 Fluvial carbon overview 

The main components of fluvial carbon are dissolved organic carbon (DOC), particulate 

organiC carbon (POC) and dissolved carbonates (inorganic carbon). These components 

are classed as either allochthonous (derived from organic matter) or autochthonous 

(derived from in-situ biological production). A further classification includes anthropogenic 

(derived from agricultural, domestic and industrial activities; Degens, 1982). Figure 1.5 

illustrates the common molecules across a continuous spectrum of sizes that make up the 

organic carbon components in river waters. 

14 



00411 "'lcrOft 1IOundW, 

1 10-1 

T 
10-2 
T 

10~ 
T 'p-4 10.5 

T 'Pol 10-7 
"j r r ,,-10_ 

! CPOM I FPOM I VPOM . 

I E] I ZoapIenIctan 

I ""~ I 1'=1 8 
I ........ I ~ B 

I Vi_ I EJ 
I CI~._._ I c:J COIIIII*" ... ~ 

POM DOM ... of -.......... 
I I I I I I I 

Figure 1.5: Size range of particulate organic matter (POM), dissolved organic matter (DOM) and 
carbon compounds in natural waters; CPOM = coarse particulate organic matter, FPOM = fine 
particulate organic matter, VPOM = very fine particulate organic matter, FA = fatty acids, CHO = 
carbohydrates, AA = amino acids, HC = hydrocarbons, HA = hydrophilic acids (Thurman, 1985). 

1.4. 1 Riverine carbon components 

Organic carbon: The distinction between DOC and poe is generally made on the basis 

of whether or not it passes through a 0.45 !-1m filter; DOC will pass through as filtrate and 

poe will be retained by a filter of this pore size (Thurman, 1985). The vast majority (50-

75%) of DOC is comprised of fulvic and humic acids and the remaining fraction is made 

up of colloidal organic matter, comprising approximately 20%. It is the humic compounds 

that are responsible for the dark coloured water in organic rich rivers (Hope et a/ .• 1994). 

poe consists of plant litter, algal debris, invertebrates, coarse eroded soil organic matter 

and soil detritus. poe can also be subdivided according to size; coarse (greater than 1 

mm), fine (1 mm-53 !-1m), and very fine (53 IJm-0.45 IJm; Naiman et a/., 1987; figure 1.5). 
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Inorganic carbon: Inorganic carbon in river water is invariably in a dissolved form and 

therefore termed dissolved inorganic carbon (DIC). It occurs in ionic form or as 

dissolved, free CO2• These various carbonate species make up what is called the 

carbonate system, which is one of the main controls on the pH of river water (Stumm & 

Morgan, 1981). 

Total carbon: Total carbon is the sum of the organic (dissolved and particulate) and 

inorganic carbon fractions. However, as the amount of inorganic carbon in peatland 

catchments is negligible (see Chapter 2.3.2; Hope et al., 1994), this fraction has been 

omitted, so that during the course of this study, total carbon refers to total organic carbon 

(TOC). 

1.4.2 Riverine carbon fluxes to the ocean 

The annual global (as opposed to solely tropical) riverine carbon flux from rivers to the 

ocean is estimated to be 1,000 Tg (Ludwig et al., 1996). Of this carbon, approximately 

60% is comprised of inorganic carbon and 40% comprised of organic carbon (Meybeck, 

1993; Probst et al., 1994). Therefore, for most rivers a greater proportion of carbon is lost 

to the ocean in inorganic forms (Meybeck, 1982). However, based on knowledge from 

northern peatlands, it is believed that in tropical PSF catchments, fluvial carbon fluxes to 

the oceans are dominated by organic forms (Hope et al., 1994). Two commonly accepted 

estimates put the annual value of TOC discharged to oceans as somewhere between 330 

and 370 Tg y(1 (Degens et al., 1991; Meybeck, 1993). However, revised carbon fluxes of 

the major world rivers increase this figure to 430 Tg y(1 (250 Tg DOC and 180 Tg POC; 

Cauwet, 2002). 
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1.4.3 Riverine carbon as a source of CO2 

With vast quantities of terrigenous organic carbon being transported through fluvial 

networks to the world's oceans, understanding the fate of this carbon is key to interpreting 

the global carbon cycle (Hedges et a/., 1997). During its time in fluvial transit, organic 

carbon undergoes a number of biogeochemical reactions that influence both its 

concentration and composition. Through microbial respiration, microorganisms and 

invertebrates can convert large quantities of this fluvial organic carbon from the water 

directly back into the atmosphere as CO2 (Hope et a/., 1994). Previous studies from 

temperate rivers have shown that variable amounts of organic matter can be removed in 

this manner, from less than 5% (Amon & Meon, 2004) to more than 20% (Naiman et a/., 

1987). The portion of carbon that is processed in this way will depend, to some extent, on 

how much is being transported as DOC and how much as POCo These two carbon 

fractions travel through fluvial systems in fundamentally different ways and microbial 

respiration favours the DOC fraction over the POC fraction. Whereas DOC molecules 

pass straight through the microbial cell membrane and are subsequently subject to 

metabolism, POC must first be hydrolysed by extracellular enzymes before the resulting 

DOC molecules can be subject to microbial metabolism (Battin et a/., 2008). Although 

there is still large uncertainty over the fate of fluvial organic carbon, in one of the most 

comprehensive studies to date, Cole et a/., (2007) estimate that of the 1,900 Tg of carbon 

that inland waters receive annually, 200 Tg is buried in aquatic sediments, 800 Tg 

(possibly much more) is returned to the atmosphere as gas exchange, while the remaining 

900 Tg is delivered to the ocean. This implies that roughly twice as much carbon enters 

inland waters from land as is exported by rivers to the ocean. 

1.5 Thesis aims and layout 

It is estimated that approximately 1,000 Tg of fluvial carbon enters the oceans from rivers 

around the world each year (Ludwig et a/., 1996). Expansive areas of peatlands which 

are known to be an important source of riverine DOC (Hope et a/., 1997; Aitkenhead & 
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McDowell, 2000) combined with high precipitation rates make Indonesia likely to be a 

significant source of fluvial carbon to the ocean. To date, only a small number of studies 

have quantified the fluvial carbon loss from Indonesian rivers. Furthermore, no study has 

investigated the effect of tropical peatland disturbance on the amount of fluvial carbon lost 

from such ecosystems. The principal aim of this investigation, therefore, was to remedy 

this deficiency in our understanding by quantifying the amount of fluvial organic carbon 

lost from three different land-cover classes that vary in their degree of anthropogenic 

disturbance. This work then goes onto examine whether these findings from catchment 

scale studies are consistent with findings from a river basin scale study and therefore 

more applicable to regional scales. Finally, this study aims to go some way in addressing 

the much debated issue over the fate of this fluvial organic carbon; how much of it is 

converted into CO2 and fed into the atmospheric carbon cycle and how much remains in 

the oceanic carbon cycle as marine sediments. 

This thesis contains six chapters. This chapter has presented the background 

understanding of the key aspects to the research carried out in this thesis, highlighting the 

remaining knowledge gaps and outlining how the key research aims will help to fill these 

gaps. Chapter Two gives descriptions of the field sites used during the investigation and 

describes the general methods employed. Where necessary, more specific methods and 

field site descriptions are detailed within individual chapters. Chapter Three tackles the 

principle aim of this thesis which is to quantify annual fluvial organic carbon loss from 

peatland catchments subject to varying degrees of anthropogenic disturbance. Chapter 

Four increases the spatial scale of the investigation by looking at fluvial organic carbon 

losses from the Sebangau River basin, which encompasses all catchments subject to 

investigation in Chapter Three. Chapter Five considers the qualitative aspects of the 

fluvial organic carbon such as the age, source and chemical composition, which all give 

insight into the most likely fate of the carbon. Finally, Chapter Six discusses the three 

previous data chapters simultaneously, placing the findings in a global context and 
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summarises the main conclusions of the investigation, with recommendations for further 

work. 
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Chapter Two 

Materials and Methods 

2.1 Introduction 

In this chapter, an overview of the climatic region in which the field work was carried out, 

is followed by a more detailed description of the field sites that were monitored 

continuously for one year in order to investigate what impact anthropogenic disturbance of 

tropical peatland has on losses of fluvial organic carbon (Chapter Three). The Sebangau 

River basin which was subject to a larger spatial scale investigation (Chapter Four) is also 

characterised. This chapter details the generic methods that were used throughout the 

investigation and which are referred back to in several chapters such as sample 

collection, sample preservation and flux/yield calculations. The more specific methods 

that were tailored to answer particular research objectives are discussed within each of 

the individual chapters in which they were used. Details of how samples were analysed in 

the field and in the laboratory in Indonesia and in the UK, such as DOC and POC analysis 

are also discussed and finally, the statistical analyses employed throughout the 

investigation are explained and justified. 
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2.2 Study sites 

The study sites are located on the island of Borneo (an island which encompasses parts 

of Indonesia, Malaysia and Brunei), in Southeast Asia. All the study sites are found within 

the Indonesian province of Central Kalimantan , which is one of four Indonesian provinces 

within Kalimantan. All study sites are located within a small range of coordinates 

(2°15'1 O.OO"S to 2°23'15.00"S and 113°52'30.00"E to 114°08'24.80"E; figure 2.1). 

---

-s.o 

Indoneala 

. - --
-. 

Figure 2.1: Map of Indonesia (right) with enlarged outline of Borneo (left) showing the location of 
the study sites within Central Kalimantan (shaded grey box) . 

Central Kalimantan lies within the Inter Tropical Convergence Zone (ITCZ) and 

experiences a tropical monsoonal climate. The mean annual temperature varies between 

25 and 2rc and rainfall averages 2700 mm y(1 (Page et a/., 2004). Twenty two years of 

rainfall records from Central Kalimantan indicate that, annually, there is approximately 

nine months of wet season (October - June) and three months of dry season (July -

September), whereby dry months are defined as periods of moisture deficit, indicated by 

evapotranspiration exceeding rainfall (Hooijer et aI. , 2008; figure 2.2). 
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Figure 2.2: Average monthly rainfall over 22 year record (1984-2006) in Central Kalimantan. 
Dashed grey line represents the average evapotranspiration over the same time period. Where 
evapotranspiration is greater than rainfall, month is defined as dry season. All data collected from 
Palangka Raya Meteorological Office (Hooijer et al., 2008). 

In Central Kalimantan, all study sites are located within or close to the Sebangau River 

basin. The river basin is bordered by the City of Palangka Raya, the provincial capital of 

Central Kalimantan to the north, the River Kahayan to the east, the Java Sea to the south 

and the River Katingan to the west (figure 2.3). The Sebangau River basin is 

approximately 5,200 km2
, most of which is covered in peat which forms extensive domes 

between the River Kahayan and the River Katingan. The maximum recorded thickness of 

the peat to the west of the River Sebangau is 13 m (at the summit of the peat dome) and 

to the east of the River Sebangau is about 8 m (Page et al., 1999; 2002). This peat 

overlies a heavily-weathered, quartz podzol that is often more than 5 m thick. Underneath 

this layer is an impervious hard pan of up to 2 m (Sieffermann, 1990). 
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Figure 2.3: The Sebangau River basin (dashed white line) situated in Central Kalimantan drains 
into the Java Sea and is located between the River Kahayan to the east, the River Katingan to the 
west (grey lines; source: Google Earth, 2011). 

2.2. 1 Experimental site description 

Three PSF land-cover classes that differed in their recent disturbance history, located in 

or near to the Sebangau River basin were identified and selected as sampling sites (figure 

2.4): (1) an intact peat-swamp forest (I PSF) catchment in Sebangau National Park was 

selected as a reference/control site and provided a basis for comparison; (2) a moderately 

disturbed peat swamp forest (DPSF1) catchment in Tubangnusa; and (3) a severely 

disturbed peat swamp forest (DPSF2) catchment in Kalampangan. All three sites are 

located within 20 km of each other and were classified as part of the same ecosystem, 

pre-disturbance. This ecosystem was composed of the same belowground (thick peat 

dome) and aboveground (primary PSF) components which, in the case of DPSF1 and 2, 

were severely modified as a result of the Mega Rice Project (MRP; Vries, 2003). The 
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MRP (1995-1999) was a one million hectare peat reclamation project with the aim of 

establishing new rice fields in Kalimantan to meet the country's demand for self-

sufficiency in rice production. The entire project area was split into five regional blocks, 

simply named 'Block A', 'B', 'C', '0 ' and 'E'. Converting these peatlands into land suitable 

for rice production involved clearing the land of intact PSF and digging approximately 

4,500 km of drainage channels in order to artificially control the water table levels (Hooijer 

et al. , 2008). It is estimated that as a result, the total land area covered in PSF around 

Palangka Raya reduced by more than 50% from 24,000 km2 in 1991 to 11 ,000 km2 in 

2000 (Boehm & Siegert, 2001; Boehm et al. , 2001 ; 2002). The IPSF site lies outside the 

boundaries of 'Block C' and was therefore unaffected by the MRP. DPSF1 and DPSF2 

however are both situated within 'Block C' and as such, were subject to anthropogenic 

disturbance during the MRP. 

Palangka Raya 

o , 

Figure 2.4: Location of study sites in Central Kalimantan, Borneo, Indonesia (inset). All sites lie 
within 30 km of Palangka Raya, the provincial capital of Central Kalimantan. IPSF (three channels) 
drains into the River Sebangau. DPSF1 (two channels) drains into the River Kahayan . DPSF2 
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(three channels): two channels drain into the River Sebangau and one channel into the River 
Kahayan. 

2.2.2 Intact peat swamp forest (lPSF) - Sebangau 

IPSF is situated within the borders of the Sebangau National Park, approximately 12 km 

south of Palangka Raya (figure 2.5). The study area extends southwest from the River 

Sebangau and consists of a continuum of forest types from the river (riverine forest) to the 

centre of the peat dome (tall interior forest; see Chapter 1.2.6; Page et al., 1999). The 

peat dome of which IPSF forms a part ranges in thickness from less than 1 m at the edge 

to more than 11 m in the centre, averaging 7.8 m over the whole dome (Page et a/., 

Figure 2.5: An example of a logging access channel in IPSF, approximately 1.5 m wide and 0.6 m 
deep (left) and the location of IPSF within study site map (right). 

1999). Despite its National Park status, this study area cannot be termed pristine due to 

small-scale, selective logging that took place in the 1990s which was unrelated to the 

MRP. The loggers dug access channels to transport felled trees out of the forest and onto 

boats in the River Sebangau. Three channels that drain 34.2 km2 of IPSF and discharge 

into the River Sebangau were monitored. These channels penetrate the forest 

approximately 15 km perpendicular to the forest edge and range in size. All channels are 

1.5 to 2.0 m wide and do not exceed 1.0 m in depth, but the actual volume of water within 
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them 'Varies depending on the time of year. In an average rainfall year, they dry out at 

distances greater than 1 km inside the forest, but remain wet aI/ year closer to the forest 

edge. In drier years, they may dry out completely for a short period of time during the 

peak of the dry season, between July and September, when the water table reaches a 

maximum depth of -40 cm (Takahashi et al. , 2003). For the majority of the year, the water 

table is above the peat surface and the channels ' flow is at capacity. The highest water 

tables during the peak of the wet season, between February and April , result in overland 

flow as well as channel flow at levels exceeding the channels' maximum capacity. 

Therefore the influence of these channels on the actual drainage of the peat dome is 

considered to be negligible. 

2.2.3 Disturbed peat swamp forest 1 (DPSF1) - Tubangnusa 

DPSF1 is one of two disturbed land-cover classes investigated and refers to an area of 

land that encompasses the village of Tubangnusa (figure 2.6). It is situated southeast of 

Palangka Raya in between the main road south to Banjarmasin and the River Kahayan , 

within what is termed 'Block C' of the MRP. The peat is slightly shallower in DPSF1 

compared to IPSF and ranges from less than 1 to 5 m in depth. DPSF1 looks very 

different to IPSF, primarily due to the lack of overlying PSF (figure 2.6). 

Figure 2.6: An example of a drainage channel in DPSF1 , approximately 4 .5 m wide and 2.8 m 
deep (left) and the location of DPSF1 within study site map (right) . 
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The area was clear-felled of all PSF and the remaining vegetation was burned in 

preparation for the MRP in the late 1990s. In addition, two drainage channels 

approximately 3 to 6 m wide and 2 to 3 m deep were dug so that the water table could be 

artificially controlled during rice production. Today, the land-cover consists largely of 

shrubs and ferns with small clusters of trees that generally do not exceed 5 m in height. 

The limited regeneration of the land is due to a number of reasons; first and foremost, the 

drainage channels result in continuous artificial drainage of the surrounding peatland, 

drying it out. Since the channels were dug the water table has been Significantly lowered. 

This leads to subsidence of the peat and significant gaseous carbon loss via continual 

oxidation (Couwenberg et al., 2010). 

Lower water tables, resulting in drier peat surfaces which are highly combustible, greatly 

increase the risk of fire (Page et al., 2009a). Fires, many of which are started by local 

farmers to clear shrubs and ferns from deforested areas in preparation for agricultural use, 

spread very quickly out of control and ignite what is remaining of the surface vegetation as 

well as the underlying carbon-rich peat. Tubangnusa is particularly fire prone and has 

been subject to fires every year since the initiation of the MRP. The most severe fires 

often correlate with extended dry seasons during EI Nino events, which have occurred in 

1997,2002,2006 and most recently in 2009. During the EI Nino years of 1997 and 2002, 

over 60,000 fire hotspots were detected across Borneo by satellite, many of them within 

the boundaries of the MRP, and in particular 'Block C' (Tansey et al., 2008). The fires 

spread quickly across the peat and due to a lack of fire-fighting resources and personnel, 

often remained burning for months at a time. The fires burn fresh vegetation that has 

grown since the previous fire event, only ever allowing a thinly spread ground covering of 

1 to 2 year old shrubs and ferns. This relentless fire cycle gives very little opportunity for 

more extensive re-growth to occur. Consequently, any sort of substantial regeneration at 

this site will only be possible if the fire cycle is broken for at least several continuous 

years. 
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The total drainage area of the two channels monitored in DPSF1 is 13.2 km2
. The first of 

these two channels in DPSF1 is located 5.2 km southeast of the large Kalampangan 

Canal. It runs for 6.1 km northeast from the main north-south road where it discharges 

into the Kahayan River. The second channel is located a further 9.4 km southeast along 

the main road and 14.6 km southeast of the Kalampangan Canal. This channel is shorter 

than the first, running only 2.8 km from the northeast of the road before discharging into 

the Kahayan River. The entire area within DPSF1 was also affected by the significant 

fires in the EI Nino years of 1997, 2002, 2006 and 2009. 

2.2.4 Disturbed peat swamp forest 2 (DPSF2) - Kalampangan 

DPSF2 is the second disturbed land-cover class investigated and refers to an area of land 

close to a village named Kalampangan (figure 2.7). It is situated southeast of Palangka 

Raya within the most northerly part of 'Block C', between the River Sebangau and the 

River Kahayan. The peat dome here varies in depth from less than 1 m at the edges to a 

maximum of 8 m at the summit of the dome. The Kalampangan Canal drains this peat 

dome. The Kalampangan Canal was dug during the MRP and is the most recognisable 

feature of the area. It measures 15 to 25 m wide and 4 to 7 m deep. It is approximately 

12 km in length and drains the peat dome into the River Sebangau to the southwest and 

the River Kahayan to the northeast (figure 2.7). 
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Figure 2.7: The Kalampangan Canal in DPSF2, approximately 23 m wide and 6 m deep (left) and 
the location of DPSF2 within study site map (right). 

DPSF2 was also cleared of all its PSF during the MRP years. DPSF2 is subject to more 

severe drainage than DPSF1 , induced by the Kalampangan Canal and the MRP channel 

that runs for 150 km south from the Kalampangan Canal where it discharges into the Java 

Sea. Water tables fluctuate according to rainfall but as a consequence of severe artificial 

drainage they remain below the peat surface for most of the year, reaching maximum 

depths of -140 em in drier years (Hooijer et al., 2008). The effect of such extreme 

drainage can extend into peatlands over large distances with high rates of subsidence, 

indicative of aerobic decomposition of the peat, concentrated in the first few hundred 

meters from the larger drainage channels (Hooijer et al., 2008). The resulting landscape 

in DPSF2 is similar to DPSF1, consisting primarily of shrubs and ferns. Like DPSF1 , 

DPSF2 experiences regular human-induced fire events. Due to its proximity to local 

villages however, it is more accessible to small fire-fighting teams who have had more 

success in controlling some of the fires in Kalampangan, as opposed to in Tubangnusa. 

Nonetheless, large areas within DPSF2 burned in the same post-MRP EI Nino years of 

1997, 2002, 2006 and 2009. Some areas within DPSF2 contain small stands of trees that 

reach up to 10m in height, but these are uncommon as most woody re-growth is 

restricted by regular fire events. 

In an attempt to limit further drainage, increase the water table and begin to re-wet the 

surrounding peatlands, dams of different designs and sizes have been constructed on 

many of the MRP drainage channels. In 'Block C', these damming projects have been 

implemented by the Centre for Integrated Management of Tropical Peatlands (CIMTROP) 

based at Universitas Palangka Raya (UNPAR), and are funded by international charities 

and non-governmental organisations. At present, the Kalampangan Canal is dammed at 

five locations, but due to a lack of significant funding and the resulting lack of resources, 

the dams regularly collapse during the wet season when the water table is at its highest, 

as illustrated in figure 2.8. Increasing the water table is commonly viewed as the only 
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long-term answer to reducing aerobic peatland decomposition, subsidence and the risk of 

fire . 

Figure 2.8: An example of a broken dam on the Kalampangan Canal. These dams are 
constructed of locally sourced materials and installed by hand. With no machinery to assist, the 
foundations are shallow which invariably leads to them collapsing during times of high water flow. 

The Kalampangan Canal runs up, over and down the Kalampangan peat dome. As a 

result, water flows in three directions away from the summit of the peat dome; towards the 

River Sebangau, the River Kahayan and down the MRP channel towards the Java Sea, 

as illustrated in figure 2.4 and 2.7. There is no outward flow of drainage water from within 

the DPSF2 catchment into the MRP channel, in the same way that there is no inward flow 

of drainage water from outside the DPSF2 catchment into the Kalampangan Canal. To 

the southwest, the Kalampangan Canal stops 200 m short of the River Sebangau where it 

splits into two smaller channels that discharge into the River Sebangau, as illustrated in 

figure 2.9. At the opposite end, to the northeast, the canal discharges directly into the 

River Kahayan. All three channels which drain an area of 42.9 km2 in DPSF2, were 

individually monitored. 
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Figure 2.9: Aerial photograph of DPSF2 where the Kalampangan Canal discharges into the River 
Sebangau via two smaller channels (Photo: V. Boehm, 2006). 

2.2.5 The Sebangau River basin 

The Sebangau River basin is approximately 5,200 km2
. Of this , 3,400 km2 is covered in 

intact PSF, the vast majority of which (3,040 km2
) is found to the northwest of the River 

Sebangau and forms Sebangau National Park. To the west of the southern stretches of 

the River Sebangau is a small transmigration settlement area which experienced 

deforestation and land use change in the 1970s through to the 1990s. The remaining 

1,800 km2 is a mix of degraded and secondary PSF, ferns and shrubs, cleared and burnt 

areas and small-holder areas. The vast majority of this (1 ,200 km2
) is found within 'Block 

C' to the east of the River Sebangau. A combination of peatland drainage and fires has 

created a much changed and degraded ecosystem on the eastern side of the river basin 

(Page et al. , 2002; 2009; Wosten and Ritzema 2007; Ballhorn et a/. , 2009). 

Aboveground vegetation aside, the Sebangau River basin is composed almost exclusively 

of peatlands, resulting in a high concentration of humic substances in the drainage water 

entering the River Sebangau. The River Sebangau is therefore commonly termed a 
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blackwater river and has a background pH of 3.5 to 4.0 (Haraguchi, 2007). Kya , the 

source of the River Sebangau is approximately 20 km west of Palangka Raya . From 

here, the River Sebangau flows approximately 150 km south where it discharges into the 

Java Sea (figure 2.10). The height above sea level at its source is 12 m (Page et al., 

1999). Averaged over the entire course of the river, there is, therefore, only a 1 m change 

in elevation for every 12.5 km of river length. Such a low relief gradient leads to low water 

flow rates within the river throughout the year. 
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Figure 2.10: Map of the Sebangau River basin in Central Kalimantan , Borneo (inset). The 
Sebangau River basin is shaded grey and outlined by the dashed line to the west and south and 
the straight solid line (north-south canal) to the east. Fourteen named channels drain the 
Sebangau River basin into the River Sebangau (centre) which runs from north to south draining 
into the Java Sea. 
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2.3 General methods 

2.3. 1 Sample collection 

All surface water samples were collected from channels (artificial canals or natural 

streams and rivers) using the same method. Where the objective was to quantify the loss 

of fluvial carbon from a specific channel, samples were collected at a point immediately 

upstream from where the channel discharged its load into a natural riverine system. The 

sampling location was marked with GPS and visually defined with rope tied over the width 

of the channel to ensure sampling was carried out in exactly the same location every time 

the site was revisited. Within each channel , five replicate samples were collected to 

represent the entire cross sectional area (figure 2.11). When collecting water samples 

from the wider channels, physically entering the water was sometimes necessary. In 

these instances, the sample location was always approached from downstream to ensure 

that access disturbance did not affect the sample taken. 

Figure 2.11: Channel cross-sectional area to illustrate the five replicate sampling locations. 

All samples were collected in pre-rinsed (with sample) polypropylene 60 ml Nalgene wide­

neck bottles. Polypropylene bottles have been recommended for sample collection and 

storage when DOC analysis is required (Norrman, 1993). The sample bottle was kept 

inverted under the water so as not to let any water in until it reached the desired sample 

collection depth, whereupon it was angled to allow water to slowly enter. Once the bottle 
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was full, the screw-cap was fastened under water to ensure only water from the desired 

depth was collected. 

2.3.2 Sample preservation 

Having collected the sample and taken in-situ measurements (see Chapter 2.4.1), a two­

step processing technique was used: (i) to separate the POC fraction from the DOC 

fraction; and (ii) to preserve or 'fix' the DOC concentration, minimising any potential 

difference in concentration between the time of sample collection and sample analysis. 

The first stage of preservation involved filtering the water sample, the function of which is 

two-fold. Firstly, this serves to separate the DOC fraction from the POC fraction and 

secondly, it removes biologically active particles that could alter the concentration of DOC 

in the sample, post-collection (Sharp & Peltzer, 1993). To reduce the possibility of organic 

contamination, excess sample water was filtered through the cellulose acetate membrane 

filters (0.45IJm) and the filtrate disposed of. A known volume of the sample (60 ml) was 

then passed through the same filter and the filtrate and filter paper retained for analysis 

(see Chapter 2.4). Filtration was carried out under partial vacuum (10 psi) using a hand­

held vacuum pump (Mityvac, MV8255) to reduce the time spent waiting for samples to 

filter. The second stage of preservation involved acidification of the sample to pH 2, which 

also has a two-fold function. Firstly, this eliminates bacterial activity and denatures the 

majority of enzymes, while preserving the organic molecules, thus reducing the possibility 

of the DOC concentration being altered. Secondly, it removes any DIC present in the 

sample. Alkali-titration analyses were conducted in the field before the addition of acid to 

examine the proportion of carbon present in the inorganic form, the results of which 

indicated that no DIC was present. Given the very low water pH, this was consistent with 

expectations. 

A solution of dilute sulphuric acid (20%) was used to acidify the samples. Water samples 

to be analysed for DOC that have been preserved with certain acid types have been 
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reported to show slight decreases in concentration with time (Kaplan, 1994). By using 

sulphuric acid, however, this decrease in concentration can be kept to a minimum and is 

undoubtedly a more efficient preservation technique than no addition of acid at all 

(Kaplan, 1994). The most desirable protocol would be to analyse samples immediately 

following collection. Due to the remote sampling location and the lack of laboratory 

instrumentation, this was not possible. For the same reasons, nor was it possible to 

create a DOC 'decay curve' and apply a correction factor to the data. To do this, the 

sample would have had to have been analysed immediately post-collection, acidified and 

analysed again, upon returning to the UK in order to show the decrease, if any, in DOC 

concentration over this time. Alternative preservation techniques such as the addition of 

biocide (e.g. mercury) and/or freezing were not viable options given the location of my 

study sites, and therefore preservation by addition of acid was considered the best 

available option. Despite these limitations, it should be noted that the only possible 

change in DOC concentration (when acid is used as a preservative) is a decrease and 

therefore the results, if anything, should only be considered as conservative estimates as 

opposed to overestimates. 

Once the samples had been collected and preserved they were transported back from the 

field site in a cool box, out of direct sunlight and stored at 2 to 5°C at the University of 

Palangka Raya soil science laboratory. Samples were stored in this manner until the end 

of each field campaign when they were couriered back to the UK for analysis at the 

Department of Earth and Environmental Sciences laboratories, The Open University. 

2.3.3 Flux calculations 

To calculate a carbon flux from a channel, the channel discharge and the carbon 

concentration within the channel are required. Channel discharge rate (0) was calculated 

as described in equation 2.1. 
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(Equation 2.1) 

Where FR is the channel flow rate and CSA is the cross-sectional area of the channel. 

The flow rate was calculated using a handheld impeller flow meter (Geopacks Adv.). Five 

replicate flow rate measurements were taken from the same five locations that the water 

samples were taken from in order to represent the entire cross-sectional area of the 

channel. The flow meter is submersed in the channel at the sampling location for one 

minute and the number of impeller counts recorded. These impeller counts are converted 

into flow rates as described in equation 2.2. 

FR (m S'1) = 0.000854C + 0.05 (Equation 2.2) 

Where C is the number of impeller counts in one minute. Precision for this method was 

better than ±5%. The cross-sectional area was calculated by mapping the channel profile 

by taking water depth measurements at regular intervals (intervals varied with the size of 

the channel) across the channel width. These measurements were recorded every time 

the site was revisited as the water levels can vary over short time scales. 

The DOC/POC flux (DOC/POC"ux) from individual channels was calculated as described 

in equation 2.3. 

(Equation 2.3) 

Where DOC/POCconc is the DOC/POC concentration of the channel water and Q is the 

channel discharge. This flux is assumed to stay at a constant rate when it comes to 

temporally up-scaling to calculate the total flux for that week (weekly time point 

resolution). The site is then revisited and the flux recalculated for the following week. The 

weekly flux data are presented in larger units (tonnes week'1) and these were calculated 

by multiplying up accordingly. Where DOC/POC/TOC data are presented as a quantity 
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per unit area, this is referred to as a yield in grams of carbon, per meter squared, per year 

(g C m-2 y(1). This was calculated by dividing the total flux from a known area of land by 

that total land area. All land areas were quantified through combined use of aerial 

photography, a digital elevation model and a geographic information system (ArcGIS, 9.3). 

2.4 Sample analysis 

2.4. 1 In-situ measurements 

Samples were subject to a range of analyses in the field immediately post-collection and 

in various laboratories within the UK upon their return. Immediately following the 

collection of a water sample from a channel, water temperature, pH and electrical 

conductivity (EC) were recorded using portable pH (Hanna H19024D) and EC (Hanna 

H18633) meters. The wide-neck polypropylene bottles allowed these probes to be used 

without transferring the sample into another container, thereby reducing the risk of 

contamination. 

2.4.2 Dissolved Organic Carbon 

Samples were analysed for DOC by high-temperature catalytic oxidation (680°C) using a 

Total Organic Carboniser (Shimadzu, TOC-VcPN ) complete with a platinum catalyst and 

auto-sampler (Shimadzu, ASI-V). All samples were analysed against three 8-point 

calibrations for non-purgeable organic carbon (NPOC) analysis which covered the range 

of values produced from the samples. These NPOC calibrations consisted of the 

following concentration ranges: 0-50 mg 1'1; 0-75 mg 1'1; and 0-100 mg 1'1. The calibration 

curve with the most appropriate range for every individual sample was automatically 

selected by the instrument software to ensure the highest possible accuracy. Figure 2.12 

shows an example of a NPOC calibration curve used during one of the sample runs. The 

calibration correlation co-efficient was never below ~=0.99 (usually ~=1.00). 
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Figure 2.12: An example of a NPOC calibration curve (0-100 mg r1) used during a sample run. 

The instrument was re-calibrated every two weeks or when any changes were made to 

the instrument. Calibration standard checks of 50 mg 1"1 and 100 mg r1 were run at the 

beginning, after every 15 samples and at the end of every sample run to check the 

precision of the calibration being run. Deionised water samples were also processed at 

the beginning of every run as blank controls. 

2.4.3 Particulate Organic Carbon 

Once a known volume of the water sample has passed through a 0.45 IJm filter, the DOC 

fraction is in the filtrate and the POC fraction is retained by the filter. To derive POC 

concentration, the filter was retained following filtering and oven dried (24 h at 40°C). This 

quantifies particulate matter which is thought to be equal to particulate organic matter 

(POM; given the dominance of peat soil at all sites). POM was then converted to a POC 

value by assuming organic matter to be 50% carbon (Hope et al., 1994). The resulting 
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data is the poe concentration with a unit of mg 60 mr1 (volume of sample originally 

filtered). This data was then converted to standard poe concentration units (mg 1"1) by 

multiplying up accordingly. 

2.5 Statistical analysis 

Quantitative data were analysed using parametric statistical tests where appropriate 

(SPSS, 18.0). Assumptions for using parametric analysis (adherence to normality and 

homogeneity of sample variance) were tested using Kolmogorov-Smirnov and Levene 

tests. 

Where Kolmogorov-Smirnov p>0.05, parametric statistics such as ANOVAs were used 

and where p<0.05, log transformations were attempted. Where these failed, non­

parametric statistics such as Kruskal-Wallis were used. In testing for homogeneity, where 

the levene statistic was p>0.05, parametric statistics were used and where the levene 

statistic p<0.05, log transformations were attempted with those variables still p<0.05 being 

subject to non-parametric tests. Parametric correlations were also used such as 

Pearson's correlation, and non-parametric correlations such as Spearman's correlation to 

test for correlation between variables. 

Statistical methods that are more specific to individual chapters are discussed within those 

chapters. 
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Chapter Three 

Fluvial organic carbon fluxes from intact and 
disturbed peat swamp forests 

A version of this chapter was submitted as a manuscript and is currently under review, as: Moore, 
5., Gauci, V., Page, S.E., Evans, C.D., Garnett, M.H., Jones, T.G., Freeman, C. and Limin, S.H., 
2011. Fluvial organic carbon fluxes reveal deep instability of deforested tropical peatlands. 
(Nature, submitted manuscript) 

3.1 Introduction 

Peatlands, by virtue of their high water table and consequent low decomposition rates 

form large carbon stores (Gorham, 1991). Tropical peatlands are poorly understood with 

respect to higher latitude peatland ecosystems yet they consist of vast and old carbon 

stores, many of which predate the last Glacial (Page et al., 2004), which are vulnerable to 

some of the most rapid rates of land use change in the world (Page et al., 2011). 

Globally, tropical peatlands store 82-92 Pg of carbon, of which Indonesia accounts for 

65% (57Pg; Page et a/., 2011). Southeast Asia currently experiences extensive 

anthropogenic tropical PSF degradation in the form of deforestation, drainage and fire 

(which does not playa role in the natural forest carbon cycle), all of which are converting 

carbon stored in peat into CO2 via direct combustion or through oxidation within the peat 

column as a result of water table drawdown (Page et al., 2002; Hooijer et al., 2010). As a 

result of fire alone, it is estimated that between 0.81 and 2.57 Pg of carbon were released 

to the atmosphere in 1997 as a result of burning peat and vegetation in Indonesia (Page 

et al., 2002). This was equivalent to 13 to 40% of the mean annual global carbon 
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emissions from fossil fuels at the time. Unlike boreal and temperate forests (McDowell & 

Likens, 1988; Michalzik et al., 2001), and higher latitude wetlands (Mulholland & Kuenzler, 

1979), the loss of fluvial organic carbon from tropical peatlands has yet to be quantified. 

In one of the most comprehensive reviews to date, Laiho (2006) explores the effects of 

lowered water tables on losses of fluvial organic carbon in peatlands, but does not include 

any reference to tropical peatlands. In the UK it has been estimated that 15,000 km2 of 

the country's 29,000 km2 of peat has been drained (Stewart & Lance, 1991; Milne & 

Brown, 1997). The reasons for draining are commonly stated as being for the lowering of 

water tables in order to improve grazing, hunting or to develop forestry (Ratcliffe & 

Oswald, 1988). Such drainage invariably results in increases in DOC export. Higher 

DOC concentrations were reported from a drained blanket peat in the UK when compared 

with intact peat (Wallage et al., 2006), increased DOC concentrations from Minnesota 

peat soils were reported upon drainage (Clausen, 1980) and Mitchell and McDonald 

(1995) showed that in a UK upland catchment, areas of the highest drainage density were 

the largest sources of DOC. Biogeochemical modelling based on processes known to act 

on DOC production in upland Britain also showed that drained catchments export more 

DOC with increases in the range of 15 to 33% over a 10 year period, depending on the 

drainage intenSity (measured by drain-spacing; Worrall et al., 2007). 

In general, the drainage of tropical peatlands, and more specifically drainage that 

occurred as a result of the MRP in Central Kalimantan, is more severe in terms of depth 

as opposed to drain-spacing. Initiated in 1995, the MRP was a failed agricultural 

development project which aimed to convert 10,000 km2 of peatland into rice fields and 

involved digging more than 4,500 km2 of drainage channels (see Chapter 2.2.1; Hooijer et 

al., 2008). The only studies to have investigated the effect of artificially lowering water 

tables in tropical peatlands have been with respect to emission of carbon gases (Hooijer 

et al., 2006; 2010). To date, no study has investigated the effect such a disturbance has 

on losses of fluvial organic carbon. Therefore, this investigation aims to quantify fluvial 
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organic carbon fluxes from three different land-cover classes that vary in their degree and 

nature of anthropogenic disturbance (deforestation, drainage and fire). 

3.2 Methods 

To quantify the effect of peatland disturbance on fluvial organic carbon fluxes, DOC and 

POC concentrations and water discharge rates were monitored from channels draining 

areas of both intact and disturbed PSF in a portion of Central Kalimantan, Indonesia, 

Borneo. The disturbed PSF has experienced severe deforestation, drainage and fire 

associated with the implementation of the MRP. Three PSF land-cover classes that 

differed in their recent disturbance history (as described in Chapter 2.2.1-2.2.3), located in 

or near to the Sebangau River basin were selected (figure 3.1): (1) intact PSF (lPSF; 3 

channels in the Sebangau forest); (2) moderately drained disturbed PSF (DPSF1; 2 

channels in Tubangnusa); and (3) severely drained disturbed PSF (DPSF2; 3 channels in 

Kalampangan). 

TOC (DOC + POC) fluxes were monitored from each channel outlet (as described in 

Chapter Two) at weekly intervals from June 2008 to June 2009. Rainfall gauges were 

also installed and monitored weekly at each of the three land-cover classes. Weekly 

monitoring was carried out during two 12 week sampling campaigns over the peak of the 

dry season (1 st Jun to 23rd Aug '08) and the peak of the wet season (25th January to 18th 

April '09). During the remaining weeks in the year (24th Aug '08 to 24th Jan '09 and 19th 

Apr to 31 st May '09), sampling was carried out by the staff at CIMTROP, Universitas 

Palangka Raya. During these periods, all channels were monitored on a fortnightly basis 

where discharge measurements and samples were taken. For the weeks that remain 

unaccounted for, rainfall data were recorded and used to estimate channel discharge 

rates using the unique rainfall/discharge relationship for each individual land-cover class. 

This means that data for 38 out of the 52 weeks in the year are based on actual discharge 
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Palangkaraya 

" ~, 

Figure 3.1: Location of study sites in Central Kalimantan , Borneo, Indonesia (inset). All sites lie 
within 30 km of Palangka Raya, the provincial capital of Central Kalimantan . IPSF (three channels) 
drains into the River Sebangau . DPSF1 (two channels) drains into the River Kahayan . DPSF2 
(three channels): two channels drain into the River Sebangau and one channel into the River 
Kahayan . 

measurements and the remaining 14 weeks are inferred from rainfall data that was 

collected weekly. Water samples were collected from channels in the same weeks as 

actual discharge measurements were taken, and sent to the UK for analysis. For the 14 

weeks of inferred discharge data, no water samples were collected and DOC/POC 

concentration data were calculated as the mean of the preceding and following week's 

actual data. All land-cover class areas were defined through combined use of aerial 

photography, a digital elevation model and a geographic information system (ArcGIS, 9.3). 

This enables data to be presented per unit area (e.g. TOC yield in g C m-2 y(1) and in 

doing so, allows comparisons between catchments of varying sizes. 
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3.3 Results 

3.3. 1 Rainfall and discharge 

All three study sites lie within 30 km of one another and consequently, are subject to very 

similar climatic conditions. Figure 3.2 shows the annual rainfall patterns during the course 

of the investigation from all study sites. Despite their spatial proximity to one another, the 
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Figure 3.2: Weekly rainfall data (June 2008 to June 2009) taken from rainfall gauges within each 
land-cover class and average rainfall from all three sites. The light grey area indicates the timing of 
the dry season (July to September, inclusively) . 

total annual rainfall did vary somewhat between sites, totalling 2744 mm, 2356 mm and 

2225 mm, at IPSF, DPSF1 and DPSF2, respectively. Higher rainfall over intact PSF 

compared to cleared land may be expected due to a more humid micro-climate created by 

a dense rainforest canopy. There is less than 20% difference between the site with the 

lowest annual rainfall (2225 mm) and the highest (2744 mm), and more notably, all three 

sites display the same seasonal trend. All sites receive only 5 to 8% of their total annual 

rainfall during the dry season which accounts for 25% of the year (July to September, 

44 



inclusively). The remaining 92 to 95% of rainfall occurs during the nine month wet season 

which lasts from October to June, inclusively. There was only one week in the entire year 

when no rainfall was recorded at any of the three sites (1st_ih July). The highest weekly 

rainfall occurred at the end of February when over 255 mm was recoded in DPSF1, most 

of which fell within one rain event. February also recorded the most rainfall in one month, 

averaging 386 mm across all study sites. The driest month was August, which averaged 

only 30 mm of rain across all sites and as little as 19 mm recorded in DPSF2. June 2008 

to June 2009 was an unexceptional year in terms of annual rainfall (no EI Nino or La Nina 

event) with the average annual rainfall from all three sites (2,325 mm) just below the 

reported mean annual rainfall for the region (2,700 mm; Page et a/., 2004). 

Discharge data also show a strong seasonal trend across all study sites. This is to be 

expected since discharge is closely related to rainfall. Between 3% (IPSF) and 10% 

(DPSF2) of total annual discharge occurs during the dry season, with the remaining 

discharge occurring during the nine month wet season, which accounts for up to 97% of 

total annual discharge in IPSF. Total annual discharge was larger in DPSF2 compared to 

IPSF and DPSF1 and this is due to it having a larger total drainage area (42.9 km2 

compared to 34.2 km2 and 13.2 km2
, respectively). However, despite IPSF being over 2.5 

times larger in size than DPSF1, the latter discharged almost double the amount of water 

over the course of the year. Figure 3.3 displays the catchment size corrected weekly 

discharge data which allows for more meaningful comparison between the sites. 
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Figure 3.3: Weekly discharge data (June 2008 to June 2009) taken from all three land-cover 
classes (catchment size corrected). Data presented is the total discharge from each land-cover 
class (calculated by adding discharge from all channel outlets within each land-cover class). The 
grey area indicates the timing of the dry season (July to September, inclusively) . 

Total discharge rates are between two to three times greater in DPSF1 and 2 (1 .8 and 2.7 

to total catchment size (table 3.1). This is despite there being the highest annual rainfall 

recorded in IPSF and the lowest recorded in DPSF2. This implies that a large volume of 

water that enters the IPSF site as rainfall does not make it back to the discharge 

monitoring points at the mouth of the catchment (see Chapter 3.4). 
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Table 3.1: Land-cover class properties for IPSF, DPSF1 and DPSF2. 

Land-cover Area 
Total 

Mean DOC Mean poe Mean TOe T~tal annual Discharge (x 106 

class (km2) rainfall (mm) 3 k ·2 .1) Cone (mg 1'1) Cone (mg 1'1) Cone (mg 1'1) 
m m yr 

IPSF 34.2 2744 0.9 68.0 ± 0.3 1.4 ± 0.1 69.5 ± 0.4 
DPSF1 13.2 2356 1.8 55.0 ± 0.7 5.3 ± 0.2 60.3 ± 0.8 
DPSF2 42.9 2225 2.7 48.3 ± 0.5 3.6 ± 0.1 51.9 ± 0.5 

Area (Total area of land-cover class), Rainfall (total annual), Discharge (total annual), DOC 
concentration (annual mean), poe concentration (annual mean), TOe concentration (annual 
mean). 

The relationship between weekly rainfall and discharge across all sites is displayed in 

figure 3.4. A positive relationship is apparent in all three sites, but the strength of the 

regressions do vary between sites, most notably between the intact (IPSF) and disturbed 

sites (DPSF1 and 2). 
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Figure 3.4: Relationship between weekly rainfall and weekly discharge data (catchment size 
corrected) from all three land-cover classes. 

The strongest correlation between rainfall and discharge is in IPSF (~=0.64) with weaker 

correlations in DPSF1 and 2 (~=0.46 and 0.42, respectively). With discharge being 

directly linked to rainfall , one might expect these correlations to be stronger than the ones 
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observed. However, the relationship is somewhat complicated due to the lag time 

between rain falling and it reaching the mouth of the catchment where discharge is 

monitored. Figure 3.4 illustrates that although an increase in rainfall generally results in 

an increase in discharge in IPSF, an equally large increase in rainfall results in a larger 

increase in discharge in sites DPSF1 and 2. This is further evidence of a greater 

proportion of rainfall reaching the catchment outlets and being recorded as discharge in 

the disturbed land-cover classes. IPSF consists of a very different overlying vegetation 

composition to DPSF1 and 2, which may account for the different relationship observed 

between rainfall and discharge. Surface run-off from IPSF is slower and greatly reduced 

as a result of the surface micro-topography which consists of hummocks and hollows 

which are absent in DPSF1 and 2. Surface water collects in the hollows and can account 

for large volumes of stored surface water during the wet season. The data suggest that 

IPSF has a greater natural buffering ability to varying quantities of rainfall when compared 

to DPSF1 and 2. 

3.3.2 TOe concentration 

TOe is comprised of two components; DOC and POCo Average weekly TOC 

concentration data from all three land-cover classes for the duration of the study are 

displayed in figure 3.5. The highest average TOC concentrations were observed in IPSF 

(69.4 mg r1), followed by DPSF1 (60.3 mg r1) and the lowest were observed in DPSF2 

(51.6 mg r1). Weekly variability in TOe concentration is observed in all sites, however, 

there is no seasonal or any other trend in this variability and concentrations remained 

relatively stable for the duration of the investigation, which is reflected in the small 

standard errors. There are hints of a downward trend in TOe concentration evident in 

DPSF2, but without a temporally expanded data set (of at least several years), it is difficult 

to say with any certainty that this is indeed a trend, as it may be part of longer term 

variability. Indeed, between the first and last data points in the series (52 weeks apart) 

there is only a 3 mg r1 difference in concentration, which suggests low variability within the 
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Figure 3.5: Weekly TOe concentration data (June 2008 to June 2009) from all three land-cover 
classes . Data presented is average weekly TOe concentration from all channels within each land­
cover class . The solid (IPSF), dashed (DPSF1) and dotted (DPSF2) horizontal lines indicate 
average TOe concentration during the entire study period and the grey area indicates standard 
error. 

data series. The largest variability was observed in DPSF1, where concentration values 

ranged from 48 mg 1'1 to 71 mg 1'1, and this is reflected in the largest standard error. 

Figure 3.6 displays the annual average TOC concentration from all three sites, split into its 

two components, DOC and POC. DOC is the dominant component in all sites, accounting 

for between 91-98% of TOe. The highest DOC:POC ratio was observed in IPSF where 

DOC comprised 98% of TOC and POC accounted for only 2%. Here, the annual average 

DOC and POC concentrations were 68.0 mg 1'1 and 1.4 mg 1'1, respectively, resulting in a 

DOC:POC ratio of 48.6. In DPSF2, the average annual DOC and POC concentrations 

were 48 mg 1'1 and 3.6 mg 1'1, respectively, which gives a DOC:POC ratio of 13.3. In 

DPSF1 , the average annual DOC and POC concentrations were 55 mg 1'1 and 5.3 mg 1'1, 
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Figure 3.6: Average TOC concentration during the study period from all three land-cover classes, 
split into its two components; DOC (black) and POC (grey), as percentages. 

respectively, which resulted in the lowest DOC:POC ratio of 10.4. Despite only ever 

accounting for a maximum of 10%, poe accounted for a greater proportion of TOe in 

both the disturbed sites compared to the intact site. This suggests that the drained and 

exposed peat in these disturbed land-cover classes is vulnerable to mechanical 

breakdown which may be associated with increased runoff and discharge. 

There is no relationship between TOC concentration and discharge (figure 3.7), largely 

due to there being no relationship with DOC concentration (which accounts for more than 

90% of TOC at all sites) and discharge (figure 3.8a). Due to the three land-cover classes 

having distinctly different TOe concentrations and discharge rates, it can be said that, in 

general, the intact sites have lower discharge rates and higher TOC concentrations. 

However, equally small discharge rates in the disturbed sites display much lower TOC 

concentrations, hence the lack of any broader correlation. There is a weak positive 

correlation (r2=O.14) between POC concentration and discharge (figure 3.8b) where the 
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lowest POC concentrations were observed in the intact site which had the lowest 

discharge rates whilst the higher POC concentrations were observed in the disturbed 

sites, where the higher discharge rates were observed. 
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Figure 3.7: Weekly TOe concentration vs . discharge data (catchment size corrected) for all three 
land-cover classes. 
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poe concentration vs . discharge data (catchment size corrected) for all three land-cover classes. 
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3.3.3 Toe yields 

Using both discharge and TOe concentration data, weekly TOe yields were calculated 

from all land-cover classes. Weekly fluxes from all channels within each land-cover class 

were added together and the sum divided by the total area of the laod-covef class . 1he 

results are d\s?\a)'ed \0 'igure 3.9 . l"he data display a very similar shape graph to the 

discharge (and rainfall) data graphs, suggesting that TOe yield is more highly dependent 

on discharge (and rainfall) than TOe concentration (which remained relatively constant 

throughout the year). However, TOe yield is a function of both discharge and TOe 
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Figure 3.9: Weekly fluvial TOe yield data from all land-cover classes (June 2008 to June 2009). 
Toe yields are the sum of yields from all channels within each land-cover class. divided by the 
total area of the land-cover class. The grey area indicates the timing of the dry season (July to 
September, inclusively). 

concentration and from looking at the TOe yield (figure 3.9) and discharge (figure 3.3) 

graphs, the difference between IPSF and DPSF1 and 2 is smaller in the TOe yield graph 

because TOe concentrations are 10-20 mg 1"1 higher in IPSF than in DPSF1 and 2, 

making up for some, but not all of the difference in TOe yield . Despite the highest 
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average TOe concentrations in IPSF, the weekly fluxes here are almost invariably the 

smallest. In contrast, DPSF2 almost invariably has the largest weekly TOe fluxes despite 

having the lowest average TOe concentrations. This provides further support to the 

assertion that TOe fluxes are driven primarily by discharge over TOe concentration. 

Of the annual TOe flux across all sites, on average 94% was lost during the nine month 

wet season. The wet season accounted for 97%, 92% and 91 % of annual TOe flux from 

IPSF, DPSF1 and DPSF2, respectively. This closely mirrors seasonal trends in discharge 

at all sites. Therefore, both disturbed sites are losing a larger proportion of the annual 

Toe flux than the intact site during the dry season. To calculate the total annual TOe 

yield from each of the land-cover classes, the 52 weekly TOe yield values from each site 

were added together. Results demonstrate a trend of increasing annual TOe yield with 

increasing drainage severity, from 62.5 (±14.7) g C m-2 y(1 in IPSF to 105 (±7.9) and 131 

(±13.4) g C m-2 y(1 for DPSF1 and 2 respectively (figure 3.10). This represents a 
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Figure 3.10: Cumulative annual TOC yield , DOC yield (black) and POC yield (grey) data from all 
three land-cover classes. 'a' and 'b ' denote significant differences between land-cover classes 
(p<O.01, unpaired, two-sample t-test) and error bars indicate standard error. 
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108% increase in TOe export from the intact to the most severely disturbed land-cover 

class. Annual TOe yields from both disturbed sites were significantly larger than the yield 

from the intact site (p<0.01). However it was found that DPSF1 was not significantly 

different from DPSF2. When looking at the two components of TOe, the DOC and poe 

yields contribute exactly the same percentages to the yield as the DOC and poe 

concentrations do to the TOe concentration; 2%, 9% and 7% in IPSF, DPSF1 and 

DPSF2, respectively. This equates to a DOC and poe yield of 61.3 and 1.2 g e m·2 
y(1 in 

IPSF, respectively, 95.6 and 9.7 g e m·2 
y(1 in DPSF1 and 122 and 8.6 g e m·2 

y(1 of 

DOC and poe in DPSF2, respectively. 

3.4 Discussion 

Results of the investigation indicate that the annual TOe yield increases with drainage 

severity. TOe yield is the product of two components; discharge and TOe concentration. 

Given the lack of seasonal variation in TOe concentration, discharge, which does have a 

seasonal pattern, is shown to be the principal determining variable of TOe yield. 

Verification is provided by the seasonal pattern in annual TOe yield (figure 3.9) and 

discharge rates (figure 3.3) which reflect one another very closely. Because discharge is 

used to calculate TOe yield, very strong correlations between the two variables are 

observed at all sites (,-2>0.94; figure 3.11a). Furthermore, since TOe concentration 

remains relatively constant (with no seasonal pattern), and there is a strong seasonal 

pattern in TOe yield (driven by discharge), there is no correlation between TOe 

concentration and TOe yield (figure 3.11 b). 
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Figure 3.11: Relationship between (a) weekly discharge and TOe yields and (b) weekly TOe 
concentrations and TOe yields for all land-cover classes . 

It follows then, that larger discharge rates in DPSF1 and 2 (1.8 and 2.7 x 106 m3 km-2 y(1, 

respectively) than in IPSF (0.9 x 106 m3 km-2 y(1) were the primary driver behind larger 

TOC yields from the disturbed land-cover classes. These higher discharge rates in 

disturbed land-cover classes were not counterbalanced by lower TOC concentrations, and 

occurred despite similar rainfall among the sites (table 3.1; figure 3.2). The most likely 

explanation for this is two-fold; a decline in rates of evapotranspiration and increased 

runoff in the disturbed land-cover classes. Both of these features are the direct 

consequences of large scale biomass loss, fires and artificial drainage in both the 

disturbed land-cover classes. Intact forest intercepts and returns large volumes of water 

back to the atmosphere via evapotranspiration. Evapotranspiration prevents a large 

portion of the rainfall from ever reaching the catchment outlet and contributing to the 

catchment discharge. Clearing peatland of its overlying vegetation, as has happened in 

DPSF1 and 2, vastly reduces rates of evapotranspiration. The lack of overlying 

vegetation also reduces the amount of rainfall interception, thus increasing the amount of 

water landing directly onto the peatland surface. Transversely, it could be argued that 
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clearing aboveground vegetation exposes the underlying peat to greater levels of solar 

radiation and higher temperatures, creating conditions from which one would expect 

greater rates of evaporation. 

The other disturbance that affects DPSF1 and 2, but not IPSF, is fire events. Peatland 

fires are intense and can last for several months if unattended to, or the resources 

required to extinguish them are unavailable, as is often the case in both disturbed land­

cover classes investigated. These fires not only burn the aboveground vegetation that is 

present (shrubs and ferns in DPSF1 and 2), but also the underlying, carbon-rich peat 

dome. Ballhorn et al. (2009) estimated an average burn depth of 33 cm into the peat 

surface following the 2006 fires in Central Kalimantan. This burning of aboveground 

vegetation and surface layer peat in both DPSF1 and 2 also influences discharge rates 

from the ecosystem. Fire destroys the binding of roots and reduces the water retention 

capacity of peat, which in its natural state is very high (Scott, 1989). Following a fire 

event, the peatland surface is left scorched and denuded. Due to the highly fibrous nature 

of tropical peat, large quantities of charcoal form on the peat surface during a fire event. 

Charcoal is hydrophobic in nature (Sander & Pignatello, 2005) and therefore repels water 

which has been reported to result in faster, increased runoff (Glasspool, 2000; Hoekman, 

2009). 

As well as increased runoff due to the fire effects mentioned above, drainage channels 

also present in DPSF1 and 2 artificially lower the water table and in doing so increase the 

efficiency of throughflow (during the dry season) and overland flow (during the wet 

season; Verwer et al., 2008). This reduces the amount of standing water on the peat 

surface, unlike the situation in un-drained forests (IPSF), where large areas of surface 

water are common. The drainage channels in DPSF1 and 2 therefore increase the 

proportion of water that is returned to the catchment outlets that is then monitored and 

recorded as discharge. 
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It was also observed that the disturbed land-cover classes lost a greater proportion of their 

annual TOC yield than the intact site during the dry season. Again, this is due to the 

artificial drainage channels. During the dry season, when rainfall is at its lowest and water 

tables begin to drop, the deep drainage channels in DPSF1 and 2 allow for continued 

drainage of the peatlands. In contrast, during the dry season the shallow logging access 

channels in IPSF dry out and discharge, along with TOC yields, are negligible. 

The relationship between discharge rate and TOCIDOC/POC concentration is an 

important one as these two variables combine to determine the overall fluvial carbon flux. 

Reports on the relationship vary widely from strongly positive correlations (Coynel et al., 

2005; Raymond et al., 2007) to negative correlations (Aldrian et al., 2008). The data from 

this investigation, as with other studies (Bilby & Likens, 1979) suggest that discharge is 

more closely correlated to POC flux than DOC flux (and TOC flux, as a result of DOC 

being by far the dominant component, as is the case in this study). Higher rates of 

discharge lead to greater physical erosion of the peat during runoff and channel flow 

which result in higher POC concentrations in channels draining the disturbed land-cover 

classes. Higher POC concentrations combined with higher discharge rates led to greater 

overall POC yields from both disturbed sites, DPSF1 and 2 (9.7 and 8.6 g C m-2 y(1, 

respectively) when compared with the intact site (1.2 g C m-2 y(1). 

TOC concentration and composition varied between land-cover classes. Average DOC 

concentration was high across all sites, ranging from 48-68 mg r1. This is to be expected 

from water draining peatland catchments and supports the general assumption that soil 

carbon is a major source of DOC in drainage water (Hope et a/., 1997; Aitkenhead & 

McDowell, 2000; Alkhatib et al., 2007). The DOC concentrations recorded exceed most 

other reported values from tropical peatland studies (Coynel et al., 2005; Alkhatib et al., 

2007; Baum et a/., 2007; Aldrian et al., 2008) and are up to an order of magnitude larger 

than some values reported from temperate peatland studies (Nilsson et al., 2008; Billet et 

a/., 2010; Koehler et al., 2011). DOC concentrations were consistently higher in IPSF 
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than in DPSF1 and 2. There are three possible explanations for this. Firstly, the intact 

land-cover class is a far denser store of carbon; it not only consists of a thick underlying 

peat dome, but also has a dense overlying PSF which provides the peat surface with a 

constant supply of fresh organic matter which decays over time into POC and DOC. 

Secondly, the water table is much higher in IPSF than it is in DPSF1 and 2. This creates 

anoxic conditions throughout the peat profile in IPSF which are known to constrain the 

activity of phenol oxidase, an enzyme which eliminates phenolic compounds in the 

presence of bimolecular oxygen (Freeman et a/., 2001). Anoxic conditions therefore lead 

to higher concentrations of phenolic compounds, substantially reducing the 

biodegradation of organic matter, resulting in high concentrations of DOC. Thirdly, the 

DPSF1 and 2 sites have both experienced fire events in recent history. Charcoal, which is 

generated on the peat surface during fire events exhibits many hydrophobic properties 

which make it well suited to the sorption of organic compounds (Deluca & Aplet, 2008). 

Due to its large number of adsorption sites, charcoal has the capacity to adsorb a host of 

compounds, including organic carbon, which is why it is often compared to 'activated 

carbon' (Sander & Pignate/lo, 2005). This 'activated carbon' therefore has the potential to 

adsorb some of the DOC compounds in pore water which may result in decreased 

concentrations of DOC observed in both the disturbed sites. 

POC concentrations generally contributed less than 10% of TOC concentrations, which is 

consistent with most peatland ecosystems where the vast majority of TOC is exported as 

DOC (Hope et a/., 1994). Reports on what effect deforestation has on POC 

concentrations invariably show that it increases them (Hobbie & Likens, 1973), which is 

consistent with the finding that both DPSF1 and 2 had higher POC concentrations than 

IPSF. Artificial drainage in DPSF1 and 2 lowers the water table which destabilises the 

peat structure and exposes a greater area of the peat to mechanical breakdown. Fire 

events, also affecting DPSF1 and 2 further destabilise the peat structure by breaking the 

larger fibrous components down into smaller particles of organiC matter (Boehm & Siegert, 
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2001). The higher discharge rates observed in disturbed land-cover classes then facilitate 

in washing away this POC in drainage channels. 

The findings of this investigation suggest that human-induced alteration and disturbance 

of intact PSF is responsible for the large increases in fluvial organic carbon yields that 

were observed from disturbed PSF. These large fluvial losses of carbon play an important 

role in altering the carbon balance of such ecosystems, yet because they are assumed to 

be small in comparison to gross primary productivity and ecosystem respiration , they are 

seldom measured. While measurements of net ecosystem exchange (NEE) for intact 

PSF are rare , a carbon accumulation rate of 94 g C m-2 y(1 was estimated from a peat 

core within the IPSF site (Page et al., 2004; figure 3.12). The NEE was estimated from 

(a) (b) 

157 433 

Figure 3.12: Schematic showing NEE (black arrows; 9 C m·2 y(1) and fluvial TOC loss (white 
arrows; 9 C m-2 y(1) estimates in (a~ IPSF and (b) DPSF2 land-cover classes. Carbon gain of intact 
PSF estimated to be 94 9 C m 2 y( (-157 + 63 = -94) . Carbon loss of disturbed DPSF2 estimated 
to be 564 9 C m-2 y(1 (433 + 131 = 564) . 

the average 500 year long-term apparent rate of carbon accumulation (LORCA). 

Including the IPSF fluvial carbon loss estimate of 63 g C m-2 y(l (from this study), 

suggests an approximation of a gaseous exchange based NEE of -157 g C m-2 y(1 for 

IPSF (net carbon sink). Measured NEE within DPSF2 is +433 g C m-2 y(1 (Hirano et al., 

2007) which results in an increased carbon loss of 564 g C m-2 y(l (net carbon source) 
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when including the fluvial carbon loss estimate from DPSF2 (131 g C m-2 y(1; from this 

study). 

It follows then, that 30% more carbon is lost than previously assumed through gaseous 

exchange measurements alone. These calculations clearly illustrate the importance of 

including fluvial carbon losses if the impact of anthropogenic disturbance of tropical 

peatlands is to be fully realised and accounted for. Gielena et al. (2011) also demonstrate 

the importance of including losses of fluvial carbon from an ecosystem by calculating that 

the net ecosystem productivity (NEP) of a temperate Scots Pine forest in Belgium was 

overestimated by 11% as a result of not including the ecosystem's DOC yield (10 g C m-2 

y(1). The DOC yield is clearly smaller in a Scots Pine forest compared to the tropical PSF 

sites monitored during this investigation and therefore changes the overall NEP to a lesser 

extent. However, it demonstrates the same principle of the importance of including this 

form of carbon loss from ecosystems in order to achieve accurate carbon budgets, 

especially in disturbed tropical peatland ecosystems where fluvial organic carbon fluxes 

have been shown to account for up to 30% of NEP. 
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Chapter Four 

Fluvial organic carbon losses from the Sebangau 
River basin. 

A version of this chapter is published in Biogeosciences: Moore, S., Gauci, V., Evans, C. D. and 
Page, S. E., 2011. Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences 
8:901-909, doi:1 O.S194/bg-8-901-2011. 

4.1 Introduction 

The transport of fluvial carbon from terrestrial ecosystems such as tropical peatlands into 

rivers and out to the oceans provides the important link between terrestrial and marine 

carbon cycles (Meybeck, 1993). In terms of a global riverine flux of carbon, it is estimated 

that 1000 Tg of carbon is discharged into the world's oceans each year (Ludwig et al., 

1996). Globally, approximately 60% of this fluvial carbon is comprised of inorganic carbon 

and 40% organic carbon (Meybeck, 1993; Probst et al., 1994). However, it is believed 

that fluvial carbon fluxes from peatland catchments are dominated by organic forms (Hope 

et al., 1994). Two commonly accepted estimates put the annual figure of TOe discharged 

to oceans at somewhere between 330 and 370 Tg (Degens et al., 1991; Meybeck, 1993). 

In most peatland ecosystems nearly 100% of TOe is exported in its dissolved form, DOC 

(Hope et al., 1994). According to various modelling estimates, the global riverine DOC 

export to the oceans ranges from 170 (Harrison et al., 2005) to 250 Tg C y(1 (Ludwig et 

al., 1996). 
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Despite tropical peatlands being one of the largest terrestrial carbon stores on earth, they 

have been shown to export more fluvial organic carbon per unit area than any other 

significant biogeographical land type in the world (Freeman et a/., 2001; Page et a/., 

2002). Rivers that drain catchments composed almost entirely of peatlands are 

characterised by a low pH (highly acidic), low concentrations of suspended sediments 

(including POC) and sometimes undetectably low concentrations of dissolved inorganic 

nutrients (including DIC; Vegas-Vilarrubia & Rull, 1988). These rivers transport very high 

levels of DOC as humic substances which make them characteristically dark in colour and 

for this reason they are commonly called blackwater rivers. The South American Rio 

Negro and Caroni rivers are probably the most well known examples of blackwater rivers. 

They are large tributaries to two of the largest rivers in the world, the Amazon and 

Orinoco, and are extraordinary blackwater rivers in respect of their size. Most river basins 

that are composed entirely of peatlands are small in size, making most blackwater rivers 

small in size as well. Based on their size, blackwater rivers have consequently been 

considered quantitatively insignificant for carbon input into the ocean. It is however 

conceivable that blackwater rivers are more important for carbon cycling than previously 

thought and with regard to this, the existing knowledge on the biogeochemistry of these 

river types is inexplicably small. 

Indonesia does not contain any of the major world rivers. Instead, its peatlands are 

drained by numerous small lowland rivers which contribute -11% (135,000 m3 S-1) to the 

global freshwater export (Syvitski et a/., 2005). This is less than, but comparable with the 

Amazon River which, singlehandedly, accounts for -15% of the global freshwater export 

(183,000 m3 
S-1; Richey at a/., 1991). Indonesian rivers are, however, thought to account 

for significant export of DOC into the ocean. This is primarily due to high precipitation 

rates and large surface areas that are covered in peatlands (206,950 km2
; Page et al., 

2011), which are known to be an important source of riverine DOC (Hope at a/., 1997; 

Aitkenhead & McDowell, 2000). In a recent study, Baum et a/. (2007) used data collected 
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from the River Siak, a blackwater river in Sumatra (Indonesia) to estimate a mean DOC 

flux of 0.32 Tg y(1 for the Siak catchment alone. This estimate was then extrapolated to 

the entire land area of Indonesia (-1.9 x 106 km2
), taking into account the percentage peat 

area cover, and the annual fluvial DOC discharge was estimated to be 21 Tg y(1. 

According to the extrapolated estimate of Baum et al. (2007) and current global modelling 

estimates (170 to 250 Tg carbon y(\ Indonesian rivers account for approximately 10% of 

the global riverine DOC discharge into the ocean. The only other Indonesian blackwater 

river to be quantified with respect to organic carbon export to the ocean is the Dumai 

River estuary, also in Sumatra. This river is estimated to export 0.03 Tg DOC y(1, but no 

regional or national extrapolations were made, most likely due to its very small catchment 

size. 

The reliability of the extrapolated estimate of 21 Tg y(1 by Baum et a/. (2007) is reduced 

by the limited availability of fluvial carbon data for other rivers in the region. This 

investigation aims to remedy this deficiency by providing the first quantitative fluvial 

organiC carbon data set from a blackwater river in Central Kalimantan, the River 

Sebangau. This study aims to quantify the export of fluvial organic carbon in this river 

from the source (150 km inland) to the mouth, where it discharges into the Java Sea. 

4.2 Methods 

4.2.1 Study sites 

The Sebangau River catchment lies in the southern part of Central Kalimantan, Indonesia. 

Central Kalimantan lies within the inter-tropical convergence zone (ITCZ) and experiences 

a tropical-monsoonal climate. The temperature remains relatively constant throughout the 

year (25-2rC) and annual rainfall averages 2700 mm y(1 (Page et al., 2004). Twenty two 

years of rainfall records from Central Kalimantan indicate that annually there is 

approximately 9 months of wet season (October to June) and 3 months of dry season 
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(July to September; dry months defined as periods of moisture deficit, i.e. when 

evapotranspiration exceeds rainfall; Hooijer et al., 2008; figure 4.1). 
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Figure 4.1: Average monthly rainfall over 22 year record (1984-2006) in Central Kalimantan. 
Dashed line represents the average evapotranspiration over the same time period. All data 
collected from Palangka Raya Meteorological Office (Hooijer et al., 2008). * Denotes timing of the 
two sampling campaigns. 

The Sebangau River basin lies between the River Katingan to the west and the River 

Kahayan to the east and has a total land area of approximately 5200 km2 (figure 4.2). 

Kya, the source of the River Sebangau lies approximately 20 km west of Palangka Raya, 

the provincial capital of Central Kalimantan. Almost the entire catchment is composed of 

peatland resulting in a high concentration of humic substances in the water, giving the 

River Sebangau water it's characteristically dark orange-black colour and a background 

pH of 3.5 to 4.0 (Haraguchi, 2007; Haraguchi et al., 2007; Tachibana et al., 2007). 
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Figure 4.2: Map of the Sebangau River basin in Central Kalimantan , Borneo (inset) . The 
Sebangau watershed is shaded grey and outlined by the dashed line to the west and the south and 
the straight solid line (north-south canal) to the east. Fourteen named channels drain the 
Sebangau catchment into the River Sebangau (centre) which runs from north to south draining into 
the Java Sea. To the west of the Sebangau River lies Sebangau National Park and to the east is 
'Block C' of the MRP. 

The maximum tidal range at the mouth of the River Sebangau is -3 m (United Kingdom 

Hydrographic Office, 2008). Due to the low-lying nature of the Sebangau catchment, this 

mesotidal range has the potential to affect the river system over large distances inland. 

4.2.2 Sample collection 

Sampling was carried out on two separate occasions; the dry season in September 2008 

(high tide) and the subsequent wet season in March 2009 (low-tide). River water samples 

were collected from the main channel of the River Sebangau at 3 km intervals from the 
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mouth to the source, 150 km inland, totalling 50 samples. Baum et al. (2007) reported 

horizontal and vertical DOC variability in the River Siak to be ±5% and ±3% respectively, 

due to well mixed water. Accordingly, all samples were collected from the centre of the 

River Sebangau at a depth of 50 cm. Five replicate samples were collected from within 

each of the fourteen channels at a point immediately before their discharge points into the 

River Sebangau. The cross-sectional area (GSA) and five replicate flow rate 

measurements (FR) (converted from impeller counts (C) per minute using the formula: FR 

= 0.000854G + 0.05) using a handheld impeller flow meter were also taken and used to 

calculate the discharge (Q) from each of the fourteen channels, as well as at the mouth of 

the River Sebangau upon discharging into the Java Sea, using the formula: Q (m3 S·l) = 
FR (m S·l) x GSA (m2

) (previously displayed in equation 2.1 and 2.2). Precision for this 

method was better than ±5%. Samples were collected in pre-rinsed 60ml Nalgene® 

bottles and the position of each sample point was recorded using a GPS (Garmin, eTrex 

Venture). Water temperature, pH and electrical conductivity (EC) were recorded 

immediately after collection using portable pH (Hanna H19024D) and EC (Hanna H18633) 

meters. 

4.2.3 Sample preparation and analysis 

To derive POC concentration, a known volume of river water was filtered through a 

0.45tJm cellulose acetate membrane filter (Whatman), that had been pre-rinsed with 

excess sample, under partial vacuum (hand-held vacuum pump, Mityvac, Nalgene). The 

filter was retained and oven dried (24 h at 40°C) to quantify particulate matter which is 

thought to be equal to POM (given the dominance of peat soil in the catchment). POM 

was then converted to a POC value by assuming organic matter to be 50% carbon (Hope 

et al., 1994). Samples of filtrate were acidified to pH 2.0 using a solution of dilute 

sulphuric acid (20%). The samples were then stored at 2 to 5°C and analysed for DOC 

after the samples were returned to the Open UniverSity. DOC was measured by high­

temperature catalytic oxidation (680°C) using a Total Organic Carboniser (Shimadzu, 
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TOC-VcPN) complete with a platinum catalyst. Precision was better than ±1%. DOC/POC 

concentrations were then combined with discharge rates to calculate the TOC flux from 

each of the fourteen channels and the River Sebangau TOC flux to the Java Sea. 

4.3 Results 

4.3.1 DOC 

DOC comprised 88% and 94% of TOC in the dry and wet seasons, respectively. DOC 

concentrations within the River Sebangau fluctuate from source to mouth and in both 

seasons were lower at the river mouth than at the source (figure 4.3). DOC concentration 

remained relatively constant for the first 100 km from the source but then decreased as 

water entered the last 50 km of the river, before discharging into the Java Sea. In the wet 

season, concentrations averaged 52 mg r1 for the first 100 km of the river and 44 mg r1 

during the dry season, over the same stretch of river. Concentrations of DOC decreased 

beyond this point to an average of 28 mg r1 and 35 mg r1 in the last 50 km of the river in 

the dry and wet seasons, respectively. 
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Figure 4.3: DOC concentration along the course of the River Sebangau during the dry and wet 
seasons. Vertical lines represent the confluences of fourteen channels that discharge Into the 
River Sebangau . Each confluence has an identification number above the x-axis (see table 4 1). 
Single point data represent DOC concentrations in each channel prior to discharge into the River 
Sebangau . 

Differences between the two sampling runs are partly attributable to differences In tidal 

conditions. The dry season sampling was undertaken at high tide, and some Influence of 

sea-water (defined as electrical conductivity (EC) greater than 200 IJS cm 1) was observed 

in samples collected below 126 km from the source. Dry season samples above and 

below this point were therefore analysed separately. In the wet season, sampling was 

undertaken at low tide, and all samples had an EC value of less than 110 IJS cm 1, 

implying that all samples contained freshwater. All wet season samples were therefore 

analysed together. Figures 4.4a and 4.4c show that from 0 to 126 km from the source, 

the river follows a similar transition in both seasons; from stable (high DOC, low EC) peat-

derived water (0 to 90 km), through to a more peat/minerai-derived mix of water with a 

higher EC and lower DOC concentration further downstream. In the dry season, below 

126 km from the source, the river water becomes progressively mixed with seawater, 

which raises the EC and lowers the DOC concentrations. The EC vs. DOC relationship at 



0'> co 

Table 4.1: Mean discharge, DOC, poe and TOe concentrations (± s.e.m) and fluxes (s.e.m <1%) from the confluences of 14 channels that discharge into the River 
Sebangau, during the dry and the wet season in 2008/09. The row titled River Sebangau represents concentrations and fluxes from the River Sebangau to the Java 
Sea. Total mean includes the 14 channels, but not the River Sebangau data. 

Number Channel Distance Discharge DOC concentration DOC flux POC Concentration POC flux TOC Concentration TOCflux 
on from river (m3 S·l) (mg r1) (x103 kg day·1) (mg r1) (x103 kg dat1) (mg r1) (x103 kg dat1) 
graph source (km) 

Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet 

1 Kalampangan 13.8 0.2 1.1 50.3 ± 0.3 55.3± 0.2 0.1 5.3 4.0 ± 0.2 1.8 ± 0.1 0.1 0.2 54.4 ± 0.5 57.1 ± 0.3 1.0 5.4 

2 Bakung 19.5 2.7 5.5 54.5 ± 0.2 53.8 ± 0.3 12.6 25.6 4.9 ± 0.1 0.7±0.1 1.1 0.3 59.4 ± 0.3 54.5 ± 0.3 13.8 25.9 

3 Rasau 31.0 4.4 9.0 52.0 ± 0.1 52.3 ± 0.2 19.8 40.8 7.6 ± 0.2 4.2 ± 0.4 2.9 3.3 59.6 ± 0.3 56.4 ± 0.6 22.7 44.1 

4 Mangkoh 46.5 dna 7.9 dna 51.5 ± 0.2 dna 35.2 dna 2.5 ± 0.5 dna 1.7 dna 54.0 ± 0.7 dna 36.9 

5 Garong 52.8 0.7 5.4 37.3 ± 0.3 51.2±0.1 2.4 23.9 4.7 ± 0.3 0.7±0.1 0.3 0.3 41.9 ± 0.6 51.9 ± 0.2 2.7 24.2 

6 Tlalau 58.1 0.2 3.7 46.0 ± 0.3 52.3 ± 0.4 0.8 16.9 3.7 ± 0.2 4.3 ± 0.2 0.1 1.4 49.6 ± 0.5 56.6 ± 0.6 0.8 18.3 

7 Bangah 64.6 6.3 16.1 48.2 ± 0.3 52.1 ± 0.1 26.3 72.5 3.3 ± 0.4 4.5 ± 0.3 1.8 6.3 51.4±0.7 56.7 ± 0.4 28.0 78.8 

8 Buntol 86.0 2.9 11.3 45.0 ± 0.5 50.6 ± 0.2 11.1 49.5 2.4 ± 0.2 2.9 ± 0.2 0.6 2.8 47.4 ± 0.7 53.4 ± 0.4 11.7 52.4 

9 Paduran I 96.3 59.4 235.0 40.4 ± 0.8 33.0 ± 0.3 207.2 669.9 6.7 ± 0.2 1.2 ± 0.1 34.2 23.7 47.0±1.0 34.2 ± 0.4 241.4 693.6 

10 Pankoh 102.2 8.8 10.6 32.5 ± 0.4 40.1 ± 0.4 24.8 36.8 7.1 ± 0.2 4.3 ± 0.1 5.4 3.9 39.6 ± 0.6 44.4 ± 0.5 30.2 40.7 

11 Paduran II 106.5 dna 40.7 dna 6.8 ± 0.1 dna 24.0 dna 3.0 ± 0.2 dna 10.4 dna 9.8 ±0.3 dna 34.4 

12 Sampang 124.0 52.8 59.1 32.3 ± 0.3 45.9 ± 0.3 147.5 234.4 5.7 ± 0.2 0.1 ± 0.1 26.0 0.7 38.0 ± 0.5 46.0 ±0.4 173.5 235.1 

13 Sampang 124.8 25.0 29.8 31.3 ± 0.2 36.4 ± 0.4 67.6 93.6 6.6 ± 0.1 4.5 ± 0.2 14.3 11.5 37.9 ± 0.3 40.8 ± 0.6 81.9 105.1 

14 Lumpur 148.9 43.6 38.6 15.8 ± 0.1 33.4 ± 0.1 59.4 111.4 4.1 ± 0.3 1.0 ± 0.3 15.4 3.4 19.9 ± 0.4 34.4 ±0.4 74.8 114.8 
River 
Sebangau 150.0 445.8 460.8 17.3 ± 0.4 33.6 ± 0.1 667.9 1337.2 3.8 ± 0.8 1.5 ± 0.1 146.4 61.1 21.1 + 1.2 35.1 + 0.2 814.3 1398.3 

Total Mean 17.3 33.9 40.5 43.9 48.4 102.8 5.1 2.5 8.5 5.0 45.5 46.4 56.9 107.8 



126-150 km from source (figure 4.4b) is not linear, and therefore cannot be explained by 

conservative mixing (see Chapter 4.5.1). 
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Figure 4.4: Temperature corrected EC 
(as a proxy for salinity) vs DOC 
concentration plots for samples from the 
River Sebangau in the dry season (a) 0 
to 126 km from source, (b) 126 to 150 
km from source (polynomial 2nd order 
relationship; ~ = 0.99) and (c) the wet 
season 0 to 150 km from source. Note 
different y-axis scale in figure 4b. 

poe comprised 12% and 6% of TOe in the dry and wet seasons, respectively. Figure 4.5 

shows that despite varying concentrations and high spatial variability, poe followed a 

similar trend in both the dry and wet seasons, namely a decrease in concentration from 

source to mouth. The increase (wet season) and decrease (dry season) in poe 

70 



concentration between 50 to 100 km from the source is perhaps attributable to the input of 

larger and smaller POC fluxes from channels 6 and 7 in the wet and dry seasons, 

respectively (table 4.1); channel 6 (Tlalau) discharged 100 kg day-1 in the dry season 

compared to 1,400 kg day·1 in the wet season. Similarly, channel 7 (8angah) discharged 

1,BOO kg day-1 compared to 6,300 kg day'1 in the dry and wet seasons, respectively. 

Across both seasons, average POC concentrations 0 to 25 km from the source were -4 

times higher than average POC concentrations 125 to 150 km from the source. This 

difference is more pronounced in the wet season when the average POC concentration is 

-7 times greater 0 to 25 km from the source (4.B mg 1'1) than at 125 to 150 km from the 

source (0.7 mg 1'\ 
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Figure 4.5: poe concentration along the course of the River Sebangau during the dry and wet 
seasons. Vertical lines represent the confluences of fourteen channels that discharge into the 
River Sebangau , Each confluence has an identification number above the x-axis (see table 4.1). 
Single point data represent poe concentrations in each channel prior to discharge into the River 
Sebangau. 

4.3.3 Ory Season VS. Wet Season 

Average water discharge from the fourteen channels in the wet season (34 m3 S·1) was 

double that observed in the dry season (17 m3 S·1), with the biggest interseasonal 

differences occurring in the upper reaches of the river, in channels 1 to 7. 

71 



Over the course of the entire river, mean DOC concentration in the wet season (46 mg 1"1) 

was slightly higher than in the dry season (39 mg 1"1). Conversely, average POC 

concentrations were higher in the dry season (5.2 mg 1"1) when compared to the wet 

season (2.7 mg 1"1). The fourteen channels display the same trend; DOC concentration 

being higher in the wet season (44 mg 1"1) than in the dry season (41 mg r1) and POC 

concentrations higher in the dry season (5 mg r1) compared to the wet season (3 mg r\ 

4.3.4 TOC export to the Java Sea 

In the dry season, the DOC and POC fluxes from the River Sebangau to the Java Sea 

were 0.00067 Tg day·1 and 0.00015 Tg day-1, respectively. In the wet season the DOC 

flux was double at 0.00134 Tg day-1 but the POC flux was less than half at 0.00006 Tg 

day·l. In order to convert these seasonal data into annual fluxes, Central Kalimantan 

average seasonal climate patterns were used which consist of three months (90 days) dry 

season and nine months (275 days) wet season (Hooijer et al., 2008). Using the 3:9 ('dry 

month: wet month') ratio, the annual TOC flux is estimated to be 0.46 Tg, with 93% (0.43 

Tg) comprising DOC and 7% (0.03 Tg) comprising POCo This estimate is restricted in its 

reliability as it is based on two sampling seasons over the course of a year. However, the 

strategic timing of both sampling campaigns should ensure that the datasets are highly 

representative of both dry and wet season conditions (figure 4.1). If there are any 

inorganic particulates present, the POC fraction may be a slight overestimate (see POC 

methods, Chapter 4.2.3), however as this accounts for only 7% of the TOC, it would not 

greatly alter the overall flux. 

Baum et al. (2007) estimate the River Siak's DOC flux into the ocean to be 0.3 Tg y(l. 

This figure places the River Siak at number 17 on the ranking list of DOC exports of major 

global rivers (Ludwig at al., 1996). Baum at al. (2007) did not determine POC flux and 

therefore the TOC flux cannot be estimated. Baum st 81. (2007) also used dry and wet 
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season data with an even balance between the two to work out mean monthly DOC fluxes 

due to slightly different climate patterns in Sumatra (the meridional migration of the ITCZ). 

In Sumatra there is generally 6 months of dry season and 6 months of wet season (6:6 

'dry month: wet month' ratio as opposed to 3:9 in Kalimantan). USing the respective 

climate ratios, the data imply that the River Sebangau discharges approximately 50% 

more DOC to the ocean per year than the River Siak. 

4.4 Discussion 

In this river basin scale study of fluvial organic carbon dynamics along the course of the 

River Sebangau, the observed trends can be explained through a combination of tributary 

inputs and in-stream processes. 

4.4.1 DOC 

In this fluvial carbon size fraction, the changes between 0 to 126 km from the source can 

be explained by simple mixing, with tributaries of different composition entering the river. 

For example, it is clear from figure 4.3 that in the wet season, tributary number 11 

(Paduran II) is low in DOC and the discharge large enough in size (41 m3 S-1) to reduce 

the main channel DOC concentration post tributary discharge. An alternative, or 

additional, explanation for changes in DOC concentration is the result of in-stream 

processes such as microbial respiration and oxidation which results in DOC removal and 

appears to be a significant biotic mechanism in blackwater rivers (Meyer, 1986). Several 

studies have shown that in-stream production of DOC (for example from POC 

degradation) is small in comparison to that which is derived from terrestrial sources 

(Worrall at al., 2007). 

The non-linear relationship observed (polynomial 2nd order; r2=0.99) within a stretch of the 

river without major tributary inputs, suggests that some form of DOC removal is also 
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taking place (figure 4.4b). Percent estuarine DOC removal at high tide (dry season) was 

estimated by extrapolating linear regressions between DOC and EC for samples collected 

at the lower end of the estuary, following the method of Spencer et al. (2007). This 

method permits an estimate of the DOC concentration of a freshwater end-member, 

assuming conservative mixing, with the difference between this estimate and the 

observed DOC concentration of the last freshwater sample (EC less than 200 \.IS) 

providing an indication of the amount of DOC removal that has occurred within the 

estuary. Linear regression lines were derived using the last three samples at the seaward 

end of the estuary (150 to 144 km) and for the last four samples (150 to 141 km). These 

data suggested a removal of DOC in the Sebangau estuary of 27% and 12% 

respectively. It therefore appears that significant DOC processing is occurring in the 

estuary, reducing the flux into the ocean. It can be implied, therefore, that the carbon flux 

measured from the river mouth, at least during the dry season high tide sampling, is a 

smaller estimate when compared to the actual carbon loss from the peatland itself. 

In the dry season, below 126 km from the source, the most likely DOC removal 

mechanism is via flocculation to become POC, or adsorption to existing POC or mineral 

particles, resulting from decreased DOC solubility with increasing salinity (Battin at a/., 

2008). Studies of DOC transport through estuaries in temperate regions have shown 

varied evidence of conservative and non-conservative mixing in different systems 

(Spencer at al., 2007). In the tropical Siak estuary, Baum at al. (2007) reported a negative 

linear relationship (r2=0.97) between salinity and DOC concentration, suggesting 

conservative mixing during the period of observation. 

4.4.2 poe 

The movement of POC through river systems is very different to that of DOC. POC is 

subject to gravitational settling, hydrodynamic lift and drag forces which result in transport 

occurring as a series of discrete movements (Battin at 81. I 2008). This accounts for the 
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larger in-stream variability and fluctuation of poe concentration down the river. The most 

likely cause for the overall decrease in poe concentration from source to mouth is 

gravitational settling onto the benthic layer of the river bed. River flow rates determine the 

proportion of the poe that is carried as suspended sediment within the water column and 

how much settles onto the river bed (Wainwright et al., 1992). When flow rates drop 

below a threshold value (variable depending on the river system), particulates accumulate 

on the river bed, while at flow rates above the critical value particulates are re-suspended 

and transported downstream (Wainwright et al., 1992). The source of the River Sebangau 

is 150 km inland, yet only 12 m above sea level. Averaged over the entire course of the 

river, there is, therefore, only a 1 m change in elevation for every 12.5 km of river length. 

Such a low gradient leads to low water velocities throughout the river. The water velocity 

at the source of the River Sebangau is higher than at the mouth in both seasons, varying 

from 0.49 m S·1 to 0.57 m S·1 at the source and dropping to 0.12 m S·1 and 0.15 m S·1 at the 

river mouth during the dry and wet seasons respectively. It is likely, therefore, that higher 

flow rates in the upper reaches of the river suspend more particulates which result in 

higher poe concentrations being recorded. Similarly, lower flow rates towards the mouth 

of the river result in more benthic accumulation of poe and less poe in the water 

column. It may therefore be the case that there is no regular overall loss of poe from the 

river system, but instead a relocation of the suspended poe in the more turbulent upper 

reaches of the river to the river bed through deposition due to slower flowing water in the 

lower reaches of the river. If this is the case, then it is likely that there is episodic re­

suspension of organic sediment during high flows which transport a pulse of poe into the 

ocean. This repositioning is possible, given the extensive interchange that occurs 

between the suspended and deposited poe fractions along the course of a river (Minshall 

et al., 1983). 

Another explanation for decreasing poe concentrations along the course of the River 

Sebangau is that there is a loss in total poe as a result of in-stream biological processes. 

Whilst very little research on invertebrate communities in PSF ecosystems has been 
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conducted (Wells & Yule, 2008) and in particular, no biotic assessment of the River 

Sebangau has ever been carried out, it is known that blackwater rivers in Kalimantan 

contain a large number of fungal and bacterial communities, the former best suited to 

degrading particulates and the latter to consuming smaller molecules released during 

fungal metabolism (MacKinnon, 1996; Dudgeon, 2000). It is therefore possible that some 

form of biological poe degradation occurs, as is reported from temperate streams 

(Monaghan et al., 2001). 

Finally, the large within-river variability seen across both seasons may be attributed to the 

influence of the fourteen channels that discharge into the River Sebangau. The 

positioning of these discharge points is represented in figure 4.3 and 4.5 by vertical lines, 

and the 'inputs' denote the poe concentration of the channel prior to discharge into the 

River Sebangau. For example, in the dry season, River Paduran I (channel 9) discharges 

water with a high poe concentration (6.7 mg 1"1) relative to the River Sebangau. The 

effect of this poe input to the River Sebangau is seen in the next sample point 

immediately downstream. The influence of these inputs on the River Sebangau is also 

dependent upon the actual discharge rate (see table 4.1). For example, in the wet 

season, a high poe concentration (relative to the River Sebangau) of 4.3 mg r1 from the 

Pankoh channel (channel 10) has no influence on poe concentrations in the River 

Sebangau. This is because the discharge rate of this channel is so low that the overall 

poe flux (table 4.1) is too small to have any effect on the concentration of the sample 

taken immediately downstream in the River Sebangau. 

4.4.3 Dry season vs. Wet season 

Most tropical regions only have two seasons; a wet season and a dry season, with the 

temperature staying relatively constant throughout the two seasons. This monsoonal 

climate is highly favourable for plant growth and results in large quantities of organic 

material being washed into rivers year round. As a result, it was speculated in this study 
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that DOC concentrations should be relatively constant throughout the year, without 

evidence of the summer/autumnal peak that is commonly reported in temperate regions 

owing to maximum ecosystem productivity or autumn leaf fall (Wetzel & Manny, 1977; 

Naiman & Sibert, 1978; Skiba & Cresser, 1991). To some extent this is reflected in the 

similar DOC concentrations between seasons. However, the effect that an increased flow 

rate (primarily due to increased rainfall) has on DOC concentration is still unclear and can 

differ according to ecosystem type. In peatlands, which are typically permanently 

waterlogged, throughflow at both high and low water levels is through an organic layer 

which has been shown to result in a negative relationship between stream flow and DOC 

concentration due to the 'dilution effect' (Schiff et a/., 1998; Clark et a/., 2007). The 

relationship in this study shows the opposite which may be attributed to the 'flushing 

effect' whereby water with a high DOC concentration (due to a long residence time in the 

soil/peat layer throughout the dry season) is washed into the rivers by the rising water 

level during the onset of the wet season (Pearce et a/., 1986; Hornberger et a/., 1994). A 

strong positive correlation between DOC concentration and discharge was also reported 

from the Congo basin which comprises evergreen forest, savannah and swamp forest 

(Coynel et a/., 2005). The 'flushing' process is enhanced when the previously dry or 

stagnant upper limits of the river bed/bank are inundated with large amounts of water as 

discharge rates increase (Casey & Farr, 1982). The effect seasonality has on POC 

concentrations is also uncertain. However it is clear that lower water tables during the dry 

season result in a larger area of peat drying out compared to during the wet season. It is 

this drying of the peat and the resulting increased rate of aerobic decomposition that 

destabilises the peat dome structure leading to denudation and increased amounts of 

POC being released during the dry season. 

4.5 Conclusion 

In summary, the data suggest that given its relatively small catchment size, the River 

Sebangau is a significant contributor of organic carbon to the ocean. DOC concentrations 
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in the River Sebangau are amongst the highest ever recorded, exceeding most of those 

reported for other tropical rivers as well as all of the 'major world rivers' mentioned by 

Ludwig et al. (1996). The Dumai River estuary in Sumatra, is the only other study to 

report such high concentrations of DOC (greater than 60 mg r1) which compare to those 

found in the River Sebangau (Alkhatib et al., 2007). However, due to its small size 

(discharge at river mouth of 16 m3 
S·l as opposed to 450 m3 

S·l from the River Sebangau), 

its estimated annual export of DOC (0.03 Tg) is approximately 15 times smaller than that 

from the River Sebangau. 

High DOC concentrations within the River Sebangau can be attributed to the large 

expanse of peatlands within the Sebangau catchment. High DOC concentrations may 

also be explained by the anoxic conditions in waterlogged peatlands, which are known to 

constrain the activity of phenol oxidase, an enzyme which eliminates phenolic compounds 

in the presence of bimolecular oxygen (Freeman et al., 2001). Anoxic conditions therefore 

lead to higher concentrations of phenolic compounds, substantially reducing the 

biodegradation of organic matter which results in high concentrations of DOC. Soil carbon 

is also thought to be the main source of riverine poe (Hedges et al., 1986). poe 

concentrations are generally only a tenth of the DOC concentrations in the River 

Sebangau, largely because of the low topography in the Sebangau River basin which 

results in a slower runoff and a likely depositional environment throughout the river's 

course. Differences in DOC and poe concentrations do occur between the dry and wet 

season, but the most pronounced interseasonal differences are between DOC and poe 

fluxes because these incorporate discharge which is strongly correlated with rainfall. TOe 

flux from the river to the ocean was nearly twice as large during the wet season, despite 

there being considerably higher poe concentrations in the dry season. 

The TOe flux from the River Sebangau to the Java Sea is estimated to be 0.46 Tg yr-1
, 

comprised of 93% (0.43 Tg) DOC and 7% (0.03 Tg) poe. This equates to a fluvial TOe 

yield over the whole catchment (5,200 km2) of 88 g e m-2 
y(1, a value which far exceeds 
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those reported for northern peatlands (10-30 g C m-2 y(1; Nilsson et a/., 2008; Koehler et 

a/., 2009; Billet at a/., 2010). The entire land area of Indonesia is -1.9 x 106 km2 of which 

over 10% (206,950 km2
) is covered by peat soils (Page at a/., 2011). On extrapolating the 

Sebangau catchment TOe flux to the total peat covered area of Indonesia a TOe loss of 

18.2 Tg y(1 is estimated. Extrapolation from one river basin to the entire peat covered 

land area of Indonesia has its limitations, which are duly noted. These limitations, 

however, are somewhat reduced by the similarities between other river basins that have 

been studied in Indonesia (Alkhatib at a/., 2007; Baum at a/., 2007); most are made up of 

similar land use types (intact/disturbed PSF and agriculture) and the biogeochemistry of 

the rivers that drain the peatlands are highly comparable (DOC/POe concentration, pH, 

EC). Further confidence in our extrapolated result is that it closely approximates that of 

the Baum et a/. (2007) estimate based on the River Siak (-21 Tg e y(1) and therefore 

provides some validation to the conclusion that Indonesian rivers account for 

approximately 10% of the global annual riverine DOC discharge into the ocean. 
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Chapter Five 

Qualitative analysis of fluvial organic carbon 

Radiocarbon data from this chapter are included in a manuscript that is currently under review, as: 
Moore, S., Gauci, V., Page, S.E., Evans, C.D., Garnett, M.H., Jones, T.G., Freeman, C. and Limin, 
S.H., 2011. Fluvial organic carbon fluxes reveal deep instability of deforested tropical peatlands. 
(Nature, submitted manuscript). 

5.1 Introduction 

One of the most pertinent questions that arises following a study that quantifies the loss of 

fluvial organic carbon is, "where does it all go?" A number of analytical tools are available 

to help gain further insights into the most likely fate of fluvial carbon and in doing so help 

to answer the above question. Having quantified the loss of fluvial carbon at small (sub­

catchment) and large (river basin) spatial scales, samples were subject to a number of 

qualitative analyses: (i) radiocarbon dating C4C) was employed to help indicate the most 

likely source of the carbon, which in turn gives some indication into how labile/recalcitrant 

the carbon compounds are; (ii) Specific Ultra-Violet Absorbance (SUVA) gives further 

insights into the aromaticity of the DOC compounds; and (iii) tetramethylammonium 

hydroxide (TMAH) thermochemolysis of the DOC helps to identify the functional groups 

present, which help define the bioavailability of the compounds and ultimately the most 

likely fate of the fluvial organic carbon. 
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5. 1. 1 Radiocarbon dating (4C) 

By radiocarbon dating water samples (D014C) an indicative age of the carbon in the 

sample can be deduced, which is the composite signal obtained by mixing organic matter 

from a range of ages. Although this is conventionally represented by a single, indicative 

'mean age', this observed value may be obtained by different combinations of old (pre­

bomb, i.e. pre-1950s) and new (post bomb, i.e. post-1950s) material. Pre-bomb carbon 

C4C less than 100% modern) is older in age and is generally sourced from within the peat 

column itself as opposed to post-bomb carbon C4C greater than 100% modern) which is 

of recent origin probably fixed from the atmosphere via photosynthesis within the last 1 to 

10 years (see Chapter 5.2.2; Raymond et a/., 2007). 

Previous DO 14C measurements from waters draining intact, peat-dominated catchments 

in North America (Schiff et al., 1997), Siberia (Amon et al., 2004; Benner et a/., 2004) and 

Europe (Palmer et al., 2001; Evans et al., 2007; Tipping et al., 2010) commonly show 

enrichment of DOC with 'bomb' carbon (associated with above-ground nuclear testing in 

the 1950s to 1960s), suggesting that the bulk of DOC leached from these systems is of 

recent origin. For these intact northern peatlands, this implies that DOC export does not 

represent a major loss pathway for long-term stored carbon, but instead a turnover of 

recently fixed carbon from aboveground biomass (Evans et al., 2007). However, none of 

these studies specifically examined disturbed peatlands, and there is no knowledge of any 

measurements of D014C from tropical peatlands, either pristine or disturbed, previously 

reported. 

Radiocarbon techniques were used to establish if there were any significant differences in 

the mean age of the fluvial organiC carbon being lost from intact and disturbed land-cover 

classes. The results help to indicate the most probable source of the lost carbon which, 

as well as having implications on the overall carbon balance of the ecosystem, will help to 

interpret the relative contributions from recently photosynthesised carbon from vegetation 

and older carbon from the peat column. Recently photosynthesised carbon from decaying 
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leaf litter on the forest floor is rich in lignin which is an integral part of plant cell walls. 

Structurally, lignin is a complex natural polymer, making it relatively hydrophobic and 

aromatic in nature. Consequently, it is very slow to decompose and upon reaching a point 

of stability, when decomposition only proceeds at a very slow rate (highly recalcitrant), it 

forms part of the humic layer on the forest floor. 

5. 1.2 Specific u/tra-Violet Absorbance (SUVA) 

SUVA is an 'average' absorptivity for all the molecules that comprise the DOC in a water 

sample and can be used as a surrogate measurement for DOC aromaticity (Traina et al., 

1990). By definition, aromatic compounds contain a benzene ring and are highly reduced, 

making them recalcitrant compounds. The more aromatic a compound, the more 

recalcitrant that compound is considered to be and vice-versa. SUVA254 is defined as the 

ultra-violet (UV) absorbance at 254 nanometres (nm) measured in inverse (reciprocal) 

meters (m-1), divided by the DOC concentration measured in milligrams per litre (mg rl) 

and is reported in I mg-C·1 m-1
• Weishaar et al. (2003) tested the usefulness of SUVA254 

as an indicator for DOC aromaticity by plotting the SUVA254 values of 13 organic matter 

isolates versus percent aromaticity that had been pre-determined using quantitative, liquid 

state carbon nuclear magnetic resonance C3C NMR), which is the most accurate 

measurement of aromaticity of natural organic matter. They found that a strong 

correlation between the data existed (r2=0.97), and in doing so provide strong support for 

the use of SUVA254 as an indicator of aromaticity of aquatic humic substances and DOC 

as a whole. This is further supported by the findings of several other studies (Traina et al., 

1990; Chin et al., 1994). SUVA254 is therefore a useful tool for assessing the nature and 

general composition of DOC because it provides an integrated estimate of aromatic 

content across functional classes. This estimate of aromatic content indicates how labile 

or recalcitrant the DOC is and in turn, how likely it is to be consumed by microbes and 

thus converted into gaseous carbon. 
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When DOC is utilised by microbes in this manner, metabolic products of cellular 

respiration such as water (H20) and CO2 are produced. This is an important step in the 

carbon cycle because it represents the stage at which fluvial carbon is converted into 

gaseous carbon. Therefore, SUVA254 data can give a broad indication of how likely it is 

that the DOC will be converted into gaseous carbon through microbial respiration within 

the water body; high SUVA254 = high aromaticity = recalcitrant compounds = less likely to 

be converted to gaseous carbon. If the DOC is not subject to metabolic conversion, it will 

most likely end up as a long-term carbon store as benthic sediments in a river or the 

ocean following physical or biological conversion to POCo 

5.1.3 Tetramethylammonium hydroxide (TMAH) thermochemolysis 

Having looked at the source (using D014C) and absorptivity of the DOC (using SUVA254), 

a technique called TMAH thermochemolysis gas chromatography (GC) - mass 

spectrometry (MS; GC-MS), or TMAH GC-MS was used to investigate the DOC quality on 

an even smaller, functional group scale. Fluvial organic carbon is derived from a variety 

of different sources and can be subject to a number of transformations which affect the 

molecules in the DOC. As a result of this, DOC can become an extremely complex 

mixture of organic molecules spanning a great range of molecular weights (Frazier et al., 

2003). A technique called pyrolysis GC-MS has previously been used successfully for 

structural studies of organic matter (Schulten, 1999), but this process produces large 

quantities of carbon monoxide (CO) and CO2 , which result from the polar functionalities 

that are important structural features of organic matter (Saiz-Jimenez, 1994). The TMAH 

GC-MS technique, first implemented by Challinor et al. (1995), is able to retain CO and 

CO2, otherwise lost through the simple pyrolysis GC-MS technique. This is achievable 

because sub-pyrolysis temperatures are used (300°C), a technique which is often referred 

to as thermally assisted chemolysis, hence its name, thermochemolysis. This technique 

was used to identify any differences in the structural composition of DOC within water 

samples draining intact and disturbed peatlands. 
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Whilst SUVA254 data are useful as an indicator of aromaticity, TMAH GC-MS analysis 

gives information about the structural composition by providing a breakdown of the actual 

compounds that make up the DOC. It is a far more detailed analysis which also 

incorporates semi-quantitative measurements of the ensuing products, shedding light not 

only on the most probable source of the DOC, but also the bioavailability of the DOC. A 

combination of these three qualitative investigative techniques will help to build on our 

current knowledge about the fate of this fluvial organic carbon, which is currently poorly 

understood (Cole et al., 2007; Battin et a/., 2009; Tranvik et a/., 2009). 

5.2 Methods 

5.2. 1 Sample col/ection 

Samples for radiocarbon analysis were collected from the three land-cover classes (IPSF, 

DPSF1 and DPSF2) during the dry season in August 2008. All samples were collected 

within 24 hours of one another to ensure similar water table levels and flow conditions. 

This is important as these hydrological conditions determine the runoff flow paths which in 

turn can influence the composition of DOC within the sample collected. Due to the large 

financial cost involved in analysing water samples for D014C, we had an allocation of nine 

samples. Therefore, three samples from each land-cover class were collected; one 

sample from each of the three channels draining IPSF and DPSF2, two samples from 

opposite ends of the first (longer) channel and one sample from the second channel 

draining DPSF1. Samples were collected from the centre of each channel at a depth of 

20 cm at a point immediately before the confluence with the river. All sampling locations 

are shown in figure 5.1. 

For SUVA254 analysis, one sample per week was collected for ten consecutive weeks 

during the peaks of the dry season and the wet season from each of the three land-cover 

classes. Samples were taken from all channels within each land-cover class to ensure 
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equal representation. All samples were taken from the same sample locations as 

described in Chapter 3.2. In total, 30 dry season and 30 wet season samples were 

collected . Additionally, samples were collected at 5 km intervals during the peak of the 

wet season from the mouth to the source of the River Sebangau (150 km), totalling a 

further 30 samples. Samples were also collected from six of the channels that drain the 

largely disturbed eastern side of the Sebangau River basin (,Block C') and six channels 

that drain the largely intact western side of the Sebangau River basin (Sebangau), 

contributing a further 12 samples to the final total. 

Palangka Raya 

"0·"· •••••• 

Figure 5.1: Map of study area to show the location of radiocarbon sampling points (red dots). 
Three samples were collected from three different sample locations in each land-cover class. 

For TMAH GC-MS analysis, two samples from each of the three land-cover classes were 

collected over both seasons, totalling six samples. Samples were collected from two of 

the three channels in IPSF and DPSF2 and from both channels in DPSF1 to ensure equal 

representation . All samples were taken from the same sample locations as described in 

Chapter 3.2. Additionally, a further three samples were taken from the mouth, the middle 

85 



and the source ot the River Sebangau at 150, 75 and 0 km from the source, respectively, 

during the peak of the wet season. 

5.2.2 Radiocarbon dating (14C) 

The 14C content of organic matter reflects the isotopic composition of atmospheric CO2 at 

the time it was absorbed and 'fixed ' by photosynthesis. Carbon fixed prior to 1950 can be 

'radiocarbon dated', based on the rate of radioactive decay of cosmogenic 14C, where 

zero years before present (BP) = AD 1950 (Evans et al. , 2007). Since the 1950s, 

atmospheric testing of nuclear devices has provided a 'tracer' pulse of enhanced 

atmospheric 14C02, peaking in the 1960s (Levin and Kromer, 2004; figure 5.2). 

185 

165 -c .... 
.g 145 
o 
E 
~ 
~ 125 
() 
~ 

105 

85 
0 
lI) 
CX) 

0 0 0 0 0 0 
(0 I'- CX) (j) 0 .,.... 
CX) CX) CX) CX) (j) (j) 

0 0 0 0 0 
N <'? '<t lI) (0 
(j) (j) (j) (j) (j) 

Year 

0 0 0 
I'- CX) (j) 
(j) (j) (j) 

ill 
0 
0 
0 
N 

Above 
present­
day 14C02 

(i.e . post-
1957) 

Pre-1955 

Figure 5.2: Approximate present-day 14C level of organic carbon photosynthesised from 
atmospheric CO2 in a single year, since 1850. Lower shaded area and arrow represent 'dateable' 
(pre-1955) carbon . Upper shaded area and arrow represent bomb-enriched carbon, fixed between 
1957 and the present day. Bomb 14C02 reconstruction from Levin and Kromer (2004) . 

Since soil and dissolved organic matter generally represent a mix of compounds of 

varying ages, no single age can be ascribed to anyone sample, but the following general 

statements can be made (Evans et al., 2007): 
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(1) Samples with 14C less than 100% 'modern' (Le. atmospheric 14C02 before 1955) must 

contain predominantly pre-bomb carbon, and an average age can be assigned. 

(2) Samples in the range 100 to 106% modern Oust below atmospheric 14C02 levels when 

samples were collected) must contain a substantial fraction of carbon fixed before 1957 

(the last time atmospheric 14C02 was this low). 

(3) Samples with 14C greater than 106% modern must contain a substantial fraction of 

carbon fixed since 1957. 

Due to the nature of historic 14C variations, precise proportions of old, bomb-peak and 

post-bomb carbon in samples with 14C greater than current atmospheric 14C02 cannot be 

determined. However, the most probable explanation for a D014C value above 106% (the 

higher the value, the greater the probability) is that most of this DOC is derived from plant 

material formed since 1957 (Evans at al., 2007). 

Water samples were collected in pre-rinsed 250 ml polypropylene bottles, immediately 

passed through a 0.7 JJm glass fibre filter (GF/F, Whatman), left un-acidified, refrigerated 

and transported to the NERC Radiocarbon Laboratory, Scotland, for 14C analysis. It has 

been demonstrated that storing freshwater samples in this manner has no significant 

effect on the 14C or delta 13C (~13C) values when stored for up to 180 days (Gulliver et al. 

2010). Upon arrival, samples were acidified to pH 4 with 2M Hydrochloric acid (HCI) and 

purged with high purity nitrogen (carbon-free), then neutralised to pH 7 with 1M potassium 

hydroxide (KOH), rotary evaporated, frozen and freeze-dried. Weighed aliquots were 

combusted to CO2 at 900°C in an elemental analyser (Costech ECS 4010, Cernusco). 

The gas was converted to graphite by Fe/Zn reduction (Slota et al., 1987). 14C content 

was determined by Accelerator Mass Spectrometry at the Scottish Universities 

Environmental Research Centre (Xu at al., 2004). 14C results were normalised to a ~13C of 
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-25 %0 (C02 subsamples having been measured for l3C) and expressed as %modern 

(Stuiver and Polach, 1977). 

5.2.3 Specific Ultra-Violet Absorbance at 254 nanometers (SUVA 254) 

All samples were collected, preserved and transported back to the UK as described in 

Chapter 2.3. The preservation of samples by acidification down to pH 2.0 has no effect on 

UV absorbance measurements and yield the same results as measurements made on un­

acidified samples (Weishaar et al., 2003). Analysis was carried out at the School of 

Biological Sciences, Bangor University, UK. Samples were allowed to warm to room 

temperature before measurement. UV-visible absorbance measurements were performed 

on a Molecular Sciences plate reader (model M2e) and a MiIIi-Q blank reading was taken 

to subtract from each sample. A quartz cell with 1.0 cm path length was used. Samples 

were analysed for DOC at the Department of Environmental Sciences laboratories. The 

Open University as described in Chapter 2.4.2. SUVA254 values were calculated 

according to equation 5.1: 

SUVA254 (I mg-C-1 m-1
) = «UV254 - UVblank) * 100) I DOCconc (Equation 5.1) 

Where UV254 is the UV absorbance of the sample measured at 254 nanometers (nm), 

UVblank is the UV absorbance of the Milli-Q blank measured at 254 nm and DOCconc is the 

DOC concentration of the sample. 

5.2.4 Tetramethylammonium hydroxide (TMAH) thermochemo/ysis 

Preparation for TMAH GC-MS analysis involves extracting the actual DOC from the water 

sample first. Solid phase extraction (SPE) of DOC from water was carried out using SPE 

cartridges (1ST Isolute C18, Biotage). The SPE cartridges were pre-conditioned with 

hexane, dichloromethane (OCM), methanol (MeOH), and 0.01 M HCI. The sample was 
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then allowed to pass through the conditioned SPE cartridge with minimal forcing. Once 

the DOC had absorbed onto the cartridge, any mineral salts remaining in the cartridge 

were removed by flushing with 4 ml 0.01 M HCI followed by an air flush to dry the 

cartridge. The DOC was then eluted from the SPE cartridges into clean vials with 4 ml 

MeOH and stored in refrigeration until TMAH GC-MS analysis. 

Following the SPE of DOC from water, the refrigerated samples in MeOH were absorbed 

onto quartz wool in a quartz pyrolysis tube. After drying overnight, 10 IJI of 25% TMAH in 

MeOH were added and again, allowed to dry overnight. An alkali environment (pH 14) for 

the reaction is ensured by adding TMAH to excess. Thermochemolysis was carried out 

under the following conditions: heated to 300°C (held for 15 s) at 20°C ms-1 in a flow of 

helium (He) using a CDS Pyroprobe 5000 fitted with a 1500 valve interface (CDS 

Analytical, Oxford, PA) and coupled to a GC-MS instrument. GC-MS was carried out 

using an Agilent Technologies 6890 gas chromatograph coupled to a 5973 mass 

spectrometer. Separation was performed with a S.G.E. (UK) BPX-5 column (30 m x 0.25 

mm Ld., 0.25 IJm film thickness). He, at a flow rate of 1.1 ml min-1 was used as a carrier 

gas. Injection was at a 5:1 split and injector temperature was 270°C. The GC oven 

temperature was held for 1 min at 50°C and then programmed at 5°C min-1 to 310°C (held 

for 9 minutes). 

TMAH GC-MS is a one-step reaction that is principally a degradative technique 

(decomposition of a compound) and secondarily a derivatisation technique (transforms the 

compound into a product). Labile carbon-oxygen (C-O) bonds such as esters, amide 

bonds, some ether bonds (13-0-4 bonds in lignin), and to some extent glycosidic bonds, are 

broken by the TMAH thermochemolysis reaction and result in fragments. This 

degradation occurs mainly through a base catalysed hydrolysis reaction at elevated 

temperatures. Simultaneously, functional groups containing acidic protons, such as 

carboxylic acids and phenols, are methylated whereas esters are converted to the 
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corresponding methyl esters (Filley et aJ., 1999). The resulting products are volatile 

enough to be separated by GC and analysed by M5 (Frazier et a/., 2003). 

Individual compound mass yields (thermochemolysis reaction products; table 5.1; figure 

5.3) were evaluated and calculated to help assess the relative degradation dynamics in 

samples from the three different land-cover classes. 

Table 5.1: Major lignin compound names (TMAH thermochemolysis products). 

label Compound name 

G4 3,4-dimethoxybenzaldehyde 
G5 3,4-dimethoxyacetophenone 
G6 3,4-dimethoxybenzoic acid methyl ester 
S4 3,4,5-trimethoxybenzaldehyde 
S5 3,4,5-trimethoxyacetophenone 
S6 3,4,5-trimethoxybenzoic acid methyl ester 
P18 trans-3-(4-methoxyphenyl}-3-propenoic acid methyl ester 
G18 trans-3-(3,4-dimethoxyphenyl}-3-propenoic acid methyl ester 

R2 R, R2 R, R2 R, R2 R, 

OCH3 OCHa OCHa OCH3 

G4/S4 G5IS5 Ge/S6 P181G18 

P:R, =H,R2=H G: R, == OCH3, R2== H S: R1 == OCHa, R2 -oCHa 

Figure 5.3: Structures of typical lignin compounds used to indicate degradation dynamics. P = p­
hydroxyphenyl, G = guaiacyl, S = syringyl (see table 5.1 for compound names). 

The syringyl/guaiacyl (5/G) ratio, used to assess vegetation type (angiosperm versus 

gymnosperm), was calculated as the sum of syringyl (54 + 85 + 86) divided by the sum of 

guaiacyl (G4 + G5 + G6) phenols. The acid/aldehyde (AdlAI) ratio which indicates the 

state of oxidation for guaiacyl components (G6/G4) was determined as the sum of the 

normalised amounts of 3,4-dimethoxybenzoic acid methyl ester (G6) divided by 3,4-
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dimethoxybenzaldehyde (G4). The cinnamyllguaiacyl (C/G) ratio is used to indicate the 

input of woody versus non-woody plant tissue and was calculated as the sum of cinnamyl 

(p-coumaric acid, P18 and ferulic acid, G18) divided by guaiacyl (G6 + G5 + G4) phenols. 

5.3 Results 

5.3.1 DOC radiocarbon ages 

Due to samples only being collected at one time point in the dry season (August 2008), 

we cannot make inferences regarding the overall annual pattern of loss. However, the 

data do show clear between-site differences (table 5.2; figure 5.4). DOC from IPSF was 

14C-enriched with a mean 14C of 109.1 % modern. Because this is greater than 100% 

modern, the samples cannot be assigned an age and therefore are simply termed as 

'modern'. In contrast, DOC from channels draining the two disturbed land-cover classes 

(DPSF1 & 2) was 14C-depleted, ranging from 83.8 to 98.9% modern. This is equivalent to 

14C ages of 92 to 1417 years BP. 

Table 5.2: 14C (%modern) and D014C age (years BP) data for individual samples (± 10) and mean 
(± s.e.m) from all three land-cover classes. 

Land-cover 
class 

IPSF 

DPSF1 

DPSF2 

Sample 10 

SUERC-28121 
SUERC-28122 
SUERC-28123 
Mean 

SUERC-28129 
SUERC-28130 
SUERC-28131 
Mean 

SUERC-28126 
SUERC-28127 
SUERC-28128 
Mean 

'4C OO'4C Age 
(%modern) (years BP) 

109.8 ± 0.5 modern 
108.7 ± 0.5 modern 
108.8 ± 0.5 modern 
109.1 ± 0.3 modern 

98.9 ± 0.5 92 ± 37 
97.2 ± 0.4 229 ± 35 
97.1 ± 0.4 239 ± 35 
97.7 ± 0.6 188 ± 47 

83.8 ± 0.4 1417 ± 35 
85.5 ± 0.4 1259 ± 36 
85.6 ± 0.4 1249 ± 36 
85.0 ± 0.6 1308 ± 54 
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The mean 14C in DPSF1 was 97.7% modern (range of 97.1 to 98.9% modern), which is 

equivalent to a 14C age of 188 years BP (range of 239 to 92 years BP). DOC samples 

from DPSF2 had a mean 14C of 85.0% modern (range of 83.8 to 85.6% modern), 

equivalent to a 14C age of 1308 years BP (range o~ v.n to 1249 years BP). 14C data from 

all land-cover classes are significantly different from one another (p<0.001 , unpaired, two-

sample t-test) , with the largest differences occurring between I PSF and DPSF2. The 

mean 14C age is positively correlated with drainage severity, meaning that as drainage 

severity in a land-cover class increases, so does the mean age of the carbon in the 

drainage water lost from that land-cover class (figure 5.4). In IPSF, where the smallest 

channels are located and the effect of drainage is negligible, the carbon lost is classified 

as 'modern' and was most likely fixed from the atmosphere post 1957 C4C greater than 

106% modern). DPSF1 , which is subject to moderate drainage, is losing carbon with a 

mean 14C age of 188 years BP and DPSF2, which is subject to the most severe drainage 

is losing carbon with the oldest mean 14C age of 1308 years BP. 
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Figure 5.4: (a) Mean radiocarbon C4C) levels (%modern) (± s.e.m) measured in DOC from all 
three land-cover classes, 'a', 'b' and 'c' denote significant differences (p<0.001 , unpaired, two­
sample t-test) . Solid horizontal line (104% modern) represents the current atmospheric 14C02 
level , dashed horizontal line (100% modern) represents the composition of the atmosphere in 
1950, in the absence of any anthropogenic influences (i.e. fossil fuel burning and above-ground 
nuclear testing). (b) Mean radiocarbon age (DO 14C) in years BP (± s.e.m), 'a' and 'b' denote 
significant differences (p<0 .001 , unpaired , two-sample t-test) . Mean 14C levels are greater than 
100% modern in IPSF samples and therefore cannot be assigned an age, instead they are termed 
'modern'. 
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5.3.2 Absorptivity and aromaticity 

SUVA254 data for ten consecutive weeks during the peak of the dry and wet seasons had 

very little temporal variability (s.e.m <1 %) and generally ranged between 3.00 and 5.00 I 

mg_C·l m·l (table 5.3). 

Table 5.3: SUVA254 data from ten consecutive weeks and the mean (± s.e.m) during the peak of 
the dry and wet season from all three land-cover classes. 

Week SUVA254 (I mg-C-' m-') 

IPSF DPSF1 DPSF2 

Dry Wet Dry Wet Dry Wet 

1 3.85 4.30 3.92 3.27 4.03 3.43 
2 4.11 4.00 4.10 3.90 4.55 4.00 
3 4.16 3.77 3.10 3.13 4.28 3.80 
4 4.26 3.66 3.90 3.44 3.47 3.99 
5 4.01 3.70 3.93 3.24 4.07 3.88 
6 3.82 3.90 3.67 4.21 4.30 4.25 
7 4.10 4.37 3.90 3.45 3.54 3.82 
8 4.08 4.09 4.09 4.99 3.25 3.62 
9 4.09 4.16 3.83 3.24 4.26 4.13 
10 4.13 4.35 5.06 3.99 4.31 4.50 

Mean 4.06 ± 0.04 4.03 ± 0.08 3.95 ± 0.15 3.69 ± 0.19 4.00 ± 0.14 3.94 ± 0.10 

Across both seasons the mean SUVA254 is consistently higher in IPSF than DPSF1 and 

DPSF2, with the largest differences occurring between IPSF and DPSF1. Within each 

land-cover class, SUVA254 is consistently higher in the dry season compared to the wet 

season (table 5.3; figure 5.5). Figure 5.5 contains the same data displayed on two 

different y-axis units. SUVA254 data (figure 5.5a) has been converted to percent 

aromaticity data (figure 5.5b) using the relationship found between the variables 

(Weishaar et a/., 2003). Because the relationship is based on a straight line equation (y = 
mx + c), the two datasets show the same trend but figure 5.5b illustrates that a difference 

in SUVA254 of 0.37 I mg-C,1 m,1 is equivalent to a 2.5% difference in aromaticity (difference 
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Figure 5.5: Mean (a) SUVA254 data and (b) percent aromaticity data from all three land-cover 
classes during the peak of the dry (black) and wet (grey) seasons (± s.e.m). * Percent aromaticity 
is determined using the relationship between SUVA254 and 13C-NMR data as described in Weishaar 
et a/. (2003). where percent aromaticity = (6 .52* SUVA254 ) + 3.63 . 

between IPSF dry season and DPSF1 wet season). It should however be noted that 

these differences between land-cover class and season are statistically non-significant. 

Samples collected from the River Sebangau had a similar range in SUVA254 values to 

those collected from the three land-cover classes in the wet season. There is a clear 

declining trend in SUVA254 values from the river source to the mouth (figure 5.6). SUVA254 

values from within each of the channels that discharge into the River Sebangau are 

generally consistent with the SUVA254 values from within the main channel of the River 

Sebangau. Channels 9 and 10 are the only exception to this , where high SUVA254 inputs 

are followed by an increase in SUVA254 values immediately downstream in the River 

Sebangau. 
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Figure 5.6: SUVA254 along the course of the River Sebangau (5 km intervals) during the peak of 
the wet season. Vertical lines represent the confluences of fourteen channels that discharge into 
the River Sebangau from largely disturbed land-cover class 'Block C' (solid) and largely intact land­
cover class 'Sebangau' (dashed). Single point data represent SUVA254 in each channel prior to 
discharge into the River Sebangau. Data was not collected for channels 1 and 2 and an 
anomalous data point was obtained for channel 11 (8.31 mg_C·l m·l

) and omitted from the figure. 

The mean SUVA254 value of channels draining the largely disturbed land-cover class, 

'Block C' is 3.38 I mg-C-1 m-1 (25.7% aromaticity) compared to 3.53 I mg-C-1 m-1 (26.6% 

aromaticity) from the channels draining the largely intact land-cover class, Sebangau. 

Despite this difference being small and statistically non-significant, the finding that water 

draining the intact land-cover class has higher SUVA254 values/aromaticity than water 

draining the disturbed land-cover class is consistent with the datasets from sub-

catchments IPSF, DPSF1 and DPSF2. 

5.3.3 DOC functional groups 

TMAH thermochemolysis GC-MS yielded the following methylated phenols from all 

samples (except one): guaiacyl (G), syringyl (S) and p-hydroxyphenyl (P) structures. All 

but one sample contained methyl esters of the p-courmaric acid (G18), while only three 

samples contained methyl esters of cinnamyl phenols, ferulic acid (P18). S/G and C/G 
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ratios were calculated, as described in Chapter 5.2.4, and plotted against each other as 

proxies for plant and tissue type found within the samples (figure 5.7). The plant and 

tissue type regions displayed in figure 5.7 are the traditional delineations used in Cupric 

oxide (CuD) oxidation analysis, and therefore may not be strictly appropriate for these 

samples analysed by TMAH, but nonetheless, is useful as a guide and has been applied 

to TMAH data in this manner before (Wysocki et a/., 2008). All but one sample fall within 

the woody angiosperm region, with only one ratio value falling within the woody 

gymnosperm region. 
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Figure 5.7: Compound ratio source identification plot for all DOC samples analysed by TMAH GC­
MS. The labelled regions defining plant and tissue type are the traditional delineations used in 
CuO oxidation analysis (Wysocki et a/., 2008). 

When tributary samples were grouped according to their broad land-cover classes (IPSF 

or DPSF), and S/G, CIG and AdlAI ratios calculated, only the AdlAI ratio was notably 

different between land-cover class (figure 5.8). All except one sample had an S/G ratio 

that ranged between 0.6 and 0.9 (angiosperm source). The lower average S/G ratio and 

96 



large standard error from IPSF sites is due to one very low S/G value of 0.2. This is the 

sample which falls within the woody gymnosperm region. The reason for this sample 

having a lower S/G ratio is a decline in syringyl compound inputs (S5 and S6). The C/G 

ratio, which is used to indicate the input of non-woody tissue of vascular plants varied very 

little between land-cover classes and was consistently low, never exceeding 0.03. The 

primary reason for this is the high guaiacyl compound inputs (G4, G5 and G6) and 

absence of methyl esters in some samples (P18 and G 18). The consistently low C/G 

ratios indicate high levels of woody inputs within all samples. 
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Figure 5.8: (a) Syringyl/guaiacyl ratio , (b) 
cinnamyl/guaiacyl ratio and (c) acid/aldehyde 
ratio from samples from three IPSF and three 
DPSF channels that drain into the River 
Sebangau (± s.e .m). 

The AdlAI ratio records the state of oxidation for guaiacyl compounds (G6/G4) and is used 

as an indicator for the degree of lignin degradation. Ratios can vary from less than one to 
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greater than ten, with higher AdlAI ratios indicating a greater degree of oxidative 

degradation (Louchouarn et al., 2006). All AdlAI ratio values ranged between 4 to 14 and 

averaged 7.1 and 11.9 from IPSF and DPSF samples, respectively, indicating that 

samples from DPSF were more highly degraded than samples from IPSF. The primary 

reason for the higher AdlAI ratios observed in DPSF samples is greater inputs 

(approximately double) of the G6 compound (3,4-dimethoxybenzoic acid methyl ester). 

S/G, C/G and AdlAI ratios of samples taken from the source, middle and mouth of the 

River Sebangau are presented in figure 5.9. Due to the small sample number, no trends 

or pattern can be highlighted. However, all samples taken from within the river are 

dominated by woody angiosperm inputs (high S/G and low C/G ratiOS). The only 

noticeable difference is that the samples taken from the source of the river are more 

heavily degraded (AdlAI ratio = 14.1) than the samples taken from the middle and the 

mouth of the river (AdlAI ratio = 5.7 and 7.1, respectively). This may indicate that the 

more degraded compounds are more susceptible to physical removal over the course of 

the river by processes such as flocculation. 
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Figure 5.9: (a) Syringyllguaiacyl vs. acid/aldehyde ratio, and (b) cinnamyl/guaiacyl vs. 
aCid/aldehyde ratio for three samples from the source, middle and mouth of the River Sebangau. 
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5.4 Discussion 

5.4.1 DOC age and likely source 

Results from radiocarbon analysis showed that DOC from channels draining IPSF was 

14C-enriched with a mean 14C of 109.1 % modern. It is not possible to assign a 

radiocarbon age to this carbon because the sample is greater than 106% modern, 

however, it can be inferred that the majority of the DOC leaching IPSF is derived from 

plant material formed since 1957 (Evans et al., 2007). This is consistent with existing 

evidence for the predominantly recent origin of DOC lost from intact northern peatlands 

(Schiff et al., 1997; Palmer et al., 2001; Amon et al., 2004; Benner et al., 2004; Evans et 

al., 2007; Tipping et al., 2010). As with the findings from northern peatlands, this implies 

that DOC export does not represent a major loss pathway for long-term stored carbon, but 

instead a turnover of recently fixed carbon from aboveground biomass (Evans et al., 

2007). Leaching of fluvial carbon from any ecosystem is a natural process, but whether 

the ecosystem is defined as a long-term carbon source or carbon sink is determined by 

the net difference in the quantity of carbon being sequestered and carbon being lost. In 

the case of IPSF, carbon is being sequestered at a faster rate than it is being lost (larger 

CO2 sink than carbon loss), reflected in a positive net ecosystem productivity (NEP) value, 

and therefore is classed as a long-term carbon sink (see Chapter 3.4; Page et al., 2004). 

In contrast, DOC from channels draining the two disturbed land-cover classes (DPSF1 & 

2) was 14C-depleted (ranging from 83.8-98.9% modern), suggesting that DOC lost from 

these disturbed peatlands derived from previously stable carbon stored within the peat 

column as opposed to aboveground vegetation. These findings indicate that artificial 

drainage causes instability of the peat dome at depth which leads to the release of older, 

previously stable carbon stores. Unlike IPSF however, there is no aboveground PSF to 

sequester and replenish the carbon that is lost, resulting in more carbon being lost than is 

sequestered in DPSF1 and 2. With only a finite amount of carbon stored within the peat 

dome and large fluvial losses of peat-sourced carbon, as well as CO2 emissions through 

peat decomposition, these drained ecosystems are destined not only to be long-term 
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carbon sources, but will also subside and eventually be altogether depleted of the peat 

that lies above the water table (Hooijer et al., 2010). The data from the three land-cover 

classes display a positive relationship between the two variables; as drainage severity 

increases (using width and depth of drainage channel as a proxy) the mean age of the 

carbon that is lost also increases (using 14C age as a proxy). This is because deeper 

drainage channels expose deeper/older layers of peat which leach fluvial carbon that was 

sequestered over one thousand years ago in the case of the most severely drained site 

(DPSF2). 

Having used radiocarbon analysis to infer the source of the DOC (vegetation or peat), 

results from TMAH GC-MS analyses were used to indicate the most likely plant and 

tissue-type found within DOC samples. All samples (with one exception) were derived 

from woody angiosperm sources. Given that almost the entire Sebangau catchment is 

composed of highly fibrous peat which was covered in PSF (pre-disturbance), one would 

expect woody sources to dominate over non-woody sources. Like most tropical forests in 

Southeast Asia, large areas within the Sebangau catchment contain trees from the 

Dipterocarpaceae family such as Shorea which are all angiosperms. Only two species of 

gymnosperm are known to exist in Central Kalimantan (Agathis dammara and Dacrydium 

pectinatum). These species are quite rare, however, and are therefore unlikely to make a 

contribution to the DOC signature (S.E. Page, 2011, pers comm., 20th February). 

Accordingly, all but one sample fell within the woody angiosperm region in figure 5.7. In 

the case of DPSF1 and 2, where the source of the DOC is the peat column (as opposed 

to the aboveground vegetation), the DOC signature obtained is that from a past vegetation 

composition, when the dominant vegetation species could have differed to that of today. 

The data, however, would imply that angiosperm trees have dominated the PSF for the 

past -1400 years (age of DOC from DPSF2). Interestingly, the one sample that indicated 

a woody gymnosperm source was taken from the River Paduran which drains an area that 

is dominated by pulp-wood plantations. The monoculture in this area has replaced the 

native tree/plant type and depending on the species grown, could account for the switch to 

100 



gymnosperm source dominance. However, if the pulp-wood plantation is composed of 

Acacia spp., as most in Indonesia are, this explanation is unlikely to account for the 

change in source dominance as this genera is also angiosperm. 

5.4.2 DOC aromaticity and bioavailability 

The SUVA254 data do not highlight any significant differences between land-cover classes 

or between seasons. However, there is some indication of greater SUVA254 values 

(higher DOC aromaticity) being lost from intact peatland compared to disturbed peatland, 

albeit statistically non-significant. This trend is apparent between the IPSF site and 

DPSF1 and 2 in both dry and wet seasons. From radiocarbon analysis, it is known that 

the source of DOC in the intact site is the aboveground vegetation whereas in the 

disturbed sites the source is the peat column. Therefore a combination of the radiocarbon 

and SUVA254 data implies that the fresh input of DOC sourced from aboveground 

vegetation is more aromatic than DOC mobilised from the peat column. This may be a 

result of the overlying PSF present in IPSF feeding the forest floor with a diverse range of 

plant material, including large quantities of lignin that is highly aromatic in nature. This is 

because lignin-derived products are complex polymers of phenylpropane units, which are 

cross-linked to each other with a variety of different chemical bonds. Lignin is the most 

recalcitrant component of the plant cell wall, therefore the higher the proportion of lignin 

the lower the bioavailability of the substrate. Conversely, DOC sourced from within the 

peat column in both disturbed peatland sites is shown to be less aromatic in nature. 

Therefore, less aromatic, or more labile, DOC from disturbed peatland ecosystems has a 

greater potential to be mineralised and fed back into the atmosphere as CO2, when 

compared with more aromatic DOC with a lower bioavailability that is leached from intact 

peatlands. This increases the carbon cost associated with anthropogenic disturbance of 

peatlands by further enhancing the potential source of carbon gases. 
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The second trend in SUVA254 data is greater values (indicative of higher DOC aromaticity) 

during the dry season compared to the wet season, evident across all land-cover classes. 

Having established that DOC sourced from the peat column is less aromatic in nature 

than lignin-derived DOC from aboveground vegetation, one might expect to observe less 

aromatic DOC in the dry season. This would be because during the dry season when 

water tables are lower, a greater portion of the peat is exposed to aerobic decomposition 

and oxidation. Consequently, one might expect more (labile) DOC to be leached from the 

peat column resulting in a greater portion of the total DOC being less aromatic. However, 

with more aromatic DOC observed during the dry season, the opposite is observed, 

making the finding seem rather counter-intuitive. It should be noted that with an average 

difference across all sites in percent aromaticity between seasons of 4.4% (statistically 

non-significant), this trend in data perhaps ought not to be over-analysed. Of more 

interest is that less aromatic (albeit less than 5% difference) DOC is observed during the 

wet season which normally lasts for nine months of the year. This means that for three­

quarters of the year, more labile DOC which has greater potential to be mineralised into 

gaseous carbon is leached from peatlands of all land-cover class types, increasing the 

indirect source of CO2 from peatlands. Crucially, this additional source of CO2 is generally 

unaccounted for in most tropical peatland carbon budgets that assess the impact of 

anthropogenic disturbance. 

5.4.3 DOC aromaticity in the River Sebangau 

The SUVA254 data from the River Sebangau, is believed to be the first from a tropical 

Southeast Asian blackwater river and therefore the results cannot be placed in context 

with previous findings. The values obtained, however, are indicative of aromaticity within 

the range one might expect from a peat-dominated river basin (26-32%). The range 

observed from the River Sebangau encompasses reported values from the River 

Suwannee which drains a wetland swamp in Georgia (28% aromaticity), while exceeding 

several other rivers that drain temperate wetlands (12-30%; McKnight et al., 2001). 
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The clear declining trend in SUVA254 from source to mouth would appear to be the result 

of two processes occurring at different stretches along the River Sebangau: (i) in the 

upper reaches (0 to 100 km from source), input of DOC with lower SUVA254 values from 

tributaries; and (ii) in the lower reaches (100 to 150 km from source), mixing with seawater 

with lower SUVA254 values. From conductivity data (used as a proxy for seawater), we 

know that seawater regularly reaches up to 50 km inland as a result of the tidal cycle and 

has been recorded at greater distances inland during high tide. Figure 5.10 displays the 

SUVA254 data from the source to the mouth of the River Sebangau on an expanded y-axis 

which helps to define a more detailed three-step decline instead of a steady decline as 

previously illustrated in figure 5.6. The data suggest that the source of the river consists 

of '100% peat-derived ' water with the highest SUVA254 values until about 40 km from the 

source (dark grey). The second step is a mixing transition stage with inputs of low-

SUVA254 DOC from tributaries (as a result of some mineral soil drainage water, lower in 
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Figure 5.10: SUVA254 along the course of the River Sebangau (5 km intervals) during the peak of 
the wet season at low-tide with an expanded y-axis . Different shades of grey define the three steps 
in SUVA2!>4 decline with distance downstream . 
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the Sebangau River basin) as well as some seawater influence, up to approximately 90 

km from the source (grey). The third step represents 90 km from the source to the river 

mouth which consists of low-SUVA254 DOC inputs, but primarily much higher 

concentrations of seawater, resulting in the lowest SUVA254 values observed in the River 

Sebangau (light grey). 

To check if the decline in SUVA254 is the result of mixing with seawater, SUVA254 data was 

plotted against conductivity data (EC; figure 5.11). If the decline in SUVA254 values was 

the result of mixing with seawater, there would be a linear relationship between the two 

variables. The relationship displayed between these two variables is non-linear 

(polynomial 3rd order relationship, ~=0.82) which is indicative of a qualitative change due 

to in-stream processing. This does not mean that there is no mixing with seawater, but it 

does mean that mixing with seawater cannot explain the observed trend on its own. 
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Figure 5.11: SUVA254 vs. EC data from 30 samples taken from the mouth to the source of the 
River Sebangau (polynomial 3rd order relationship, (=0.82). 
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Some form of in-stream processing is occurring, but without additional accompanying 

datasets it is difficult to determine whether it is physical or biological. Biological 

processing could involve in-stream respiration, where consumption of the DOC leads to 

the release of metabolic products (C02 and H20). If the DOC is too recalcitrant for 

biological consumption, physical processing could account for the qualitative change 

through diagenetic alteration of the DOC, resulting in it being converted to particulate 

forms. These particulate forms either remain in the water column or are precipitated out 

as benthic sediments. Other explanations include photo-oxidation, where along the 

course of the river, absorption of ultraviolet radiation (sunlight) alters the chemical 

composition of molecules, breaking larger compounds down into smaller ones (see 

Chapter 6.6.1; Tranvik & Bertilsson., 2001) and reducing SUVA254 values (Brooks et a/., 

2007; Judd et al., 2007). 

5.4.4 DOC oxidative state and overall fate 

By comparing the two major methods for lignin characterisation (TMAH and CuO 

oxidation), Wysocki et al. (2008) concluded that the TMAH method is better suited to 

organic-rich soils that had not undergone extensive degradation. The peatland drainage 

water samples analysed in this investigation are certainly organic-rich, but according to 

the AdlAI ratios, have already been subject to high levels of oxidative degradation, 

resulting in the possibility that monomeric products were produced, which are difficult to 

distinguish from non-lignin molecules when using the TMAH method. In this case, the 

CuO oxidation method would be more suitable since oxidative degradation does not 

confound interpretation of the primary lignin sources (Wysocki at al., 2008). Regardless of 

the analysis method employed, the clear differences in the degree of oxidative 

degradation between land-cover classes remain valid. Samples from the disturbed land­

cover class were more highly degraded, which is consistent with the greater extent of 

decomposition one would expect from land that has been clear-felled and drained. When 
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the water table is artificially lowered, by drainage channels such as those present in 

DPSF1 and 2, the peat is exposed to aerobic decomposition and oxidation processes at 

greater depths down the peat profile. These processes result in greater quantities of more 

heavily degraded organic material being leached from the peat. 

Wysocki et a/. (2008) found that lignin yields analysed via TMAH (as opposed to CuO 

oxidation) tended to be skewed towards easily hydrolysed cinnamyl-based lignin and 

therefore remarked that this method may be biased against low-cinnamyl woody samples. 

All the samples in this investigation, however, were found to have a very low C/G ratio 

which is indicative of a woody source and therefore consistent with what one would expect 

from intact (IPSF) and recently deforested (DPSF1 & 2) PSF ecosystems. Until the same 

samples are run using the CuO oxidation method, it is not possible to comment fully on 

the findings, however, it is unlikely that the C/G ratios would decrease significantly when 

employing the alternative CuO oxidation method, given that the current C/G ratios are 

already very low. 

Despite this theoretical understanding of lignin products, it is difficult to deduce what the 

TMAH data mean with regard to the overall fate of the DOC with absolute certainty. It has 

been found that DOC from disturbed peatlands is degraded to a higher oxidative state 

than DOC leaching from intact peatlands. More highly oxidised DOC is closer to being 

fully mineralised into CO2 and H20. This oxidation process proceeds via alcohol groups, 

aldehyde/ketone groups to acids and finally, to ring cleavage of the aromatic units. In this 

respect, we can conclude that the DOC being lost from disturbed peatlands has a higher 

bioavailability and is more likely to fully mineralise into CO2 and H20. The same data, 

however, may be interpreted differently which results in a conflicting conclusion to the 

previous one; DOC leaching from disturbed peatlands is already more heavily degraded, 

therefore it has reached a more stable, recalcitrant form (having already oxidised its more 

labile functional groups). This DOC is likely only to have the aromatic units left and is 

therefore no longer as labile as it once was, making it unlikely to ever be fully mineralised. 
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If this were the case, then despite only the recalcitrant aromatic units being left (which 

may never fully decompose), the majority of the organic matter will have already 

mineralised and contributed to emissions of gaseous carbon. If the first of the two 

interpretations above is considered, then the disturbed peatland ecosystems are losing 

fluvial carbon that is readily mineralised and more likely to be fed back into the 

atmospheric carbon cycle as C02 when compared with DOC that is less readily oxidised 

from intact peatland ecosystems. 

In this chapter, three types of analyses have helped to depict qualitative differences in the 

nature of DOC that is lost from intact and disturbed peatland ecosystems. Radiocarbon 

analysis illustrates a fundamental difference between sites in the age of the DOC that is 

lost, which in turn indicates the different sources of DOC between sites. Whereas the 

intact site is losing younger carbon sourced from aboveground vegetation (PSF), the 

disturbed sites are losing much older carbon from the peat dome itself. The differing DOC 

sources between land-cover class help to explain the observed differences in results from 

SUVA254 analyses. SUVA254 data indicated that the vegetation-sourced carbon from IPSF 

was more aromatic than the peat-sourced carbon from the disturbed sites. This may be 

explained by inputs of lignin-rich carbon compounds that are recalcitrant in nature from 

the overlying PSF in IPSF. In contrast, less aromatic carbon sourced from the peat 

column in DPSF1 and 2 was found to be more highly oxidised than carbon lost from IPSF. 

This implies that a larger portion of the DOC from DPSF1 and 2 has already been 

mineralised into gaseous carbon. 

These results mean that fluvial export of DOC from intact peatland systems does not 

represent a major loss pathway for long-term stored carbon, but instead a turnover of 

recently fixed carbon from aboveground biomass. This carbon is recalcitrant in nature, 

which is reflected in lower oxidative state levels, meaning that it is less likely to ever be 

fully mineralised into gaseous carbon. This contrasts with the more labile carbon that is 

lost from disturbed peatland ecosystems. Whilst previously contributing to a long-term 
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carbon store, this carbon is now being released in large quantities as a result of drainage 

and is more likely to be fully oxidised and contribute, indirectly, to yet further emissions of 

CO2 from disturbed peatland ecosystems. 
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Chapter Six 

General Discussion 

Data from this chapter are included in a manuscript that is currently under review, as: Moore,S., 
Gauci, V., Page, S.E., Evans, C.D., Gamett, M.H., Jones, T.G., Freeman, C. and Limin, S.H., 2011. 
Fluvial organic carbon fluxes reveal deep instability of deforested tropical peatlands. (Nature, 
submitted manuscript). 

6.1 Introduction 

Thus far this thesis has focused on three primary investigations: (i) quantifying the effects 

of ecosystem disturbance on fluvial organic carbon losses at a small (sub-catchment) 

scale (Chapter Three); (ii) validating these findings by applying them to larger. river basin 

scale flux estimates (Chapter Four); and (iii) examining the effects of ecosystem 

disturbance on the quality of fluvial organic carbon losses (Chapter Five). Here, a 

synthesis of the work from all three chapters is discussed and the results are extrapolated 

to the regional scale in order to understand their significance in a regional and global 

context. 

6.2 Fluxes and ages 

Data from Chapter Three indicate that fluvial organic carbon yields from all study sites 

investigated in the region are high when compared with previously published peatland 

fluvial TOC yields. The different land-cover classes investigated ranged in TOC yields 
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from 62.5 to 131 g C m-2 yr"1 and increased with increasing drainage severity (figure 6.1). 

The lowest TOC yield was observed in the intact PSF site, but at 62.5 g C m-2 y(1 (DOC 

yield = 61.3 g C m-2 yr"\ this is over four times larger than the average European 

(temperate) peatland DOC yield, which is estimated to be approximately 15 g C m-2 yr"1 

(Nilsson et al., 2008; Billet et a/., 2010; Koehler et a/., 2011). The intact PSF TOe yield is 

also more than double many reported values from tropical regions including Amazonia 

(Richey et al., 1990; Waterloo et al., 2006), Africa (Meybeck & Ragu, 1996; Coynel et al., 

2005) and other Southeast Asian regions (Baum et a/., 2007; Alkhatib et a/., 2007; Aldrian 

et a/., 2008). It should however be noted that the majority of catchments considered in 

these different studies are considerably larger than the catchments studied in this 

investigation and therefore they encompass a wider variety of land-cover classes. The 

yields obtained in this study were derived from catchments of uniform land-cover class 

that are between 5 to 35 km2 and composed entirely of peatlands, which are known to 

yield high fluvial organic carbon fluxes (Hope et a/., 1997; Aitkenhead & McDowell, 2000). 

The most severely drained land-cover class, DPSF2, had a TOC yield of 131 g C m-2 y(1 

which was over double the TOe yield from the intact site. The implications of these 

findings are highly significant for assessing the impact of anthropogenic disturbance of 

peatlands on fluvial carbon losses. However, Toe yield does not indicate the source of 

the additional carbon (Le. new versus old peat). It is only when incorporating the 

radiocarbon dates of the DOC lost from the different land-cover classes that the 

significance of the finding is fully realised. In Chapter Five, radiocarbon analysis revealed 

that D014C (% modern) was negatively correlated with drainage severity in the three land­

cover classes (figure 6.1). In other words, the average age (years BP) of the DOC lost, 

increased with drainage severity. The DOC from the intact site had the highest 14C (% 

modern; most modern carbon), which is consistent with evidence for the predominantly 

recent origin of DOC from intact northern peatlands (Schiff et a/., 1997; Palmer et a/., 

2001; Amon et a/., 2004; Benner et a/., 2004; Evans et a/., 2007; Tipping et al., 2010). No 

other known measurements of D014C from tropical peatlands, either pristine or disturbed, 
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have previously been reported. This means that it is not possible to place the findings of 

th is study In context, but nonetheless, the between-site differences are clear. The age of 

the DOC that is lost from a site can be used as a reliable indicator of the most likely 

source from which the DOC has been leached. The intact site leached 'modern' DOC 

C4C = 109.1 % modern) compared with the disturbed sites which leached DOC aged 

between 92-1417 years BP C4C = 98.9-83.8% modern). This combination of quantitative 

and qualitative analyses demonstrates that the doubling of fluvial organic carbon lost from 

disturbed PSF IS the result of inputs of old , peat-derived carbon. These findings suggest 

that instability and collapse of the peat column at depth in disturbed PSF ecosystems is 

responsible for the larger and older fluxes of fluvial organic carbon observed. 

Increasing drainage severity 
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Figure 6.1: CumulatIve annual TOC yield (± s.e.m), 'a' and 'b' denote significant differences 
between land-cover classes (p<O 01 , unpaired , two-sample t-test) and mean radiocarbon C4C) 
levels (± s.e.m) measured In DOC, '1', ' 1\ ' and 'II I' denote significant differences (p<0.001 , unpaired, 
two-sample t-test). Solid horrzontal line (104% modem) represents the current atmospheric 14C02 
level, dashed honzontal line (100% modern) represents the composition of the atmosphere in 
1950, in the bsence of any anthropogenic influences (i.e . fossil fuel burning and above-ground 
nuclear testing). 
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6.3 DO 14C age attribution 

D014C levels in water samples represent the composite signal obtained by mixing organic 

matter from a range of ages. Although this is conventionally represented by a single, 

indicative 'mean age', this observed value may be obtained by different combinations of 

old (pre-bomb, i.e. pre-1950s) and new (post-bomb) material. Samples dominated by 

bomb carbon C4C greater than 100% modern) cannot be assigned a mean age using this 

approach. 

In order to investigate in more detail the observed differences in mean DOC ages 

between land-cover classes, radiocarbon data from samples collected in this study were 

used to model the age distribution of DOC leached from each site, using a simple profile 

decomposition model (C. Evans, 2011, pers comm., 6th Jan). These will be included in a 

forthcoming manuscript, that is currently under review, on the effects of PSF clearance 

and drainage on fluvial carbon fluxes (Moore et a/., submitted manuscript). The model is 

based on DOC production as a function of peat depth, which corresponds to carbon age. 

The model assumes that the largest input of DOC production occurred from carbon fixed 

via photosynthesis in the year of sampling, and that the amount of DOC production 

declined exponentially with each subsequent year (Le. down the peat profile; C. Evans, 

2011, pers comm., 6th January). This concept is consistent with the general 

understanding of the relationship between peat depth and decomposition rates (Limpens 

et a/., 2008), and with a previous model of DOC input relative to age applied to Arctic river 

samples by Raymond et a/., (2007). 

Having applied the age attribution model to all samples (three replicates from each of the 

three land-cover classes), the DOC was apportioned into age categories that ranged from 

o to 5000+ years. Samples from each land-cover class were then aggregated to give a 

mean modelled percentage of DOC within each age range and illustrative results for the 

two most contrasting sample sites (IPSF and DPSF2) are summarised in figure 6.2c and 

d. 
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Figure 6.2: Schematic showing NEE (black arrows; g e m-2 y(1) and fluvial TOe loss (white 
arrows; gem yr I) estimates and likely sources in (a) IPSF and (b) DPSF2 land-cover classes. 
Illustrative modelled down-profile attribution of DO 14e age from (c) IPSF and (d) DPSF2 land-cover 
classes (Moore et al., submitted manuscript) . 

Figure 6.2 Illustrates the carbon fluxes including NEE and TOe in (a) IPSF and (b) 

DPSF2, as well as the most likely source of the fluvial carbon lost; vegetation-derived in 

IPSF and peat column-derived in DPSF2. Illustrative results from the age attribution 

models are shown for the same sites, (c) IPSF and (d) DPSF2. Results demonstrate that 

almost all the DOC from the IPSF site is derived from carbon fixed from the atmosphere 

within the last 50 years (figure 6.2c). In contrast, the age attribution model suggests that 

two-thirds of DOC In runoff from the DPSF2 site is derived from peat carbon of 500-5000 

years old (figure 6 2d). It is stressed that the age attribution model is only indicative, since 

different assumptions about the decrease in DOC production down the peat profile would 

alter the distributions obtained (as explained in Moore et a/., submitted manuscript). 
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However, the difference in D014C measured between IPSF and DPSF2 is so large that 

altering the assumptions in the model would not greatly alter the interpretation of relative 

age distributions; the lower 14C % modern values measured in the disturbed sites 

(combined with higher TOe fluxes) can only be explained by a larger release of DOC from 

much older, and thus deeper, peat organic matter. 

Radiocarbon data from DPSF1 that was subject to moderate drainage (figure 6.3a) as well 

as two channels draining oil palm plantations in Peninsular Malaysia that were previously 

covered in PSF (T. Jones, 2011 , pers comm. , 6th January; figure 6.3b) were also applied 

to the age attribution model. Results indicate that in DPSF1 , nearly half the DOC in runoff 

derived from peat carbon of 100 to 500 years of age and therefore, as with 14C % modern 

values, the age of DOC lost from DPSF1 is an intermediate between IPSF and DPSF2. 

This provides further evidence that the age of DOC lost increases with drainage severity. 

Over three quarters of the DOC in runoff from the oil palm plantation sites derived from 

peat carbon of over 1000 years old and a substantial portion from peat carbon greater 

than 5000 years in age (Moore et al., submitted manuscript). 
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Figure 6.3: Illustrative modelled down-profile attribution of D014C age from (a) DPSF1 and (b) 
ditches draining oil palm plantation sites in Peninsular Malaysia (Moore et aI., submitted 
manuscript) . 
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Fluvial organic carbon losses from commercial plantations (in particular, oil palm and pulp­

wood plantations in Southeast Asia) are thought to be high, due to a dense network of 

drainage channels (Verwer at a/., 2008). Water bodies can account for 3-5% of total 

plantation areas and the large surface area of water within the channels facilitates the 

transport of organic material out from the plantation (Verwer et a/., 2008). To date, no 

fluvial carbon fluxes from this land-cover class have been reported and potential values 

remain largely unknown. However, data from this investigation would imply that fluxes are 

likely to be closer to the values observed from DPSF1 and 2 as opposed to IPSF due to 

the drainage effect. 

There are two notable differences between the disturbed land-cover classes investigated 

and commercial plantations: (i) although both land-cover classes are drained, water tables 

in DPSF1 and 2 are unregulated and consequently fluctuate according to rainfall, whereas 

under usual practice in commercial plantations, the water table is rigorously monitored 

and regulated at the most favourable depths for crop growth (approximately -60 to -80 cm 

for oil palm and pulp-wood); and (ii) DPSF1 and 2 have both been subject to several 

uncontrolled fire events. In comparison, land cleared in preparation for commercial 

plantations, is typically logged and burned in a controlled, isolated event for the purpose of 

removing any remaining vegetation from the peat surface. Despite these differences, 

results from the age attribution model imply that, much like DPSF1 and 2, older peat 

carbon from the peat column (as opposed to the overlying vegetation), is likely to be the 

dominant contributor to DOC losses from commercial plantations. 

6.4 The River Sebangau in a global context 

By conducting sampling campaigns in the wet and dry season, it was estimated that the 

River Sebangau discharges 0.46 Tg of fluvial organic carbon (TOC) to the ocean, 

annually. This comprised 93% DOC (0.43 Tg) and 7% poe (0.03 Tg). It is estimated that 

between 330 to 370 Tg of fluvial organic carbon is discharged via the world's rivers to the 

115 



oceans every year (Degens et al., 1991; Meybeck, 1993). Based on these estimations, 

the River Sebangau contributes between 0.12 and 0.14% of the global annual fluvial 

organic carbon flux to the world's oceans. This translates to a rather more significant 

percentage however when considering that the Sebangau River basin only accounts for 

0.005% of the world's exoreic (draining into oceans) drainage basin area (106,326,000 

km2
; Ludwig et al., 1996). The Sebangau River basin therefore clearly exports large 

quantities of fluvial organic for its size when compared to other rivers. 

6.4.1 Climatic zones and organic carbon yields 

Ludwig et aI" (1996) estimated that the wet tropical climatic zone covers 23,633,000 km2 

(22% of global drainage basin area) and contributes 90.2 Tg DOC to the oceans (44% of 

global DOC flux to oceans). This over representation of DOC fluxes from the wet tropical 

climatic zone is perhaps a function of high levels of rainfall and resultant discharge as well 

as high vegetation production. The findings from intact and disturbed land-cover classes 

in Chapter Three have already demonstrated that discharge is the most important factor in 

determining fluvial carbon fluxes. The Sebangau River basin accounts for only 0.02% of 

the total wet tropical climatic zone drainage basin area, yet it contributes up to 0.5% of the 

zone's total DOC flux, These percentages indicate that the Sebangau River basin over­

proportionally contributes to DOC fluxes both within the wet tropical climatic zone as well 

as on a global scale. It follows that the Sebangau River basin is one of the highest 

contributors of fluvial organic carbon fluxes to the ocean per unit area within the climatic 

zone that contributes most significantly to fluvial carbon fluxes to the ocean. This is 

reflected in the annual TOC yield from the Sebangau River basin to the ocean which 

averages 88 g C m'2 yrol, This yield is considerably higher than all of the world's river 

basins reported in Ludwig et a/. (1996) which, given that TOC yields take into account 

catchment size and discharge, is most likely due to the extremely high DOC 

concentrations within the River Sebangau (greater than 60 mg r'). These high 

concentrations are due to the Sebangau River basin being composed almost entirely of 

116 



carbon-rich peatlands. This is in contrast to larger drainage basins, which can encompass 

more than one climatic zone and consequently more than one land-cover class. For 

example, the Nile drainage basin, which is 1,874,000 km2
, encompasses five different 

climatic zones (temperate dry and wet, tropical dry and wet and desert), of which 

approximately 20% is desert, which, as an ecosystem not only contains very little organic 

matter, but also receives very little rainfall. As a result of lower TOC concentrations and 

discharges, the average TOC flux from the Nile river basin is 0.2 g C mo2 y(1, the majority 

of which is comprised of POC (Ludwig at al., 1996). This is in contrast to wet tropical 

climatic zones where DOC is invariably the dominant component in TOC fluxes. 

6.4.2 The Sebangau and other world rivers 

DOC export versus catchment size for some blackwater rivers and other world rivers is 

presented in figure 6.4. The graph has been modified from the original, taken from 

Alkhatib at al. (2007), to include data from the River Sebangau. The overall trend 

illustrated in figure 6.4 is increasing DOC export with catchment size. The regression line 

between the two variables is for the existing set of data for blackwater rivers only (prior to 

addition of the River Sebangau data point) and apprOXimates the data points more 

accurately before adding the River Sebangau data (r2=0.81) than after (r2=0.72). When 

the River Sebangau is included in the dataset, it is clear that it deviates from the existing 

trend to a greater extent than other blackwater rivers, by exporting more DOC than would 

be expected from its (relatively small) catchment size. Despite Its smaller catchment, the 

River Sebangau exports more DOC annuany than other blackwater rivers such as the 

Siak, Suwannee and Ogeechee. Of the four Indonesian blackwater rivers that have been 

quantified thus far, the Sebangau exports the most DOC annually. It is interesting to 

examine how the blackwater rivers (including the River Sebangau) compare with other 

world rivers. The Sebangau River basin is over 350 times smaller than the Nile river 

basin, yet the River Sebangau exports 1.2 times more TOC (and nearly 5 times more 

DOC) than the River Nile, annually. The Amazon, Congo and Mississippi river basins are 
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Figure 6.4: DOC export (log) vs. catchment size (log) for several blackwater rivers (black/grey 
circles) and other world rivers (white circles). Linear regression line is for the existing dataset for 
blackwater rivers only (prior to additton of the River Sebangau data point; ~=0 . 81) . Data are from 
Ludwig et al. (1996) and references within, Vegas-Vilarrubia and Rull (1988). Richey et a/. (1990) . 
Leff and Meyer (1991 ). Valentine and Zepp (1993). Hastenrath et al. (1999) , McCallum and Hickey 
(2001). World Resources Institute (2003), Castillo et al. (2004), Coyne I et al. (2005), Baum et al. 
(2007). Alkhatib et a/ (2007) (catchment size is an estimate with high uncertainty) and Moore et al. 
(2011 ; Chapter Four). 

the three largest river baSins in the world . Their river basins are 5,903,000, 3,500,000 and 

3,243,000 km
2 

and annually they export 36.1 (Richey et al., 1990), 14.4 (Coynel et al. , 

2005) and 5.3 (Ludwig et al., 1996) Tg TOC, respectively. These huge river basins are 

1100. 700 and 600 times larger than the Sebangau River basin, respectively, yet annually 

they only export 80. 31 and 12 times more TOC to the ocean than the River Sebangau. 

This comparison in TOe export between small and large river basins illustrates the global 

significance and importance of quantifying TOC exports from small , peatland-dominated 

river basins because per unit area they account for much larger fluvial organic carbon 

exports. The Amazon , Congo and Mississippi River basins have average TOe yields of 

6.9 to 8 .5 (Coynel et al., 2005; Richey et al., 1990). 3 .8 (Coynel et al. , 2005) and 1.0 to 1.6 
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(Coynel et al., 2005; Ludwig et al., 1996) g C m-2 y(1, respectively. These data 

demonstrate that the TOC yield of the Sebangau River basin (88 g C m-2 y(l) is 

approximately 10 times greater than the Amazon River basin and significantly more than 

10 times greater than the other two largest river basins in the world. 

6.5 Regional extrapolation 

6.5.1 Sub-catchment vs. River basin scale 

In order to verify the observed annual TOe yields from sub catchments of different land-

cover classes (Chapter Three), the same yields were applied to the Sebangau River 

basin. The entire Sebangau catchment (5,200 km2
) was classified into two broadly 

defined land-cover classes (intact and disturbed) using satellite images, aerial 

photography and a geographic information system (ArcGIS, 9.3). The intact PSF yield of 

62.5 g C m-2 y(1 was applied to all areas defined as intact and an intermediate value of 

118 g C m-2 y(1 (which is the mean TOC yield value for DPSF1 and 2, given that there is 

no significant difference between them) applied to aU areas defined as disturbed (table 

6.1 ). 

Table 6.1: Estimated TOe losses and yields from the Sebangau River basin based on sub 
catchment yields for intact and disturbed land-cover classes. 

Land-cover Area Actual TOe Estimated Estimated total 
class (km2

) yield applied total TOe land-cover class 
(g e m' yr.1) loss yield 

(tonnes y(1) (g e m'2 yr,1) 

Sebangau Intact 3038.8 62.5 189,925 
(western side Disturbed 567.0 118.2 67,019 
of river basin) Total 3605.8 256,944 71.3 

Block 'e' Intact 361.4 62.5 22,588 
(eastern side Disturbed 1202.6 118.2 142,147 
of river basin) Total 1564.0 164,735 105.3 

Total Intact 3400.2 62.5 212,513 
(Sebangau Disturbed 1769.6 118.2 209,166 
River basin) Total 5169.8 421,679 81.6 
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Using these TOC yields, TOC losses were estimated to be 256,944 tonnes (0.26 Tg) and 

164,735 tonnes (0.16 Tg) from the western (primarily intact - Sebangau) and eastern 

(primarily disturbed - 'Block C') sides of the river basin, which equated to TOC yields of 

71.3 and 105.3 9 C m-2 y(\ respectively. The annual TOC loss from the entire Sebangau 

River basin using the estimated yields from Chapter Three is estimated to be 421,679 

tonnes, or 0.42 Tg, which equates to an estimated TOC yield of 81.6 9 C m-2 y(1. These 

values are within 10% of the basin scale TOC loss (0.46 Tg y(1) and TOC yield (88.5 9 C 

m-2 y(1) estimates based on data from Chapter Four and discussed in Moore et al. (2011). 

Despite the estimated total TOC loss being within 10% of the actual observed value, the 

accuracy of the estimates did vary between land-cover classes. Table 6.2 compares the 

'actual' values (from Chapter Four) with the 'estimated' values from the sub-catchment 

sites (from Chapter Three). The 'estimated' values are lower than the 'actual' values from 

the western side of the river basin (which is primarily intact PSF) by 0.08 Tg TOe y(1. 

Table 6.2: Actual and estimated TOC fluxes from the western, eastern and total Sebangau River 
basin calculated from two river trip sampling campaigns and applying sub-catchment yields to the 
river basin, respectively. 

TOC flux 

Sebangau - 'Intact' Block 'C' - 'Disturbed' 
Total {Sebangau 

{western side of river (eastern side of river 
River basin) 

basin) basin) 

Actual Estimated Actual Estimated Actual Estimated 

Annual total 
339,460 256,944 117,563 164,735 457,820 421,679 (tonnes y(1) 

Annual total 
0.34 0.26 0.12 0.16 0.46 0.42 (Tg yr-1) 

The same discrepancies are apparent from the eastern side of the river basin (which is 

primarily disturbed PSF), where the 'estimated' values are greater than the 'actual' values 

by 0.04 Tg TOe y(1. The difference in values is smaller on the eastern side of the 
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catchment primarily because this side accounts for a much smaller land area (30% of the 

total river basin). These inconsistencies mean that the TOe yield of 62.5 g C m-2 y(1 for 

intact PSF is a slight underestimate and the mean value of 118 g C m-2 y(1 for disturbed 

PSF is a slight overestimate. 

There are two likely reasons for these discrepancies between the 'actual' and 'estimated' 

Sebangau River fluxes. The most likely reason is that the 'actua\' data was based on two 

sampling campaigns in the year (wet and dry season) and extrapolated from these two 

datasets to give an annual loss. Extrapolating to an annual TOe loss based on two 

measurements is not without its limitations and it is likely that the 'actua\' annual TOe loss 

is subject to high standard error. The sub-catchment yields for intact and disturbed land­

cover classes that were used to calculate the 'estimated' values were based on weekly 

measurements throughout the year. Superior temporal resolutions result in them having 

far lower standard errors and are therefore likely to be more reliable than estimates based 

on only two datasets collected over the course of one year. The second reason is that in 

the larger river basin scale study, the land was classed into two broad categories, 'intact' 

and 'disturbed', when the reality is that there are many intermediate land-cover classes, 

such as secondary PSF within the Sebangau River basin. Should secondary PSF be 

classed as 'intact' or 'disturbed'? It is perhaps not as 'intact' as the IPSF site nor as 

'disturbed' as the DPSF1 and 2 sites. Therefore assigning one of two possible TOC yields 

to the entire Sebangau River basin land area is likely subject to more error than the sub­

catchment investigation in Chapter Three which investigated discrete areas of land 

subject to the same uniform disturbance (within each land-cover class). This is another 

reason as to why fluxes observed in Chapter Three should be considered as more reliable 

estimates of TOC yield than the basin scale derived estimates. 

However, given these small differences, the broad agreement in flux estimates for the 

entire Sebangau River basin derived over contrasting scales provides confidence that the 

calculated yield estimates for sub-catchments are representative of fluxes occurring at 
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larger scales. It should also be noted that due to the 'estimated' values being smaller than 

the 'actual' values, all extrapolations performed should be considered conservative. 

6.5.2 Sub-catchment vs. Regional scale 

To quantify the impact peatland disturbance has had on regional long-term fluvial carbon 

loss, the TOC yields observed from the sub-catchments (Chapter Three) were applied to 

land areas of intact and deforested PSF prior to and after peatland disturbance. Industrial 

plantations were omitted from the calculations as there is no known quantitative data on 

fluvial organic carbon yield from this land-cover class available, although the DO 14C data 

suggest that these ecosystems may also be highly unstable due to land use change. 

Given the exclusion of peatlands converted to plantations in the calculations, the 

estimated increase in regional fluvial organic carbon flux should be considered 

conservative. To quantify the impact the MRP has had on the long-term loss of fluvial 

carbon, the appropriate TOC flux estimates were applied to land areas of intact PSF (62.5 

g C m-2 y(1) and disturbed PSF (118 g C -2 y(1) both before and after ('pre' and 'post') the 

development of the MRP (table 6.3). It is estimated that the total area of intact PSF in the 

MRP area (defined as 'Blocks A to E' and the area between the River Sebangau and 

River Katingan) decreased from -15,600 km2 in 1991 (four years prior to the MRP) to 

-11,100 km2 in the year 2000 (post-MRP; Boehm & Siegert, 2001). It is therefore 

estimated that the conversion of intact PSF to disturbed PSF in the MRP area during this 

9 year interval, resulted in a 25% increase in TOC loss, from 0.98 Tg y(1 in 1991 to 1.23 

Tg y(1 in 2000. 

The MRP forms part of the -155,000 km2 of peatlands that cover Borneo (Kalimantan, 

Sabah and Sarawak), Sumatra and Peninsular Malaysia (-60% of total 

peatlands in Southeast Asia). Mietinnen and Liew (2010) estimate that in 1990, 

approximately 50% (75,810 km2
) of this land area was classed as intact PSF, with 'minor 

122 



Table 6.3: Annual TOe fluxes pre and post disturbance at various spatial scales. 

Region 

MRP 

B, Sand 
PM 
Southeast 
Asia 

Intact area 
'pre' 

(km2
) 

1S,604 

75,80St 

121,272tt 

Intact area 
'post' 
(km2

) 

11,102 

15,600 

49,344 

Disturbed Total TOe Total TOe 
area flux flux 

(km2
) 'pre' (Tg) 'post' (Tg) 

4,S02 1.0 1.2 

60,205 4.7 8.1 

71 928ttt , 7.6 11.6 

Increase 
(Tg) 

0.2 

3.4 

4.0 

MRP = Mega-Rice Project; B, S and PM = Borneo, Sumatra and Peninsular Malaysia; and 
Southeast Asia = Indonesia, Malaysia, Papua New Guinea, Brunei, Myanmar, Thailand, Vietnam, 
The Philippines. 'pre'l'post' dates for regions are as follows: MRP, 1991/2000; Borneo, Sumatra 
and Peninsular Malaysia, 1990/2008; and Southeast Asia, 1990/2008. tArea of remaining intact 
PSF in 1990 - 48.9% of 155,020 km2 (data taken from Miettinen & Liew, 2010). ttArea of 
remaining intact PSF in 1990 - 48.9% of 248,000 km2 (data taken from Miettinen & Liew, 2010 and 
Page et al., 2011). ttt Area of disturbed peatland (excluding industrial plantations) calculated using 
actual rates of PSF loss for individual regions (as reported in Miettinen & Liew, 2010 and Hooijer et 
al.,2010). 

or no sign of human activity'. They go on to estimate that in 2008, as a result of 

anthropogenic peatland disturbance, only 10% (15,600 km2) of intact PSF remained, 

which equates to a PSF loss of 2.15% y(1 for the years 1990 to 2008. It is calculated that 

this conversion of intact PSF to disturbed peatlands since 1990 has resulted in a -70% 

increase in the fluvial TOe flux, from 4.7 Tg C y(1 to 8.1 Tg C y(1. 

Excluding Borneo, Sumatra and Peninsular Malaysia, the remaining peatland area in 

Southeast Asia comes to 93,000 km2. If 50% of this land area is considered to be intact 

PSF in 1990, as Mietinnen and Liew (2010) estimate above, and the same rate of annual 

PSF loss is applied for the period 1990 to 2008, then the fluvial TOe loss (as a result of 

disturbance to intact PSF since 1990) is estimated to have increased by 5.3 Tg carbon 

(from 7.6 Tg C y(1 to 12.9 Tg C y(\ Applying the rate of annual PSF loss observed in 

Kalimantan, Sumatra and Peninsular Malaysia to all of Southeast Asia, however, may 

overestimate the total PSF loss as rates are generally greater in these regions compared 

to elsewhere in Southeast Asia. By applying the actual observed rates of annual PSF loss 

(0.2 to 1.3% y(1; Hooijer et a/., 2006) to the remaining areas of Southeast Asia (Brunei, 

Papua New Guinea and the remaining regions in Indonesia) a more conservative increase 
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in fluvial TOe loss of 4.0 Tg is estimated (table 6.3). Therefore, by up-scaling the 

observed sub-catchment TOe yields, the annual fluvial TOe loss from peatland that has 

been subject to anthropogenic disturbance since 1990 in Southeast Asia is estimated to 

be 11.6 to 12.9 Tg e y(1. Scaled back to a carbon yield per unit area, this results in an 

average TOe yield from intact peatland that has been subjected to disturbance (drainage 

area of 121,272 km2
) of 95.5 to 106 g C m-2 

y(1. The lower estimate is considered to be 

more reliable as this takes into account country-specific rates of PSF loss as opposed to 

applying one rate of loss to all countries. The 53% increase, alone, in TOe loss from 7.6 

to 11.6 Tg (the lower estimate) approximates the entire annual European peatland fluvial 

TOC flux (4.3 Tg y(1), estimated using a European peat land area of 292,000 km2 

(Montanarella et a/., 2006) and an average fluvial carbon flux estimate of 14.6 g C m-2 
y(1 

(Nilsson et ai., 2008; Billet et a/., 2010; Koehler et a/., 2011). It should be noted, however, 

that in general, a much larger portion of fluvial carbon is lost in its inorganic form (DIC) in 

Europe (greater than 60%) compared to Southeast Asia (less than 10%), which is not 

included in the above flux estimates. 

Because the extrapolation carried out thus far only accounts for half of the peatlands in 

Southeast Asia (as a consequence of Miettinen & liew (2010) only accounting for 50% in 

their estimates), it is important to note that 11.6 Tg is not the total annual Southeast Asia 

TOC loss. Due to the remaining 50% of land being unclassified in terms of land-cover 

class (simply defined as 'not intact'), it is difficult to apply one yield to these areas in order 

to estimate a total annual Southeast Asian TOC flux. In the same way that applying the 

'intact' yield would underestimate the overall flux, applying the mean 'disturbed' yield 

would most likely overestimate the overall flux since some of the remaining land could be 

an intermediate land-cover class, such as secondary PSF. However, applying the mean 

'disturbed' TOC yield to the remaining land area is most probably more accurate (as most 

peatland is subject to some form of disturbance) and when this is carried out, a 'pre' and 

'post' disturbance TOC flux of 22.6 and 26.6 Tg y(1 is estimated, respectively. As the 

same TOC yield value has been applied to the remaining land area, the same increase in 
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Toe flux is observed (4.0 Tg), but because it is now part of a larger total flux, the 

percentage increase drops to 18%. Applying the 'intact' yield to the remaining 50% of 

Southeast Asia peatland area results in a 'pre' and 'post' TOe flux of 15.5 and 26.6 Tg, 

respectively. Here, a smaller 'pre' disturbance TOC flux and the same 'post' disturbance 

TOe flux, results in a larger percentage increase of 72%. 

Having applied TOe yields that are most likely under and overestimates, a TOe yield of 

90.5 g e m·2 y(1 (the mean of intact and disturbed land-cover class yields) was applied to 

the same land areas and 'pre' and 'post' disturbance TOC fluxes of 19.0 and 21.1 Tg y(1 

were achieved. Using this mean TOC yield (90.5 g C m-2 y(1) is the most appropriate 

scenario because 'degraded PSF', 'secondary PSF' and 'low shrub/fern' land-cover 

classes account for the highest percentages of land area in Miettinnen and Liew's (2010) 

most recent assessment of peatlands in Southeast Asia. It would be reasonable to expect 

these types of land-cover classes to produce a TOC yield value of somewhere between 

intact and disturbed land-cover classes as they are all intermediate classes. The total 

Indonesian peatland area (206,950 km2
) annual TOe loss estimated from the Sebangau 

River basin study was 18.2 Tg (Chapter Four). When this value for total Indonesian 

peatland area is extrapolated to the total Southeast Asian peatland area (248,000 km2
), it 

increases from 18.2 to 21.8 Tg y(1. These two values (21.1 and 21.8 Tg), calculated 

using methods achieved through two different techniques discussed in this study, closely 

approximate one another and further strengthen the reliability of the findings on both small 

and large spatial scales. 

6.5.3 Caveats 

As with all extrapolation exercises, several caveats are noted. The first and most obvious 

is that TOC yield data from several sub-catchments in Central Kalimantan were used as 

indicative yields for the entire peatland area of Southeast Asia. Peatlands in different 

regions are subject to different disturbance types and will inevitably respond to these 
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disturbances in different ways. This limitation can only be resolved by collecting annual 

flux data from several different regions which would increase the extrapolation reliability. 

It should however be noted that the sub-catchments investigated in this study are highly 

representative of the majority of intact and disturbed peatlands found across most of 

Southeast Asia as they incorporate a number of different disturbance types; drainage, 

deforestation and fire. As well as the type, the severity and incidence of any disturbance 

should also be taken into account. DPSF2, the most intensely drained site investigated 

might be considered as an extreme because it encompasses the Kalampangan Canal (up 

to eight meters deep) which was one of the main MRP drainage channels (as discussed in 

Chapter 2.2.4). However, the 12 km Kalampangan Canal is representative of over 4,500 

km of similarly dug drainage channels throughout the MRP and it can therefore be argued 

that despite its severe drainage depth, it is representative of large areas within the MRP. 

This is partly the reason why two catchments subject to different levels of disturbance 

were investigated and the mean of the two estimated TOC yields used for extrapolation 

exercises. 

6.5.4 Oil Palm plantations 

One of the largest remaining uncertainties is the TOC flux value from industrial plantations 

including oil palm and pulp-wood. Indonesia and Malaysia are the world's largest 

producers of palm oil, accounting for 87% of the global production between them (Basiron, 

2007; USDA-FAS, 2010) and oil palm plantations account for a large percentage of the 

total land area in Southeast Asia. Oil palm plantations account for -83,000 km2 in 

Borneo, Sumatra and Peninsular Malaysia, of which, according to Koh et al. (2011) only 

one-tenth (8,800 km2
) are established on peatlands. However, this estimate only 

accounted for mature plantations. By including younger plantations (less than 8 years 

old), Hooijer et al., (2011) estimate the total area of oil palm plantations established on 

peatlands to be more than double this area (21,500 km2
). Using either estimate implies 

that, from a regional perspective, the oil palm industry is not the main perpetrator of 

126 



peatland deforestation. At the sub-regional level, however, substantial proportions of PSF 

in North Sumatra (38%), Southwest Sumatra (35%), and Peninsular Malaysia (27%) have 

been lost to oil palm plantations (Koh et al., 2011). Without any flux data from plantations, 

it is only possible to hypothesise as to the most likely range of TOe yields they may 

produce. 

In Chapter Three it was established that discharge is the most important variable in 

controlling the size of TOe fluxes. High concentrations of organic carbon (as would be 

expected from any peatland catchment) combined with high levels of rainfall and large 

discharge rates (as would be expected from anywhere in the wet tropical region), will 

result in a large TOe flux. The reason for higher levels of discharge in DPSF1 and 2 

compared to IPSF was the difference in water balance caused by the overlying vegetation 

and the peatland drainage channels. Oil palm plantations have a dense network of 

drainage channels, much like those present in DPSF1 and 2. However, these plantations 

also have more overlying vegetation than is present in DPSF1 and 2 and therefore there 

are both similarities and differences between oil palm plantations and the disturbed sites 

investigated in this study. On the one hand, the dense network of drainage channels 

should enhance discharge by draining the surrounding peatland. On the other hand, the 

overlying vegetation should increase rates of evapotranspiration and interception, and in 

doing so reduce the amount of runoff/discharge from oil palm plantations. Therefore it can 

be deduced that the most likely TOe yield from oil palm plantations is somewhere in 

between those observed for intact (62.5 g e m-2 yf1) and disturbed (105-131 g e m-2 yf1) 

land-cover classes. Without estimating a TOe yield value for oil palm plantations, it would 

be reasonable to assume that the value will exceed the TOe yield for intact PSF and 

therefore will increase the additional human-induced TOe flux from the region affected. 

With primary forests being the source of nearly 60% of new plantations established in 

Southeast Asia between 1980 and 2000 (Koh et al., 2011) and the Indonesian 

government recently announcing that it aims to double its palm oil production by the year 
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2020, the carbon implications from land use change of this type and scale are made all 

the more concerning. 

6.6 The fate of fluvial organic carbon 

Having quantified the amount of fluvial organic carbon being discharged from tropical 

peatlands of varying land-cover classes into riverine and marine systems, it is important to 

understand the processes which may be affecting the organic carbon while it is in transit 

and which determine where this fluvial carbon is most likely to go next in the carbon cycle. 

There are three possibilities (pathways): (i) fluvial organic carbon is transported from the 

water column to sediments via flocculation, incorporation into biological material and 

sedimentation of POM; (ii) fluvial organic carbon is degraded by a combination of 

photochemical and microbial processes, leading to its mineralisation and emission of 

organic carbon as CO2 , CH4 and CO; and (iii) fluvial organic carbon flows down the river, 

unprocessed into marine systems. 

6.6. 1 Global carbon balance of aquatic systems 

The schematic in figure 6.5 illustrates the most recent understanding of the quantities of 

carbon that enter inland waters from land and exit the inland fluvial system as sediments, 

to the atmosphere and the ocean. It is based on the 'active pipe' hypothesis first devised 

by Cole et al. (2007) which was advanced with the addition of stream emissions by Battin 

et al. (2008) and increased sediment burial by Tranvik et a/. (2009). With 900 Tg, or 0.9 

Pg of fluvial carbon being transported to the oceans annually, 1.4 Pg carbon emitted via 

outgassing from inland waters to the atmosphere and 0.6 Pg being buried in sediments, 

the total amount of organic carbon imported to inland waters from the terrestrial 

environment approximates 2.9 Pg y(1 (Tranvik et a/., 2009; figure 6.5). To put these 

estimates in context, the annual loss to the atmosphere and sediments of 2.0 Pg is similar 
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Figure 6.5: Simplified, schematic view of the role of inland aquatic systems in the global carbon 
balance. Revision by Tranvik et al. (2009) of the 'active pipe' hypothesis advanced by Cole at al. 
(2007). Revised values include increased emissions to the atmosphere and increased burial in 
sediments. Values are in petagrams (Pg). 

in size to total global net ecosystem production (Randerson et al., 2002). Further, the 

annual emissions of carbon from inland waters of 1.4 Pg (which was not previously 

considered in global carbon budgets), is of the same order of magnitude as annual fossil 

fuel combustion, carbon emissions caused by deforestation and carbon uptake by the 

oceans (6.4, 1.6 and 2.6 Pg, respectively; Burgermeister, 2007). It should also be noted 

that global inland water surface area estimates (used to calculate global carbon emissions 

to the atmosphere) only consider larger streams and rivers, because it is difficult to 

estimate accurately the surface area of smaller streams (Battin, 2008). Smaller streams 

and rivers are therefore excluded, despite being the most reactive in the fluvial network in 

terms of microbial activity and therefore, most likely the largest emitters of gaseous 

carbon to the atmosphere (Battin, 2008). 

If the estimated values and the ratios between them presented in the global inland water 

carbon budget are applied to the findings from the Sebangau River basin study (Chapter 

Four), then it is estimated that 0.72 Tg carbon is emitted to the atmosphere and a further 

0.31 Tg carbon buried in sediments. The model therefore implies that more than twice the 

amount of carbon lost from the mouth of the River Sebangau (0.46 Tg) is either processed 
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and emitted in gaseous form or buried in sediments while in transit to the ocean (1.03 Tg). 

This result has significant implications for the total loss of carbon from the Sebangau River 

basin. For the sub-catchments, it is possible that some of the fluvial organic carbon has 

been processed within the drainage channels before the water is sampled at the 

discharge points into the rivers. The River Sebangau is over 150 km in length and water 

residence time is expected to range from several days to several weeks, depending on 

flow rates (Haraguchi, 2007). Due to a lack of carbon gas emission data from the River 

Sebangau, it is not possible to corroborate the estimated outgassing value of 0.72 Tg 

carbon. However, previous studies have demonstrated that DOC is metabolised 

continuously throughout fluvial networks in temperate (Raymond & Bauer, 2001; 

McCallister et al., 2004; McCallister et a/., 2006) and tropical (Richey et al., 2002; 

Mayorga et a/., 2005) systems. 

Given the warm tropical climate and high levels of solar radiation, the River Sebangau is 

likely to be subject to considerable amounts of photomineralisation. This process 

produces CO2, and where oxidation is not complete, photolysis either enhances or 

reduces the biodegradability of the remaining DOC (Tranvik & Bertilsson., 2001). 

Photochemical oxidation in natural sunlight requires days to weeks and with no canopy 

overhead, and, given the estimated water residence time, there should be sufficient time 

to process DOC that is in transit in the River Sebangau in this manner. 

Nearly all fresh waters contain CO2 in concentrations that are supersaturated with respect 

to that of the atmosphere (Aufdenkampe et al., 2011). The partial pressure of dissolved 

CO2 (pC02) in water in equilibrium with the atmosphere is equivalent to the concentration 

of CO2 in the atmosphere, which is currently -390 parts per million (ppm) (Aufdenkampe 

et al., 2011). Measured pC02 values typically range from 1,000 to more than 12,000 ppm 

in rivers (Cole & Caraco, 2001; Richey at a/., 2002; Johnson et al., 2008; Humborg et al., 

2010) and similar values have been recorded in lakes and reservoirs (Sobek et al., 2005; 

Marotta at al., 2009). Typically, tropical waters exhibit higher concentrations of CO2 than 
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temperate waters, with rivers and wetlands containing the highest concentrations of CO2 

(Aufdenkampe et al., 2011). Measured pC02 concentrations of 12,000 ppm were 

recorded in tributaries of the River Kapuas in West Kalimantan which drains a peatland 

dominated catchment (W. Oechel, 2011, pers comm., 26th March). This implies that the 

River Sebangau, a peatland fed, tropical river would also have potentially very large 

water-to-atmosphere CO2 fluxes. 

6.6.2 Metabolic processing of fluvial organic carbon 

Metabolic processing of fluvial organic carbon is highest in the headwaters where high 

densities of diverse microbial communities result in the processing of a broad range of 

organic molecules (Battin et a/., 2008). The outgassing of CO2 in the headwaters of the 

Amazon is primarily accounted for by young organic carbon from plant sources (Mayorga 

et a/., 2005). Assuming this is also the case in the Sebangau, the radiocarbon ages would 

suggest that the processing of young organic carbon from the intact land-cover class is 

favoured over the older peat-derived organic carbon from the disturbed land-cover classes 

in this part of the river. Riverine respiration generally declines with increasing distance 

from the source which is thought to be a consequence of increased DOC recalcitrance 

following upstream fluvial processing (Battin et a/., 2008). However, SUVA254 data from 

the River Sebangau showed no such increase in DOC recalcitrance with distance from 

source and therefore it is likely that respiration is occurring in the downstream regions of 

the River Sebangau as well. Isotopic and biomarker analyses have shown that aged 

terrestrial DOC also makes a significant contribution to the net heterotrophy in rivers and 

estuaries (Raymond & Bauer, 2001; McCallister et al., 2004; McCallister et al., 2006). 

This implies that although the majority of DOC lost from the disturbed land-cover classes 

was from an older peat-derived source, it will most likely be processed at some point 

within the river as well. 

131 



DOC is the most important component of TOC with reference to bioavailability because 

only low molecular-weight DOC compounds are transported through the microbial cell 

membrane and subsequently subject to metabolism (Battin et al., 2008). Larger 

molecular-weight POC compounds must first be hydrolysed by microbial extracellular 

enzymes, and the resulting DOC molecules can then be subject to microbial metabolism 

(Battin et al., 2008). With DOC accounting for more than 90% of TOC export from the 

peatland sub-catchments investigated, as well as the entire Sebangau River basin, the 

vast majority of fluvial organic carbon is readily available for microbial processing and it 

therefore follows that large quantities of organic carbon are processed and emitted as 

gaseous metabolic products from the River Sebangau. In contrast, POC has traditionally 

been considered old and of low metabolic availability. However, recent research is 

redressing this perception and now shows that a fraction of this material is more important 

to net ecosystem metabolism than first thought (Battin et al., 2008). Fresh POC (that is 

most likely to come from the intact as opposed to disturbed land-cover class) is thought to 

be consumed quickly and locally without significant transportation downstream. The 

Sebangau is a low gradient river with low flow rates throughout the year which results in a 

highly depositional environment. Consequently, transport of POC downstream is probably 

quite limited with the bulk of it either quickly being consumed or contributing to the organic 

carbon that is deposited as benthic sediments. 

Although no measurements of carbon emission to the atmosphere or burial in sediments 

are available for the River Sebangau, the environmental conditions present are 

particularly favourable ones for the processing of large quantities of DOC within the water 

body. It is feasible that a larger quantity of carbon is processed and emitted to the 

atmosphere in gaseous form than is estimated as being lost as fluvial carbon at the mouth 

of the River Sebangau, as is hypothesised in the global scale 'active pipe' model, 

discussed earlier (Cole et al., 2007; Battin et al., 2008; Tranvik et al., 2009). If this were 

the case, and emissions of gaseous carbon as well as carbon buried in sediments were 
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taken into account. the total carbon yield for the Sebangau River basin would increase 

quite substantially, without changing the observed fluvial organic carbon flux to the ocean. 

6.7 Summary and conclusions 

• Toe concentrations were highest in the intact land-cover class and lowest in the 

most severely disturbed land-cover class and showed very little seasonal variation 

across all sites. DOC accounted for more than 90% of TOe concentration and 

TOe flux in all sites with the greatest concentration and flux of poe present in 

both disturbed land-cover classes. 

• Annual TOe yields increased with increasing drainage severity, from 62.5 g e m-2 

y(1 in IPSF to 105 and 131 g e m-2 y(1 in DPSF1 and 2, respectively. This 

represents a 108% increase in TOe export from the intact to the most severely 

disturbed land-cover class. Higher TOe yields in the disturbed land-cover classes 

were driven by higher discharge rates which were not counterbalanced by lower 

TOe concentrations, and occurred despite similar rainfall among the sites. There 

was no relationship between weekly TOe concentration and TOe flux. 

• When including the fluvial TOe loss estimate from DPSF2 (131 g e m-2 y(\ the 

NEE of the site increases from 433 to 564 g e m-2 y(1. This equates to 30% more 

carbon lost than previously assumed through gaseous exchange measurements 

alone and illustrates the importance of including fluvial carbon losses if an 

accurate assessment on the impact anthropogeniC disturbance has on tropical 

peatland carbon balances is to be achieved. 

• Radiocarbon analysis showed that DOC in water draining the intact land-cover 

class was primarily young, plant derived carbon. In contrast, the DOC in water 

draining the two disturbed land-cover classes was Significantly older and derived 

from previously stable carbon stored within the peat column. This implies that 
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DOC does not represent a major loss pathway for long-term stored carbon in intact 

sites, whereas increased fluxes of DOC being lost from drained sites is depleting a 

previously long-term store of peat carbon. 

• The TOe flux from the River Sebangau to the Java Sea is estimated to be 0.46 Tg 

y(1. This equates to a TOe yield over the entire Sebangau River basin of 88 g e 

m-2 y(1, a figure which exceeds most temperate and other tropical river basins in 

the world. 

• On extrapolating the Sebangau River basin TOe flux to the total peat covered area 

of Indonesia, a DOe loss of 18.2 Tg y(1 is estimated, which is equivalent to 

roughly 10% of the global annual riverine DOC discharge into the ocean, a 

percentage that closely approximates previous published estimates. 

• Using the sub-catchment yields observed during the study, it is estimated that 

since 1990, the conversion of intact PSF into disturbed peatland has resulted in 

around a 70% increase in the fluvial TOe flux in Borneo, Sumatra and Peninsular 

Malaysia, and a 53% increase across the whole of Southeast Asia. This increase, 

alone, approximates the entire annual European peatland fluvial organic carbon 

flux. 

• Qualitative analyses showed no significant differences in the DOC lost between 

sites. However, it was established that DOe leaching from disturbed peatlands 

was degraded to a higher oxidative state than DOe leaching intact peatlands. 

Therefore it can be concluded that the DOC being lost from disturbed peatlands 

had a higher bioavailability and is more likely to mineralise into e02 and H20 than 

the more recalcitrant DOC that was lost from the intact site. 

• By applying the observed TOe flux from the River Sebangau to the most highly 

recognized global inland water carbon budget, it is estimated that during transit 

from terrestrial to marine environments, the River Sebangau emits 0.72 Tg carbon 

to the atmosphere and buries a further 0.31 Tg carbon in benthic sediments. 



These losses combined, more than double the amount of fluvial carbon discharged 

from the river's mouth into the ocean. 

• The findings of this thesis highlight, in the United Nations International Year of 

Forests, that it is essential to incorporate fluvial organic carbon losses within 

guidelines for the measurement, reporting and verification of carbon emissions 

under the United Nations Collaborative Programme on Reducing Emissions from 

Deforestation and Forest Degradation in Developing Countries (REDD) 

programme which, on current understanding, may undervalue the benefits to 

Southeast Asian nations of maintaining and restoring the peatland carbon sink 

function. 

6.8 Recommendations for future work 

• Increased sampling resolution via the installation of automated loggers would help 

to refine TOC fluxes. Given the relative importance of discharge over carbon 

concentration (which was shown to remain relatively constant throughout the year 

in this study) in determining TOC fluxes, increasing discharge data resolution 

should take priority. 

• The year during which the investigation was carried out was an 'average' year with 

respect to rainfall and therefore the results are indicative of 'average' TOC fluxes. 

However, an extended temporal study over two to three years may reveal cyclic 

trends over longer timescales and encompass an 'extraordinary' event with 

respect to rainfall such as EI Nino or La Nina. This would allow investigation into 

the effects of decreased and increased rainfall, respectively, with potential for 

observing the effects of drought and flooding. 
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• A diurnal investigation where water samples were collected consistently over 24 

hours may reveal greater variation in fluvial carbon concentration and SUVA254 

values as a result of photochemical oxidation. 

• Both disturbed land-cover classes investigated in this study were deforested 

approximately 15 years ago and drainage is an ongoing disturbance. An 

investigation into catchments that vary in the number of years since they were last 

subject to disturbance may expose interesting differences. For example, a study 

looking at how fluvial carbon dynamics in tropical PSF are affected by large-scale 

fire events was carried out following the EI Nino fires in 2009 (after my PhD field 

seasons). Data from the six months of monitoring that followed the first rains of 

the wet season after the 2009 fires demonstrated a large and sustained pulse of 

fluvial carbon that exceeded values from the preceding year (pre-fire; V. Gauci, 

2010, pers comm., May 15t). Once fully analysed, data from this six month fire 

study may demonstrate that estimates of the impact of anthropogenic disturbance 

on fluvial carbon loss made during this study are conservative and may be an 

underestimate when taking into account the immediate short-term impacts 

following ecosystem disturbance such as a fire event. 

• Installation of data loggers at the mouth of the River Sebangau or at least 

increased sampling resolution from biannual to monthly would help to refine TOC 

flux estimates from the Sebangau River basin. Currently only three blackwater 

rivers in Indonesia have been studied. More blackwater rivers in the region should 

be investigated in order to determine how representative the River Sebangau is 

and further confine the globally significant export of fluvial organic carbon from 

Indonesian rivers. 

• To address the question of how much fluvial carbon is converted to gaseous 

carbon a more detailed investigation using the TMAH GC-MS technique should be 

initiated, looking at qualitative change in DOC from the source to the mouth of the 

river. Another investigation could involve direct measurements taken from floating 



gas chambers. This data could be used to quantify the efflux of CO2, CH4 and CO 

whilst in riverine transit from terrestrial to marine environments in more detail. Pilot 

studies using these methods on the River Kapuas in West Kalimantan have 

yielded some interesting initial results that show significant pC02 concentrations 

(12,000 ppm) in the river surface water (W. Cechel, 2011, pers comm., 26th 

March). 

• A more detailed investigation into the fate of the fluvial organic carbon that is not 

processed on its way through fluvial networks and ends up being discharged into 

the oceans. This might include use of reprocessed bands of coloured dissolved 

organic matter (CDOM) from satellite imagery to trace the movement of organic 

carbon once it enters the marine system (Oney at al., 2011). 

• A similar, long-term study that quantifies the fluvial organic carbon fluxes from 

plantations (in particular oil palm and pulp-wood) would help answer an important 

knowledge gap, as there is currently no such data available. The study should 

include monitoring of young as well as mature plantations as differences in 

quantities of aboveground vegetation may result in different TOC fluxes. Oil palm 

plantations are of particular interest as the findings from this study suggest that 

TOC yields could potentially be very high. Given the large proportion of land that 

is already accounted for by plantations and proposed plans by the Indonesian 

government for considerable expansion, the consequences of this land use 

change could have a significant impact on regional, if not global fluvial carbon 

budgets. 
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