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CHAPTER 21

THE WEIGHTED DISTRIBUTION
PROBLEM

21-1. THE NEAR-TRIANGULARITY OF THE BASIS

The standard transportation model uses a particularly simple constraint
matrix in which each variable has at most two non-zero coefficients whose
values are +1 and —1. We propose to examine a model which is similar in
form, for it allows at most two non-zero coefficients for each variable.

Problem 1. The Row-Column Weighted Distribution Problem.

Find nonnegative y;; and Min z satisfying

n

(1) The Row Equations:
(=1, 2,(.] . .m) Z“""y”' =%
J=1
(2) The Column Equations: i b = b
G=12...,n) £ il =0
m n
(3) The Objective Function: z Z CiY =%
i=1j=1
where a; and -b; are nonnegative, and a,; is positive. Before proceeding, we
will transform the variables so that all row coefficients become unity. Thus,
when we replace the y;; by new variables, defined as z;; = a,y,;, the row
equations take on unit coefficients in place of the a,;, while the coefficients

51

. of the column equations become p,; = b;;/a;; and the cost equation becomes

Ci; = Ci;/a;;. In this way we arrive at

The Standard Form of the Weighted Distribution Problem.

n

4) z Ty = a, (Row equations, ¢t =1,2,. . ., m)
j=1
Jm
(5) Z PiLy; = b; (Column equations, j =1,2,. . .,n)
i=1
n n
(6) z z CijTij = 2
i=1j=1

where z;; > 0, and z is to be minimized.
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THE WEIGHTED DISTRIBUTION PROBLEM

In a typical application, the a; represent availabilities which must not
be exceeded (as in the machine-task example to be discussed). In this case
(4) is replaced by (7).

m
(7N ‘ x; < fori=1,2,.. . m
The theory and technique of solution are virtually the same for the system,
{(6), (6), and (7)} as for {(4), (5), and (6)}.

The Dual of the Standard Weighted Distribution Problem is: Find u,, v;,
and the Maximum g, such that

(8) U; + Py < €45 fori=12,...m
and j=1,2,.. .,n
where
m n
©) D wai+ D vib; = g (Max)
=1 j=1

Criterion of Optimality: A set of z,; satisfying the primal problem is an
optimal solution if there are u, and v; satisfying the dual, such that
(10) ’ 25 > 0 = u; + Pi¥; = ¢y
U + Pis; < Cy; = Zy5 =0

Illustrative Applications.

1. A number of different tasks can be accomplished on one of several types
of available machines, some more efficiently than others. The tasks are to
be assigned to machines in such a way that all tasks are completed within
the machine-time available and at a minimum over-all cost.

To set up the mathematical model, let

a; = number of hours available on ith type machine,
b; = number of units of jtb type task to be performed,
¢;; = cost to do one unit of the jth type task on the itk type machine,

p;; = number of units of the jtb type task that can be processed per
hour on the ith type machine,

x;; == number of hours machine i is to work on task j.
2. A fleet, consisting of various types of aircraft, is to be assigned to airline

routes in order to satisfy the passenger demand at the least operating costs.
In this case, for some period, let

a; = number of aircraft of type ¢ in the fleet,
b; = number of passengers requiring passage on the j'® route,

¢;; = operating costs per aircraft of type ¢ assigned to route j in the
period,
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21-1. THE NEAR-TRIANGULARITY OF THE BASIS

p,; = the total number of passengers that can be accommodated by one
aircraft of type 4 if assigned to route j during the period,

z;; = number of aircraft of type ¢ assigned to the jib route.

Tableau and Implicit Prices for the Weighted Distribution Problem.
The tableau for a 2 X 3 problem takes the form (11)

(11 ) T T2 L3 ay
Pu Pz Pia
Cu Cy2 Cy3 Uy
L3 Loy Zs3 Qs
Pa y 2 Pas
Ca1 Cez Cos U
b, b b,
U Vs Y3

One practical observation is in order: since the entries, z,;, u; and v,
are numerical and must be changed from one iteration to the next, it is
important for hand computation that the chart be arranged in some con-
venient manner, as above, to facilitate the manual labor.

Finding a Starting Basic Solution.

The weighted distribution problem differs from the standard transporta-
tion problem in that no simple rule for directly obtaining an initial basic
feasible solution has been found as yet. However, for the case in which all
the p,; are nonnegative, we shall describe and illustrate a method analogous
to the rule of solution given in § 15-3, using the simple numerical problem
which appears below.

(12) In Z1g T3 a, =4
pu=1 Pz =2 Prs =1
ey =4 TGy = —8 €15 = 3
Tgy Ty Tas a, =5
P = Paz =1 Py =1
€y =6 Cyp = ¢ Ca =17
by =25 by = 2 by =3

Step 1. Select a basic variable by choosing a square arbitrarily (a good
choice would be one having a smallest c,;), and increasing the corresponding
x;; to the largest value consistent with its row and column totals. Delete
the row or the column that becomes saturated, i.e., the one whose total has
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THE WEIGHTED DISTRIBUTION PROBLEM

just been attained (should a row and a column be saturated simultaneously,
delete one or the other, but not both). Now repeat this cycle as necessary.
For the example (12), squares were chosen as follows:

Square Va.lue. of the Saturated
Variable Row or Column

(1, 3) 2, =3 col. 3

1, 1) zy, =1 row 1

(2, 2) Zgy = 2 col. 2

21 Ty =2 col. 1

Step 2. Ome column or row total, in general, will remain unsaturated.
We then introduce an artificial variable by adding a “deficit” square, (r, ),
either (0, s) or (r, 0), to the unsaturated row or column. Next, we minimize
the infeasibility form, £2d,z,;;, where d;; = 0 for all + and j, with one
exception, for the supplementary square d., = 1. If the deficit occurs in a
column, we arbitrarily set p,, = 1, while for a row, we need not define p,,
at all (since there is no column equation corresponding to the deficit).

Exercise: Modify this rule to cover the case where some p;; may be
negative.

The Phase I multipliers, »; and v;, must be such that u; + p,;v; = 0 for
z;; a basic variable, except that w, = 1, if the rth row is left unsaturated,
and v; = 1 if the '8 column is left unsaturated. In our example, row 2 is
not saturated ; the initial tableau for Phase I, therefore, takes the form (13).

(.7 =1) (.7 = 2) (.7 = 3) a; Uy
(13)
1 3 4 4
1 2 1
Deficit 0 0 0 3
1 2 2 5
L J 2 1 1
1 0 0 0 1
b; |8 2 3 t
Implicit |
v —3 -1 -—Qi «—— prices

The dot in square (2, 0) is to indicate that p,; is undefined (i.e., there
is no equation for column 0). Because of the deficit the price of u, = 1; the
remainder of the prices, %; and v;, are computed using equation (10) with ¢;;
replaced by d;;. Since dypy — (Uy + Pagtg) = 0 — [1 + 1 - (—1/2)] = —(1/2),
the infeasibility can be diminished by increasing z,, and adjusting the basic
variables to compensate for this increase ; see (14).
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- 21.1. THE NEAR-TRIANGULARITY OF THE BASIS

(14) 146 3—-6 4
1 2 1
Deficit 0 0 0
1 —(1/2)8 2 — (1/2)8 2 o= 5
® 2 1 1
1 0 0 0
5 2 3

It is clear that Max 6 = 2, and that the infeasibility vanishes at this value.
Thus, z,3 becomes a new basic variable replacing the deficit variable, z,,
and Phase I is already complete; we drop the deficit box. The starting
tableau for Phase II, showing the u; and v; as well as 6 entries, both of
which we shall explain in a moment, is (15).

(15) 3+ 26 o+ 1-—36 4
1 2 1
4 -8 3 6
i-9 2 — 20 2+ 36 5
2 1 1
6 4 7 10
5 2 3 4
L
-2 —6 -3 bk 21

Computing Implicit Prices (Simplex Multipliers).

The values of u, and v; from (10), must satisfy a system of five equations
in the five unknowns, u,, u,, v, v,, and v;:

{16) uy + v =4
%, + vy =3

uy + 20, =6

Uy + vy =4

Uy +vy =7

In contradistinction to the standard transportation model, there need not
be a redundancy in the system of equations {(1), (2)}. In general, therefore,
it 18 not possible to choose ome of the prices arbitrarily. Similarly, the bases
of system {(1), (2)} need not be triangular. Nevertheless, the system is nearly
triangular in the following sense: Choose any variable, say u,, and treat it
as a parameter in terms of which the other variables are to be evaluated.
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THE WEIGHTED DISTRIBUTION PROBLEM

This leads to cquations in a single variable, which can be immediately
evaluated in terms of the parameter. From (16), we get

(17) vy =3 — du,, V=4 ~uy, Vy=T—=1U
U =4 — (3 — u,) =3 — (7T —uy)
=1+ tu, = —4 + u,

We have arrived at two expressions for u, in terms of the parameter u,.
Equating them leads to a numerical evaluation of u, and, hence, of all the
variables it defines. Thus, since 1 4 }u, = —4 + u,, we have u, = 10
whence v, = —~2, v, = —6, v, = —3, and u, = 6.

A complete set of prices for our example has now been brought to hand.
However, in certain other cases, some implicit prices might still remain
unevaluated after such a procedure. In that event, any unevaluated price
may, as before, be treated as a parameter and additional variables evaluated
in terms of it by successive substitution until two equations in two variables
appear which allow its evaluation. We now generalize these remarks.

TrEOREM 1: Assuming a basis of rank n -+ m, implicit prices can be
evaluated by treating any one of them as a parameter, and solving a sequence
of equations in one unknown, repeating the procedure as necessary for any
residual set of unevaluated prices.

Proor: Each equation of (10) contains two prices. If one of them is
selected as a parameter, several others can be expressed in terms of it. By
successive substitutions this.eads to a set of variables evaluable in terms of
this parameter, which have no variable in common with any equation still
containing an unevaluated variable (for this in turn could be immediately
evaluated in terms of the parameter and added to the set). We shall show
in this set that there is just one variable that is linearly expressed in exactly
two different ways. By equating the two expressions, we can determine the
value of the parameter. If more than one price in the set were doubly
expressed (i.e., if one variable could be evaluated in more than two ways),
this would mean that the equations contain either a redundancy or an
inconsistency. On the other hand, if no variable were doubly evaluable, then
the value of the parameter could be chosen arbitrarily. If the basis is of
rank » + m, however, neither one of these situations is possible, for the set
of equations associated with the transpose of a basis must always lead to a
unique solution.

Improving the Basic Solution.

The implicit prices, computed as above, are used to determine whether
the current solution is minimal, according to condition (10), and to compute
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21-1. THE NEAR-TRIANGULARITY OF THE BASIS

an improved solution if it is not. The solution we have computed for our
example is not yet optimal, since

Clg — Uy — Pro¥p = —8 — 6 — 2(—6) = —2

Accordingly, set x,, = 0, and adjust the basic variables. In our example,
we compute the values of the basic variables, which result by changing the
constant terms to

0] =4 —0,a, =5,b =5,b, =2 — 20, and b] = 3

The new values of the basic variables are expressed linearly, in the form
a + B0, where a is the old value and $6 is the compensatory change neces-
sitated by the increase of 8 in the value of the non-basic variable coming
into the basic set. The old values, «, are known, and therefore only the
amount by which basic variables change, Az, need be computed. They
must satisfy five equations in five unknowns:

rto—=
:Axn +I Azyy D 1 = —0
5 { +1 Az + Azyy + [Azy =0
——t T ‘
(18) Az, i + 2Azy, i =0
b Hhmm o =
Az, -4 Azgyy =0

This, of course, is the transpose of the system used earlier for evaluating
the implicit prices. After we evaluate Az,, from the fourth equation and
substitute its value in the others, each of the remaining equations has
precisely two variables that are still unknown. Moreover, it is clear that if
one unknown is introduced parametrically, the others may be evaluated in
terms of it. Thus, if Az, is chosen as a parameter, it can be used in turn to
express Az;, Az,;, Az, and then back to Ax,,. This gives an equation in
Az, alone, and the latter can therefore be numerically evaluated. The cycle
of dashes in (18) indicates this order of expression. Explicitly,

(19) Azgy — —26
Azyg = —0 — Az,
szz = ‘"Axm =0+ A~""f'11
A%y = —AZyy — Azyy = +0 — Azyy
Az, = —2Az,, = —20 + 2Ax,; or Az, = 26.
Substituting the value Az,; =20 in the remaining equations yields
Azyy = —30, Azyy = 36, and Az, = —0.

This method of evaluating changes in the basic variables is perfectly
general. Indeed, the procedure applied here to nearly triangular bases is an
analogue of the process by which one exploits the basic triangularity which
occurs in transportation problems.

THEOREM 2: Given any basis of rank n + m for a weighted distribution
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THE WEIGHTED DISTRIBUTION PROBLEM

problem, either (a) there exists a row or column with just one basic variable, or
(b) each row and column has precisely two basic variables and m = n. If (a)
is true, then the sub-basis, resulting by deletion of the row or column which
contains only this basic variable, has the same properties.

Proor: Each row and column has at least one basic variable. If none
of them have precisely one, then every row and column has two or more.
In the latter case, the number of basic variables, n + m, cannot be less
than twice the number of rows or twice the number of columns; hence,

(20) n+m>2m and n+ m =2n

or, by adding,

2n + m) >2m 4+ 2n
where equality holds only if equality holds in both expressions (20), iec.,
if each row and each column has precisely two basic variables, and m = n.
But the equality must hold. This argument can be repeated for the sub-basis
if there is one equation having a single variable and if the row and column
in which it occurs have been deleted.

21-2. LINEAR GRAPH STRUCTURE OF THE BASIS

When the weighted distribution problem is interpreted in the context of
a linear network, the linear graph whose arcs correspond to the variables of
a basic set possesses a characteristic structure.

The discussion will be facilitated if we consider the model simply as a
set of equations having certain well-defined properties, and for this purpose
it will be convenient to make use of single-subscripted letters to represent

the variables involved. It will be recalled that the classical transportation -

model, § 14-2, had a system of constraints composed of two subsystems, one
of which (with row equations) referred to ezports from each source to the
various destinations, while the second subsystem (with column equations)
dealt with jmports to each destination from the various sources. In the trans-
shipment model, § 16-1, each variable had at most two non-zero coefficients
+1. In the weighted model, we remove the restriction +1 and consider a
class of problems in which at most two coefficients of each variable z; are
non-zero, one in equation i = g(j) and the other in ¢ = k(j). When z, has only
one non-zero coefficient g(j) = h(j).

Problem 2. The General Weighted Distribution Problem.

Choose a set of nonnegative numbers, x;, and the Minimum z, such that

n

(1) Q%5 = bl' ('l: = 1, 2, c e ey m)
2
n
z ciz; = z (Min)
j=1
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21.2. LINEAR GRAPH STRUCTURE OF THE BASIS

where a;; = 0 unless ¢ = g(j) or © = h(j). We will refer to any z; having
either a,; or a,; zero (but not both) as a slack variable.

Each equation of (1) corresponds to a node in the network form of the
model, while eachi non-slack variable, z,, corresponds to an undirected arc
joining node g( j) to node A( j). Slack arcs may be considered (as pointed out
by F. Harary) as arcs which connect two nodes that are identical.

In drawing a linear graph, the nodes may be placed in any convenient
position. Thus Fig. 21-2-I and Fig. 21-2.II are pictures of the same network,
but the nodes in Fig. 21-2-II have been repositioned, so as to illustrate more
clearly its essential structure. If slack variables are to be admissible, then
the network must also include slack arcs, associated with these variables,
each having only a single node.

Figure 21-2 I. Graph of a weighted distribution problem.

Figure 21-2.II. Rearranged graph of a weighted distribution problem.

In Fig. 21-2.II1 is depicted a linear graph whose arcs correspond to the
variables of a basis. This graph is composed of four isolated, connected
subgraphs.

TuEoREM 1: Each connected subgraph of a basic graph for system (1)
has precisely one loop.

Proor: Tt is clear that each connected part consists of an equal number
of nodes and arcs, for the variables associated with the arcs appear only in
the equations associated with the nodes of the subgraph, and these equations
could not, in general, be satisfied by fewer variables than equations. On the
other hand, the total number of basic variables equals the total number
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THE WEIGHTED DISTRIBUTION PROBLEM

Steck arc

Figure 21-2-1II. The basis graph has one or more connected parts each
consisting of a tree and one added are.

of equations, so equality must hold for each isolated subgraph in the
network.

Now a connected subgraph having no slack arc(s) must contain at least
one loop, since it would otherwise have fewer arcs than nodes. If we were
to delete an arc belonging to a loop in this part, we would be left with a
connected subgraph in which the number of arcs would be one less than the
number of nodes, which therefore [Theorem 1, §17-1] constitutes a tree.
But a tree contains no loops; hence, the subgraph must initially have had
exactly one loop.

On the other hand, if a connected subgraph has one or more slack arcs,
then the graph formed by deleting them has a smaller number of arcs than
nodes, the difference being equal to the number of arcs deleted. But since
only the slack arcs (i.e., arcs having one node) were deleted, the resulting
subgraph is still connected, and this is possible only if the number of slack
arcs was one and the remaining subgraph, a tree. The proof is completed by
defining an arc as a one-arc loop.

Computing an Associated Solution.

To evaluate the variables of a basis, one may begin with nodes having
exactly one arc. Thus, for Fig. 21-2-II, we have

(@) y,6%s = by
g, 7%7 = bg

@y9,6%5 = D19

a5.10%10 = b5

If a node has several arcs, all but one of whose variables have been evaluated,
then the excepted variable can be evaluated immediately. Thus, after z,,
is determined as above, z, can be evaluated at node 6 from the cquation,

(3) Qg 9%y -+ Ag,10%10 = be

By this means, all variables, except those corresponding to arcs of the
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21-2. LINEAR GRAPH STRUCTURE OF THE BASIS

loop, can successively be evaluated. The evaluation of such loop variables
may proceed by the method we shall now illustrate.

(4) 3%y + 30T, = 03
QgpTg + B43%y =5,

Aq3%3 + ApyZy = b,

GoqZs + gsTs = by

9%y + ayz5 = b,

The number b, is the value of b, adjusted by subtraction of such terms in
the original array as are missing from (4). These missing terms belong to
arcs, whose numerical values have already been determined by the foregoing
procedure. Because of the nearly triangular structure of system (4), we may
treat one variable of the loop as the parameter and then evaluate all the
others in terms of it as we proceed around the loop. Upon completion of
this circuit, a second expression for the parameter will result, and by
equating the two expressions we may evaluate it numerically.

Thus, by proceeding clockwise about the loop in network Fig. 21-2-II,
one arrives at the following explicit formula for z, :

R )
=10 —— 09— — 107 —— (04 — — 04
a9 Qg5 Qg Qg 32

Ths Oy O Oy —Gy

(5) Zl =

Qg5 Aoy Qg3 2 O

Exercise: Derive an equivalent expression by proceeding counter-
clockwise about the loop, and then show algebraically that the two formulas
are identical.

Evaluation of the Implicit Prices Associated with a Basis.

If the basis includes slack variables, then the implicit price for any
equation associated with the single node of a slack arc can, of course, be
immediately evaluated, and, from this, all the prices for the entire subgraph.

If, on the other hand, an isolated subgraph contains a loop, then the
prices may first be determined at nodes sequenced around the loop, and the
remainder evaluated by successively proceeding to nodes which have an arc
in common with nodes whose prices have already been determined. If z; is
a basic variable and 7, is the price associated with the ith equation, then

(6) gy + Qpymy, = €5

where g = g(j) and h = h(j) are the node designations of the equations
corresponding to the non-zero coefficients of z;.
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THE WEIGHTED DISTRIBUTION PROBLEM

For Fig. 21-2-11 the arcs around the loop give rise to the system:

(7) 3,73 + aym, =6
Q3973 + Ggomy = Cy

Qgamy + Qpa7ry =C3

Qg7 + GogTrg = C4

QgsTrg + QogsTy = Cg

Moreover, since the coefficient matrix in (7) is the transpose of the one in
(4), the systems have analogous structures, and the same technique of
evaluation may be used for the implicit pricing as for the basic solution
itself.

21-3. A SUBCLASS WITH TRIANGULAR OPTIMUM BASES

The technique we have described for exploiting near-triangularity of the
basis structure is a little more complex than the methods we have applied
to the standard transportation problem. This is partly because the equations
of the weighted distribution can have non-triangular bases.

However, even though non-optimal bases need not be triangular, H.
Markowitz [1954-2] found that, for an important class of these problems, any
basis corresponding to an optimal solution is triangular, regardless of the
values of the constant terms [Theorem 1, below]. Unfortunately, if the usual
simplex process is employed, no computational advantage results from the
fact that the final basis is triangular. Markowitz’s idea was to vary the pro-
cedure, so that each basis occurring in the course of the algorithm would be
made triangular. He noted that, for certain values of the constant terms, an
optimal basic solution is immediately available, and, by parametrizing
these terms, one could subsequently adjust them to any desired values.
Since the bases are, in this way, kept both feasible and optimal throughout
the process, they must remain triangular. This is the idea we will develop
in the present section.

Two forms of the problem were considered by Markowitz; the first
appears below and the second will be discussed later under (5).

Determine nonnegative numbers and the minimum z satisfying

n

Za'iixii‘l'xi:ai fori=1,2,...m
(1) .‘i;l .
zbiixii=bj forj=m+1,m+2,...m+n
i=1
m
(2) — C;T; = 2 (ci > O)
2
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21-3. 4 SUBCLASS WITH TRIANGULAR OPTIMUM BASES

where a;; and b;; are nonnegative, while a, and b, are positive. The n column
equations have been numbered j =m + 1, m 4+ 2, . . ., m + n, to bring
out the one-to-one correspondence between the m + n nodes and the
m + n equations. Problems of this kind first came to light in attempts to
assign machines to a fixed set of tasks in such a way as to minimize the
use of machine time by maximizing the total value of the machine time left
unused after the tasks have been completed; that is, by building up certain
of the slack variables, z;. (See illustrative applications in § 21-1.)

TaeorEM 1: Every optimal basis for {(1), (2)} is triangular.

Proor: If, on the contrary, a basis is not triangular, there is a subset
of the equations whose linear subgraph is connected, contains one loop, and
has no slack variable arcs, by Theorem 1 of § 21-2. The prices corresponding
to nodes about the loop may be evaluated by means of equations, such as
§ 21-2-(7). However, since there are no slack variables, the coefficients in
the objective form are all zero for the subset of the basic variables contained
in these equations. Hence, the implicit prices must all vanish for this subset
of equations. In particular, if z,, is one of the basic variables in the subset,
then u, = 0. However, the conditions for an optimal basis are that

(3) au; + byv; <0 .
—u;, >¢; >0 fori=1,2,. .. m
andj=m+1,m+2,.. . ,m-+n

which contradicts the assertion that u, = 0. Hence, loops are not possible
(except slack-arc loops) and the basis must be triangular.

Finding an Initial Feasible Dual Solution.

If the a, are replaced by sufficiently large values a¥, a starting solution
with a triangular basis is immediately available. As basic variables, choose
the slacks and one variable, z,,, from each column j, such that

. @ piC
4) M. 1371 — rivr
(4) in —==—

i —by

= V; (bz'z'a bri # 0)
i

Then (assuming that all b,; are nonnegative), it is easy to see that the prices
u; = ¢; and v; above satisfy (3), so that the basic solution is both feasible
and optimal.

Exercise: Determine explicitly how large to make a* in order to
guarantee feasibility.

The next step is to replace the constants a; by a, + A(a* — a,) and
determine the values of the basic variables as a function of 1. The solution
is feasible and optimal when A1 = 1. Finally, the parametric linear pro-
gramming algorithm (§ 11-3) can be applied to reduce A to zero. At the end
of this section we will describe an adaptation of the algorithmto this problem.

[425]
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THE WEIGHTED DISTRIBUTION PROBLEM

The second form of the problem, considered by Markowitz, is as follows:
Determine numbers z; > 0 and maximum 4, such that

(6) zaiixij+xi=ai t=12,...m)
: i
Zbﬁxij = Ab; j=m+1lm+2 ... ,m+n

In the previous formulation we sought to maximize the unused machine
time after performing a fixed set of tasks, but here we seek that allocation
which will turn out the most work when the proportion b; of each type
task is fixed. This type of problem arises naturally if the different type
tasks are combined in fixed proportions to form completed assemblies (e.g.,
parts of a calculator to be used for completed machines).

THEOREM 2: For any fized A, a basis can be determined that is triangular.

Proor: Let A be any fixed value in (5). Maximize Zcz;. By Theorem 1,
the final basis is triangular, completing the proof. To solve (5), one can
proceed as follows: for 4 = 0, use the same basic set as found by (4). The
corresponding basic solution, z;; = 0, z; = a; for all 4, j is feasible and
optimal for (5). Apply the parametric linear programming algorithm to
increase A to a maximum. The successive bases will be triangular.

Iterative Procedure. To simplify the calculations, we assume a; > 0;
it is conveniens to consider system {(1), (2)} in the form:

Find 2’ > 0, 2 > 0, Max 2’ satisfying
- n

zi; + z{ = a;,
¢ jml
m

(6) i Z Bixi; = —bj (B =0)

i=1
i x; =z’ (Max)

L i=1

where we have chosen to maximize instead of minimize. This can be done
by a simple transformation of variables z;; = ¢a;%y (4 = zy, if a; = 0)
and ca; =], and by setting B = byfea; (By = by, if ay=0) and
ca; = a;. We have assumed a,; 5= 0 in (6). .

ExEgrciSE: Explain why in practice a;; = 0 usually implies b;; = 0.

The dual of (6) is: Find u,, v;, Min £’ satisfying:

(7 u; — Biv; =0

u; >1

a;u; — bw; = £’ (Min)
wheret1=1,2,.. .,m;7=12,.. ., n
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21-3. A4 SUBCLASS WITH TRIANGULAR OPTIMUM BASES

Replacing a] by Oa]: Let us suppose that the a >> 0 have been replaced
by fa] for i =1, 2,. . .,m and that for 6 sufficiently large, we have at
hand an optimal basic solution to (6). Then the basis is triangular and
consists of a number of trees each connected to a slack arc, as shown in Fig.
21-3-1, which we will refer to as an sl+tree where sl is short for slack arc.

Figure 21.3-1. Improving a basic solution.

However, if 6 is reduced, the value of some basic variable associated with
an arc of some sl4-tree may become negative. By the rules of the parametric
programming algorithm (§11-3), the first basic variable to change sign
below a critical value 6 = 6* will be dropped from the basic set in the
next iteration. In case the variable to be dropped is not a slack, say z,, as
in Fig. 21-3-1, then the removal of the arc (p, ¢) from the sl+tree separates
it into parts (F) and (G). We assume for convenience that node p € F and
that nodes %, ¢ €'G. Now (F), containing no slack variables, must join in
the graph of the new basis with either (@) or some other sl+tree by an arc
(r, ) associated with the new basic variable. In case z,, the slack variable,
is dropped, then, of course, (@) is vacuous and (F) must join up with some
other sl--tree.

We shall now determine which basic variable to introduce into the
basic set. We note that the prices on all nodes on all other sl-+trees do not
change with the change in basis, nor is there any change on the nodes of (G).
Hence, the only changes are the prices on the nodes of (F). However, the
prices on the nodes of (F) were determined before a change of basis by a
set of relations:

8) %y — Piyv; = 0 (¢,jeF)

where (2, j) is an arc of (F) and the price u, on the node p where u, was
determined via similar relations on (G) and u, = 1. Relations (8) still hold
after a change of basis, but the price on p can change from u? to, say, uul.
Since relations (8) are homogeneous, it follows that the prices on all nodes 1
of (F) will all change proportionally from u? to uul. We have assumed p € F
and ¢, k € G; similar remarks hold if g € F and p, k € G.

Exzercise: Show that all implicit prices are nonnegative.

From these observations it is easy to put together the following rules for
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deciding the factor, u, of proportionality and the variable, z,, or z,, to
introduce into the basic set:

Case I: If z,, is dropped, where p is in F and ¢ is not in F, or if a
slack variable z, is dropped, then u > 1. If it exists, choose
x,, to enter where 7 is not in ¥ and s is in F, such that

U, .U - . .
o= - =Min »-—2>1 (jin F,inot in F).
ﬂnvs .Bﬂ'vi
If no such (r, s) exists, terminate.
Case I1: 1If z,, is dropped, where p is not in F and ¢ is, then u < 1.

If it exists, choose x,, to enter where r is in F and s is not in
F, such that

(10) = P Max Buvs (iin F, jnotin F)

u, u;

or choose slack variable x, to enter, where r is in ¥

1
(11) fW=—=Max—<1 (i in F)
U

depending on which ratio, u = g’ or u = u”, is the larger. If
no such (r, 8) exists, terminate.

The following can easily be shown:

Exercise: If the z,, or x, chosen above is introduced into the basic
set in the place of x,, or z,, show that the new solution (if non-degenerate)
will be feasible in some range of values 6 < 6*.

Exxzrcise: If it is not possible to find an i not in F, j in F for Case 1
oraniin F,jnotin F for Case II, show that there can be no feasible solution
for § < 0*.

Example: Consider the array:

(=3 (=4 (=5 @bk a

(12) (t— 1) | >y 4 5 T 8
ps=1 514=2 ﬂ15=3

(1=2) | 2 Zos Tas T2 2
Bas =4 Bau=3 ﬁzs=6
b; 8 6 12
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which represents the equations

(13) Row Equations: ;3 + ;, + 7,5 + z; = 8 (= 80 when right-hand
side is parametrized)
Zag + Tgy 4 X5 + 2, = 2 (= 20 when right-hand
side is parametrized)
(14) Column Equations: Ty + 42y = 8
' 2z, + 3z, = 6
3z,5 + 6xys = 12
r + =z, =z (Max)

To construct a starting solution choose for basic variables the variable
in each column j corresponding to Max f;; and the slack variables. For the
example the basic variables are 2,5, ., %y, 7,, 2,. The graph of the basis,
the prices, and the values of the basic variables are shown in Fig. 21-3-11.

vy 2l

O

=

vp=Bay vy 0

Uz‘Bz4 va =0

va-Bas vs=0

Figure 21-3-II. Graph of basis for cycle 0.

It is easy to verify u, — B4, >0 for j = 3, 4, 5, so that the solution
is optimal and feasible for 0 >> 3. Reducing § below the critical value
6* = 3, z, changes sign; hence , is to be dropped as basic variable. To do
this, prices are modified as shown in Fig. 21-3-III. By the calculation shown
at the right of the figure, z,, becomes the new basic variable to replace z,.
The graph of the new basis, the prices, and the values of basic variables are
given in Fig. 21-3-1V.

When 6 is reduced below the critical value * = 2, Z,, changes sign and
accordingly will be dropped on the next iteration. Hence, prices are modified

as shown in Fig. 21-3-V, and by the calculation shown at the right, z;5 will
be the new basic variable.
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ui-Bijvi20

»/6 (1,3)
(1,4)

(1,5)

1-1(u/8)20
t-2{(p/3) 20
1-3(u/6)20

;.4.54
pSB/Z:(Min)
B <2

Figure 21-3-III.  Graph of basis for cycle 1.

V3=3/8

uy=3/2 vg:i/2 U=l

{3

vg=3/12

—( 1 )4
¥24:28-3 \4/7,,:9-39 x,=118-9

Figure 21-3-IV. Graph of basis for cycle 2 (start).

ui-Bijv 20

(1,3)
(1,5)

1-1(3/8) p20
1-3(3712) p 20

n<sa/3
< 4/3: Min

Figure 21-3-V. Graph of basis for cycle 2 (end).
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The graph of the new basis is given by Fig. 21-3-VI.

vazli/2 va:2

OO0
:2 X,6228-2

Xa3

Figure 21-3-VI. Graph of basis for cycle 3 (optimum).

The value of 6 can be reduced to 1 without affecting feasibility. At 6 = 1
the parametrized right-hand side of (1) attains the desired a, values, hence
the optimal solution is given by (15) for § = 1. This solution is recapped
below (boxes indicate position of basic variables).

(15) z3= 0 Ty = Ty = Ty =
x23= ZTyy= 0 x25=@ z, = 0

21-4. PROBLEMS

1. (Review.) What is the change of variables referred to in the second

paragraph of § 21-1? Why does it fail if a coefficient is negative in a row
equation? How would you work the simplex method if some variables
were allowed to be negative? How is p;; related to the previous coeffi-
cients?

2. What is the dual for the system of equations (4), (5); and (6) of §21-1?

3. Change the constants a; and b, in such a way that more than one iteration
is needed in Phase I of the example in § 21-1.

4. (Review.) In §21-3, show how to choose a} sufficiently large so that the
basic solution will also be feasible. Interpret the meaning of the optimal
solution in this case.

- How is the selection made if some f,; is negative?

6. Apply the procedure and solve a 3 x 4 example. Use linear graphs to
guide computation of prices and adjustments in the values of basic
variables. '

7. Solve the 3 X 4 example as in Example 1, § 21-1, where b; are replaced
by Ab;. Choose 1 initially sufficiently small so that feasibility is attained,
and then parametrically increase 1 to 1.

8. Set up a machine-task model in the standard form of the weighted distri-
bution problem, § 21-1-(4), (5), (6). Assume the cost per hour, ¢;j, for the
it machine is the same, regardless of the task, and ¢, is the revenue per
hour derived from other uses of the left-over machine time. If the

w0
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objective is to minimize net costs, show for such a model that system (6)
of § 21-3 can be obtained from system {(1), (2)} of § 21-3.

9. If u, and v; are the prices associated with the i*h row equation and the
jtb column equation of § 21-3-(6) respectively, show that the prices of an
optimal solution satisfy u; > 0, v; > 0.

10. Starting from (15) of § 21-3, continue to reduce # and find the value of
6 below which there is no feasible solution. Show that, in this case, it is
not possible to determine which variable is to enter the basic set.

11. Review problems and illustrative examples in Chapters 3, 4, 5 and
determine which ones are weighted distribution problems. Solve those
which are numerical.

12. (Unsolved.) Does there exist a transformation of variables and con-
stants that will convert the first type of system considered by Markowitz
§ 21-3-(1), (2) to his second type § 21-3-(5)?

REFERENCES
Eisemann and Lourie, 1959-1 Jewell, 1960-1
Ferguson and Dantzig, 1954-1, 1956-1 Kantorovich; 1939-1
Hadley, 1962-2 Markowitz, 1954-2
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CHAPTER 22

PROGRAMS WITH VARIABLE
COEFFICIENTS

22-1. WOLFE’S GENERALIZED PROGRAM!

In this chapter, we will consider problems in which there is some freedom
in the choice of coefficients of an activity. Such problems arise when a system
is being designed or when the input and output characteristics of a process

depend on one or more parameters, such as temperature, which can be
regulated.

First, a matter of notation; it will be convenient to consider the linear

programming problem in vector form: Find z; > 0 for j % 0 and Max x,
satisfying

1 Pzg+ Pz, + Py + ...+ Pz, =Q
For example, if we had to find z; > 0 and Min z satisfying

(2) T+ zy— 4z, 4+ 22, =5
—Z + Xy — 23+ 3, =1
6r, |- 42, + x5 — 2z, =2
we would set z = —uz,, obtaining
0 1 1 —4 2 5
(3) Olzg+ | —1lay+ 1|z + | —1 z; + 3lz,= |1
11 6 4 +1 -2 0

It will also be convenient to redefine the simplex muitipliers
= (T, Tos + + +, Ty Tmp1)s SO that

4) 7P; =0 if z; # x, is a basic variable
7Py =1

The last of these multipliers, m,,,,, is always 1 because Py = U,,,, is a unit

! The approach to this class of problems was first developed in the joint work of
Philip Wolfe and the author on a decomposition principle for large-scale programs (dis-
cussed in Chapter 23); because it was Wolfe who suggested that the procedure developed
there could be formalized as a special case of a “Generalized Linear Program,” we
asgociate his name with it here [Dantzig and Wolfe, 1960-1; Gomory and Hu, 1960-1].
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vector and z, is unrestricted in sign. Hence these multipliers would generate
a modified cost equation S¢;z;, where (referring to a standard linear program)

m
& =nP;= Zmaﬁ +1-¢
i=1 .
It is now evident, since we are adding the sum term to ¢, instead of sub-
tracting, that the multipliers m;, 7y, . . ., mp Will have the opposite sign to
those defined in § 9-2. As usual, in order for a basic feasible solution to be
optimal & = 7 P; > 0 for all j.

DEFINITION: A Generalized Linear Program is a linear programming
problem with variable coefficients as follows: Find z; >0 for j # 0 and
Max z, satisfying

(5) Py + Py + . . .+ Pata=@Q

where each P; for j % 0 may be freely chosen to be any P; € C;, where each C;
is a convex set. By simple extension the fixed vectors in (), P, and @, may
be replaced by any vectors P,, @ drawn from convex sets C,y and C,. This is
further discussed in the subsection on “Equivalent Formulations” at the
end of this section. The convex sets we shall consider here are defined by
systems of linear inequalities. However, the methods of Chapter 24 can be
used to extend the results to general convex sets.

For example, (3) becomes a program with variable coefficients if we
generalize it to the following form: Find z; > 0 for j # 0, Max z, satisfying

0 1 1 — A 5
(6) 0] 2+ | =1 2y + fli 2o+ | —1| 23+ [Y2]| 2= 1
1 6 ’ 1 Ys 0
L J ® ®
where y; may be chosen as any values satisfying

(7 ¥+ 2y, + 3y = 2 (y; =0)

One may wonder whether a system such as (6), (7) is formally a linear
programming system. However, if we set 2, = Uy, Yoy = Uy Ys%s = Us
and multiply (7) by z,, it is easily seen that the system may be re-expressed
linearly in z; and u, (see Problem 2). In general we have:

CoMMeNT: A system (5) in which some column P, = (41, Y2 - - - Ym)
must satisfy a system S, of linear inequalities in variables y; for 1=1,2,.. .
m, and auziliary variables Ym,y, - - - Ymer independent of the rest of the

system, can be replaced by a linear inequality system by multiplying the relations
of 8, by x, > 0 and substituting new variables u;, = Y2,

While the above remark permits us formally to expand the system to
make it linear, this expansion does not necessarily lead to a linear program
which is equivalent to the original system because it is possible for the
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linear program to have a solution such that x, = 0 and u;, # 0 at the same
time. For further discussion of this point, see Problem 2. Great advantage
accrues by not using this approach. Using instead the variable coefficient
concept, the general program is solved by a series of adjustments of the
values of y, obtained by solving an auxiliary program or subprograms in the
y; above. In effect, a large linear program is decomposed into smaller linear
programs.

The Method Illustrated.

The working out of example {(6), (7)} will\illustrate clearly the general
procedure. Suppose we initiate the computatxon with the basic set of
variables xz,, z,, z,. We wish to ascertain whether or not the basic feasible

solution z, = —24, z, = 2, 2, = 3, z, = z, = 0 is optimal for (6), which
we will refer to as @ master program. The simplex multipliers
(8) 7 =[-51,1]

are defined so that #Py = 1, #P; = 0, »P, = 0. Multiplying equations (6)
on the left by =, we obtain

(9) zy + (mPy)xs + (7 Py)a, = (mQ)
where

(10) 7Py = 20, = —2¢
(11) mPy= =5y, + Y.+ ¥s

It is clear that the test for maximum z, is #P; > 0 for all j. On the other
hand, if 7P, < 0, it is possible to find a better solution by increasing the
value of z,. Therefore, let us set z, = 7P, and consider the auxiliary linear
programming problem of finding y; > 0, and Min z, satisfying

(12) Y1+ 2y, + 3y =2 (y: = 0)
(13) —5y1 + ¥+ Yy =z (Min) (24 = mP,)

What we are doing is in keeping with the usual simplex procedure of bringing
into the basis that column which prices out the least. The solution yielding
minimal 7 P, is immediate, namely, y, = 2, y, = 0, y3 = 0; 7P, = —10.

We can now obtain an improved solution by introducing the column
(y; = 2, y, =0, y, = 0) into the basis of the master program. However, we
must allow for the possibility of revising later the values of y,. We can do
both by rewriting the problem in the form

0 1 1 —4 2 4 5

(14) 0} To+ | ~l g+ ||z + | —1]|2s+ |02+ |ys|2s = |1
1 6 4 1 0 Ys 0

drop)

° ) _ *
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where the y/ satisfy the same relations as the y;:
(15) ¥y + 2y; + 3y3 = 2 (¥; = 0)

We shall refer to the column <y, ¥}, 3> as the generic column. It appears we
have changed our original problem; they are equivalent, however. To see
this we rewrite any solution to (14) back in the form (6) by setting
z, = z; + x; and letting the coefficients of z, be given by

% 2] il
(16)1 Yo | = 0 ; 4 r + y;’ —;——x—” (x; + x'; > 0)
Y3 0% 1% A Ty + 2

The right-hand side is clearly a convex combination of two points lying in
a convex set defined by (12); as a consequence the point (yy, ¥», ¥5) must lie
in the convex set also. Conversely, to any solution of (12) we can associate
a solution of (16), for example, set 2, = 0; in this case z, = zj, ¥, = ¥,
When z; is introduced into the basic set of the master program, z, will

be found to drop out. The new basic solution is zy = —4, z, = 1, 2, = 2;
z, = z, = 7, = 0. The corresponding simplex multipliers are
(17) m=1{0, —4, 1]

where 7 is defined by (4), so that 7Py = 1, #P, = 0, nP; = 0. To test for

maximum x, we form -
(18) 7P, =10
7Py, =5
7Py = —dy; + ¥
The only possibility for increasing values of z, is to find values of y; so that
7P} < 0. Accordingly, we consider the new subprogram
(19) Yi+ 2y, + 3y =2 (=0
' —4y; + y; = Py (Min)

This yields y; = 0,93 = 1,43 =0 and 7P, = —4.
Our augmented master problem now becomes

(20)
0 1 1 —4 2 0 Yy 5
1 6 4 1 o] o y 0
) drop
[ J [ J o *

where again we have allowed for the possibility that we may again revise
the values of y, by the introduction of the “generic”’ column y;’ and variable

"
4 °
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Introducing zj into the basic set, z, drops out and the new basic solution
isxzy=0,2, =% z; =1; 2, = z, = 2, = 0; the new simplex multipliers

(21) 7 =[0,0,1]
are defined by Py = 1, wP; = 0, wP; ='0. We now have
wP, =6
(22) nPy =4
Py =1
wPy =y

The auxiliary linear program is: Find y’ and Min =P} satisfying

(23) III + 9y2 + 3y/” — 2 ( " > 0)
y3 = wP; (Min)

"

But this yields as one optimal solution y;’ = 2, y; = 0, and y;’ = Min P}
= 0. Thus, at this stage, no improved solution to (20) can be found modifying
the values of y,. Since all other 7P; > 0 the basic solution is optimal.

ExErcrse: From the optimal solution to (20), (23) derive the optimal
solution to (8), (7).

It would appear that this process, iterated many times, could expand
the problem by an indefinite number of columns. Such is not the case,
however, since no more of these added columns need be retained than are
currently used in the basis. We shall show that any column which drops out
of the basis may be “dropped’” because it is included in the convex sets
defining the generic columns associated with the master program and these
convex sets are each defined by a system of linear 1nequaht1es We now
formalize some of the terms and concepts used so far.

DerFinrrion: A restricted master program (at the ktt stage of the
algorithm) consists of variables z{*) with specified columns of coefficients
P drawn from the convex sets C,. Its optimal solution determines values
for the simplex multipliers, 7 = #°, for use in the subprograms.

DermvirioN: The j' subprogram is: Find P; € C; which minimizes the
linear form, #°P; (in the unknown components of P,), where = = 7° is
known. Its optimal solution P; = P¥ generates an additional specified
column of coefficients P} for the next restricted master program.

THEOREM 1: Ifterms >} P,z;are added to a restricted master program, where
the “‘generic columns,” P;, are general elements of convex sets C;, the new problem
18 equivalent to the original generalized linear program.

The General Theory for Polyhedral C;.

We assume here that each convex set C; is polyhedral, i.e., defined by a
system of linear inequalities. In this case a general P; can be represented
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by a convex linear combination of a finite set of extreme points of C; plus a
nonnegative linear combination of a finite set of homogeneous solutions (in
case C; is unbounded).

DeFINITION: By a homogeneous solution P; is meant one with the
property that if P; € C;, then P; + kP; € C; for a.ll k>0.

TaEOREM 2: A solution (x¥, P¥) forj=0,1,2,.. .1, is optimal if
there exists a m, such that wPy =1, wP; >0 for all P;€C; and 7P} =0
for all j for which ¥ > 0, j 0.

THEOREM 3: Only a finite number of iterations of the simplex algorithm
is required if each basic feasible solution is improved by introducing into the
basis either an exireme point P¥ € C; chosen so that

(24) wP¥ = MinzP; <0 G=12...m)
P;eCy

where 7 are the simplex multipliers of the basis or by introducing into the basis

any homogeneous solution P¥ from a finite set such that = P¥ < 0.

ProoF: From our earlier remarks, Theorem 2 is obvious. With regard
to Theorem 3, finiteness of the algorithm is also obvious if we can show that
columns of any basis must be drawn from a finite class. Since C; is a convex
set defined by a set of inequalities, each P¥ is obtained by solving a linear
program which minimizes the linear form =P; where 7 is fixed and the
components of P; are unknown.

fC;is bounded P* will be one of a finite number of basic solutions. If
C, is unbounded, then it may happen that = P; has no lower bound. In this
case, on some iteration of the simplex method a homogencous solution will
be dbtained (see Chapter 6, Problem 19). In the notation of the standard
simplex method as applied to the canonical form for the subproblem for C},
on some iteration a column will be found such that all coefficients, say d,,,
will be nonpositive and the relative cost factor & < 0. In this case, letting
y;, represent the ith basic variable of the subproblem, the set of values
Y, = =0, =0,y,=1, and all other y; = 0 forms a homogeneous solution
P for C; with the requisite property; namely & = mP; < 0, where = is the
set of simplex multipliers for the basis of the master program. Since the
number of canonical forms for the various subprograms (omitting the objec-
tive equation) is finite, the number of columns with the property d;, < 0 for
all 1 is finite. Hence the set of P, is also finite.

Equivalent Formulations.

It was assumed in (5) that P, and @ were fixed vectors. However, if it
is desired to have Q freely chosen from a convex set C,, it is possible to do
50 by considering the system

(25) P, + Pz, + ...+ Py — Q2 =0

Tpiy = 1
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ExErcisE: Extend the results so that P, can be drawn from a convex

" set C,.

Exercise: Reduce the following problem to a generalized linear pro-
gram: Find vectors P; € C;, @ € C, such that

(26) P+ P,+...+P,=@Q

ExERCISE: Suppose in place of condition (7), we have ¥} + 32 + ¥ < 1.
Show that this is a generalized linear program. Apply methods of this section
and contrast with the polyhedral case.

Convex Programs. (See Chapter 24.)
Kuhn and Tucker {1950-2] considered a broad class of problems of the

form: Find z = (z;, z,, . . ., %,) and Min z satisfying
(27) Gi{x) < 0 (=12 _..m)
Gy(x) = z (Min)

where G(x) are convex functions and z is restricted to a convex set R.
We replace this by the equivalent problem: Find 4, 4, y; satisfying

(28) A =1 (A =0,,>0,.. ., 4,=0)
i+ A =0
Yo 4 + 4y =0
yml + lm =0
Yoh . =z (Min)
where y, > G,(z) for some z € R. To show that the set of possible
¥ = (Yo Y1, - - -» Ym) forms a convex set, C,, suppose y; > G(z’), y; = Gi(z"),
andlet A+ u=1and 1 >0, u > 0. Then
(29) ¥ = My + pyi = AG(x') + pGyx") = G(Ax" + uz’)

where (Az’ + ux”) € R because R is convex. The methods of Chapter 24
can be used to extend the results to solve in general this essentially one
variable linear program with coefficients generated by a set of general
convex functions of a point x in = dimensions.

ExErcisE: Prove that if 42 > G, (x°) solves the linear program with
A =2 A; = 1% then y¥* = G(2°) also solves the program and Gy(z°) < ¥;.

ExErcISE: Suppose a feasible solution to (28) exists with y = y°, where
¥° is a convex combination of several y* such that for each £, ¥ = G(25),
and suppose that feasible solutions may or may not exist for these y*, prove
there exists an ° such that 32 > G (2°) where y* = (1, 4}, . . ., ¥}, ¥3)-
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EXERCISE: Prove that the simplex multipliers 7} of the optimal solution
of each master program for (28) are nonnegative. Show that the subprogram
can be stated: Find z € R such that F(z) is minimum where

Flz) = Z G ()

Prove that F(z) is convex. Relate this to the method of Lagrange multipliers,
§6-5

22-2. NOTES ON SPECIAL CASES

The Case of One Control Parameter T.

Many industrial processes have a continuous spectrum of alternative
activities depending on the settings of certain controls such as temperature
(T), pressure (P), recycle ratio (&), ete. This is particularly true in refinery
applications where, to keep things simple, only one standard way to operate
the equipment is often assumed in any one problem; or sometimes a few
typical sets of values are selected that “span’ the range of possibilities.

Suppose there is one control T, whose range of settings is Ty < T << T,;
let j = 1 be a single activity whose technological coefficients depend on T

Its coefficients for 7 = T, and T = T, and general T are

(1) T, T, T
U
agy ag) Kz
1) 2
aﬁnl aﬁni Ym
c(11) C{” Yms1
where y;, = y(T) fori =1, 2,. . ., m, m 4 1 are functions of T.

In many applications a linear interpolation between the first two columns
of coefficients is a satisfactory approximation for a general 7'. If this is the
case, the equivalent linear programming problem becomes:

2) a0y + aP2g + a1ty + . . -+ BraTa = b
adzy, + a(z)zn + GgeTy + . - . F GanTn = by
alzy; + a®)zy + ey + - - -+ GmaZn = bn
Wy + 2y + o+ -t G =2

where z, = Z,, + %y is the level of the first activity. It is clear we are
assuming that the variable coefficients y; are given by the linear interpola-
tion (3), where A, = z,,/x, corresponds to some temperature setting T.
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A+ i =1,

(3) la(l)—i—l (2)=y1 (1,20;i=1,2,,m)
1241 241
Me 4+ 256P = Yy

In particular, if the temperature setting T has also the same linear-inter-
polation, then

@) oy Ty + 24T

2y + Ty

=T

The set of relations (3) defines a convex set of possible values for
(%1, Y2 - - - Ym). The method of § 22-1 is therefore applicable. If = is the
set of multipliers associated with a basis and & = ¢V — Zrall’ and
&P = ¢® — Tra, then the subprogram reduces to

Hht+i=1 (4: = 0)
Wy + P4, = wP, (Min)

The extreme point solutions for (4,, 4,) are either (1, 0) or (0, 1). Thus either
the first or the second column of (2) would be introduced into the bas1s
Because of this small number of possible extreme points of the subprogram
(two in this case), it does not pay to u.e the method of § 22.1.

In order to interpolate between several possible values of 7', say T = T,

T,, . . ., T}, let us consider the linear program
: n
(5) alz,, + al®z, + . . . + a¥z,, + Z a,2; = b,
z

n
azy; + afzy + . . .+ oz, + z a9 = by
2

n
X
a(l)xu + @ 1x21 +...+ a‘ﬁnizkl + Z AmiZ; = by,
2

n
Pz + Py + .. L+ Py, + Z cx; =2
2
where () is the value of y; = y,(T) for T = T,,r = 1,2, . . ., k. In general,
letting :
(6) Ty =Ty + Ty + . . . F Xy
it is clear that we are assuming the linear interpolations
2t} Tn T
) Lo+ Bapr .+ Ry,

and a similar expression for ¢,.
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However, in some applications a linear interpolation between two columns
of coefficients is satisfactory, providing the range of their T' values 13 sufficiently
small. If not, then it is mecessary to break up the range into several parts
T, <T,...<T,<...<T,, sothat a linear interpolation between the
vectors [y(T), yo(T). - . ., Ymu(T)] for adjacent pairs 7 = T'; and
T = T,,, is an acceptable approximation. For this situation, an optimal
solution to system (5) is acceptable only if the positive z,, occur in adjacent
pairs as underlined in (8):

(8) either (a) zy >0, 2y >0, 23 =0, 2,3 =0,. . .
or (b) zy =0, 25 >0, 233 >0, 2, =0,. . .
or (€) =0, 2y =0, 24y >0, 23 =>0,. ..

...............................

The following results can be established: (a) If the coefficients y; except
Ym,1 are linear in 7' and y,,., is a strictly convex function of 7, then (8)
will hold. (b) Let 7’ be some strictly monotonic function of the control
parameter 7'; if the coefficients y,, ¢ 7 m + 1, are linear functions of 7" and
Ym+1 18 & strictly convex function of 7", then (8) must hold. (¢) If y,,,, is just
a convex (but not necessarily strictly convex) function of 7", then (8) need
not hold, but if not, then the average values a,; and c,; obtained at the mini-
_mum are the coefficients y, corresponding to some fixed 7" and the optimum
solution to (5) is exact—not an approximation to the original nonlinear
problem. (d) Suppose the system has the property that the optimal prices
m; < 0 for some subset of the items (where 7, are defined so that Za,m; = ¢;
for basic z,); suppose that y,depend on 7" only for these items and these are
convex functions of 7", then either property (8) holds for an optimum solution
or the average solution is exact for some fixed 7T".

Interpreting a Mixed Solution.

An interesting question arises if (8) does not hold and moreover any
adjustment of the solution so that it does hold only increases the value of z.
In this situation we have no physical interpretation of the solution in the
sense there are values z, given by (6) and a,, ¢, given by (7) which corre-
spond to some value of 7'. This may or may not be acceptable. If the activity
is such that 7' is not an adjustable control, but rather a design characteristic
that once settled for some value cannot be changed, then the answer is,
of course, not acceptable. (We shall discuss what to do in this case in a
moment.)

If T is easily adjustable, there may be an “out.” Let us suppose the
optimal solution yields z;, > 0, z,, = ;3 = 0, z;, > 0. We may interpret
this to mean that it pays to use more than one setting for 7. Thus, if the
activity is actually performed with several pieces of equipment, some can be
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set for the value 7' = T, and the others for T = T,. Or, if only one piece of
equipment is used, it may be set part of the time at 7', and the rest of the
time at 7',.

If Only One Value of T Is Acceptable.

This case can be treated by limiting the number of alternative 7' values.
For example, suppose & basic solution is at hand using a fixed value T = 7,.
There are no alternative columns for the moment corresponding to other
values of 7'. It is now desired to see if the solution can be improved by
changing the value of 7. Accordingly, new columns are introduced corre-
sponding to adjacent values of 7', say T,_, and T,,,, these being selected
sufficiently close that linear interpolation of their a; values is acceptable.
These columns are then priced out; and, if it pays to do so, one of the
alternative T columns is introduced. If, as a result, 7', is replaced in the
basis by, say T,,,, then, T',,, is added as a possible alternative column and
T,_, is dropped from consideration in the next iteration. The new solution
is then priced out on the added column and on all P;,j = 2, . . ., m, since
the shift in 7' may make it profitable to make other choices for the basic
variables. On the other hand if the introduction of the alternative column
T,,, causes not the T, column, but some other column to drop, then a
T,,, column is added as a possible alternative and the 7,_, column is
retained and both are priced out along with the other columns; if T, ,
becomes a candidate by the pricing out procedure, it is allowed to enter
the basis only if it replaces 7, if not it is dropped as a candidate in
the next iteration; similarly T,_, is allowed to be a candidate only if
it replaces T',,.

This procedure will eventually arrive at a value of 7' = T, such that
the alternatives 7%, or 7%, result in no admissible improvement, or it will
eventually arrive at an mterpolatlon between two T values T,, T',,,. This
does not mean that this 7' is best; all that has been found is a 7' that is locally
best. If there is any suspicion that there may be other local optima that are
superior, it is necessary to revise the procedure so as to drive 7' in turn
through all values 7= T,, T,, . . ., T;. If there are other local optima
superior to 7' = T, their z values must lie between the z value for 7 = 7,
and the z value obtained by allowing free choice among all alternative 7',
columns. From a practical point of view, it might be best to allow unrestricted
choice initially. If the solution satisfies (8), then of course the solution
admits physical interpretation and is optimal. If not, it is often feasible to
use the average 7' value

®) T= zaTfn
L 2
as a starting value for the above procedure. For example, in gasoline blending

problems there is a nonlinear “octane change” as a function of the amount
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T of tetraethyl lead added to a mixture of blending stocks whose propor-
tions are also to be determined. While the structure of such a problem is
more complex than that described here, a linear programming solution can
arise for which there is no physical interpretation. This is due to a lack of
convexity of a certain octane ‘‘response surface.” However, it is so slight
that the approximation (9) gives excellent results and no further iterations
are used in practice [Kawaratani, Ullman, and Dantzig, 1960-1].

The Case of Several Independent Control Parameters, Each Affecting
a Different Activity.

While the discussion so far has centered about one control T and one
activity j = 1, it should be noted that, if there were several independent
control parameters, each affecting a different activity, the values of all the
parameters could be determined simultaneously by splitting up each such
activity column into parts corresponding to the different control settings.

The Case of Several Control Parameters Applying to the Same Activity.

For the case of only two control parameters whose range s <T<T,
and 8, << 8§ < §,, one can introduce the four extreme cases (T'y, S1), (71, Ss),
(T,, S,;) and (T, S,) as four alternative columns. Thus in (5) the coefficients
of z;, could be interpreted as those obtained by setting (7', 8) = (T, 8,),
etc. Again, if the resulting linear interpolations given by (6) and (7) are
acceptable, the problem may be solved in this manner. Nothing prevents
the introduction of any number of alternative columns corresponding to &
grid of (T, §;) values in order to obtain a more accurate approximation.

(10) s
f 4

T Ts 7,

Again the only difficulty that can arise is one of physical interpretation if
the optimal solution chooses non-adjacent grid points with positive weights.

When there are more than two control parameters associated with an
activity, it is recommended that variables be used that measure the change
in the value of the parameters. To illustrate, let the coordinates of Py, the first
activity, be some function of the three control parameters, R, 8, T (for each
component of the vector P,) which we denote by P, = P|(R, 8, T). Let us
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suppose that for (R, S, T') = (R,, S,, T,) a solution to the linear program-
ming problem is known, and that the linear approximation,

(11) Py(R,+ AR, 8+ AS, T, + AT)
= P+ AR-E°+ AS- Fo 4 AT - G°

where Pj, E", Fo, G° are fixed vectors, is acceptable within the ranges
(12) — <AR< oy, — < AS< oy, ~g < AT <

This formulation permits immediate and easy solution via the methods of
§ 22-1 and the upper bounding methods of § 18-1.

Let 7 be the simplex multipliers associated with the known basis of the
master program. By Theorem 3, § 22-1, we set up the subprogram : Minimize
nPy = wP} + ARmE® + ASnF° 4+ AT=G° subject to the constraints (12).
This subprogram divides into three independent linear programs:

-, < AR< o (mE°)AR = zp(Min)
—y, < AS < a, (mF°)AS = zg5 (Min)
—a, < AT <ay  (7G°)AT =z, (Min)

These are readily solved; for example, setting & = #E°, the solution for
AR is AR = —a/, 0, or a, according as € > 0, & = 0, or & < 0. Substituting
these values into (11) yields a new column, P;, to be introduced into the
basis in the next iteration. After that iteration, expression (11) may be
retained for further iterations, or it may be replaced by a new linear
approximation about the new values of R, §, and 7 determined by the
iteration. If, however, expression (11) is changed while P; vector is still in
the basis, we may encounter difficulties in physical interpretation of the
results.

As an alternative to the subprogram of §22-1, an equivalent linear
program can be obtained by multiplying all expressions in (11) and (12)
through by z, and introducing new variables z;AR = 2,,, 7,AS = z,,,
23,A8 = zy,. This yields, setting P; = (@,1, @32, - - -» Gymy C1)»

— 0
(13) 20% = a5% + enZn + fuZa + IaTu
! ’ ’
—y Ty = Ty < 4Ty, 0Ty T Ty gy, — 0Ty < gy < KTy
Thus the final linear programming problem requiring solution becomes

(14) a1 2 +en@y +fmZa + gu s + @t + . . - + a1, 1,) = by
an %+ en %y + faZan + g Xy + (B2 + . . .+ G 2,) = by

0on®y + emTu + frZn + ImiZar + (GmgZs + - - -+ Cpa) = by,
an+ ey + frm 4 grgt+ (Gt ..+ E) =2 (Min)

where 2; > 0, and z,, and z, are subject to (13).
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22-3. PROBLEMS

Review: Extend the theory of §22-1 to cover the case where (', and C,
are general convex sets instead of convex sets each consisting of one
fixed vector.

(a) In system § 22-1-(6) and (7), replace each y.x, by u; and reduce to a
linear inequality system and solve numerically. Can this solution be
used to solve the original system ?

(b) Review § 22-1, Comment, in general. Suppose a solution is obtained
for the new system with z, = 0; show that y,z, % 0 may be possible.
Construct an example where this is the case.

(¢) Show that the linear program is equivalent to the original generalized
program for the system (6) and (7).

(d) Show in general that the linear program is equivalent to the original
generalized program if the linear program implies a relation
Tau; < ayx, with positive a,, where u; = y,z,.

(e) Consider the general problem of the existence of a, > 0 such that
Sau; < agz, for all z, > 0 and u,; > 0 satisfying a linear inequality
system (z, u) D > d. Set up a linear program for finding such a, if they
exist.

Hint: Because of homogeneity, let a; = v; + 1 where v; > 0. Then
the problem is equivalent to finding u,, z;, and v, such that

z2>0,2u>0 v; =0
(z, w)D >d v,=1

Zu; —x, =14,
8= min n;f;x [Z vlU; — VX, + v,x,]
If 6 < 0, then a, > 0 exists. Use Problem 2 of Chapter 13 to com-
plete this discussion.

. Complete the exercises given in § 22-1.
. Simplify (13) of § 22-2 by substituting & :

x,l—xn-i-otxl (T=1,2,3)

. (Unsolved.) Develop a theory for the case of one control parameter

affecting simultaneously several activities.

. (Unsolved.) In connection with (d) following §22-2-(8), devise a pro-

cedure for converting k given functions, F,(7T'), to convex functions of a
parameter 7" where 7" is a monotonic function of 7', providing such a
conversion is possible. (See Problem 7.)

. Formulate Problem 6 as a linear program if the k given functions are

defined for discrete T'; and it is desired to find increasing 7'; corresponding
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to increasing T'; such that the broken line fit through the discrete points
(T:, F(T,)] is a convex function of 7".
8. Establish the assertions (a), (b), (c), (d) following § 22-2-(8).

REFERENCES
Dantzig, 1957-3 Gomory and Hu, 1960-1, 2
Dantzig and Wolfe, 1960-1 Kawaratani, Ullman and Dantzig, 1960-1
Ford and Fulkerson, 1958-1 Kuhn and Tucker, 1950-2
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CHAPTER 23

A DECOMPOSITION PRINCIPLE FOR
LINEAR PROGRAMS

23-1. THE GENERAL PRINCIPLE

To introduce a typical situation that suggests the application of the
decomposition principle, consider the problem facing a manager of a plant
with two almost independent shops. Within each shop, there are many
constraints which are unaffected by the activities of the other shop, but
there are a few constraints and a common objective that tie the two shops
together. The manager’s problem may be formulated in linear programming
terms as follows: Find X > 0, ¥ > 0, and Max z, satisfying
(1) AX = b,

A4,Y = b,

Pa,+ A, X + 4,Y =b ' .
We are using an extension of the notation set up at the beginning of Chapter
22. X is the vector of activity levels in the first shop; Y, that in the second.
The first line of (1) expresses the constraints which involve directly only
the first shop; the second line does the same for the second shop; the last line
expresses the objective function and those constraints which bind together
the shops.

On looking at (1), the manager feels that the size of the problem has
gotten out of hand. Both 4, and A, are moderately large, and together
they make a problem that exceeds the capacity of available computers.
“But what I really have,” reflects the manager, ““is not this one big problem
but two moderate sized ones, one for each shop. All I need is a way to break
the problem into two parts and still take account of their interconnections.”

In this chapter we will follow through on the manager’s hunch by
developing a technique which decomposes linear programs similar to (1) into

(a) subprograms corresponding to its almost independent parts, and

(b) a master program which ties together the subprograms.
The price paid for this decomposition is that the master program and the
subprogram may have to be solved several times. First the master program
is solved, and from its solution, objective functions are generated for each

of the subprograms. Then these are solved, and from their solution new
columns are generated to be added to the master program. The process is
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then repeated until, after a finite number of cycles, an optimality test is
passed.! In the next section we will show how this technique can be applied
to certain problems arising in dynamic systems, and in the last section it
will be used to show how central planning can be accomplished without
complete information at the center.

For our discussion it will be convenient to think of problem (1) in the
following form: Solve the lincar program.

(2) Py + A X + A, ¥ = b

subject to the additional constraints

(3) Ly 4,X =b, (X >0)
Ly A, Y =b, (Y >0)

The A,, 4; are, of course, matrices; P,, b, and b, are vectors.

It will simplify the discussion to assume the feasible sets for ., and %,
to be bounded convexes and to indicate later the minor modifications in the
formulas needed to take care of the unbounded case. Under this assumption,
any X > 0 solving 4,X = b, can be represented by a convex combination
of the extreme points of the set of feasible solutions of .#,. Since the set of
different basic feasible solutions X = X;, X = X,, . . ., X = X defines
the finite set of extreme points, we can represent any solution X by

(4) X=§L~X1’ (Zl= A = )
1

Conversely, any X represented by (4) is feasible for #;. Similarly, any
Y > 0 solving 4,Y = b, can be represented by

L L
(5) . Y Z r Yj (Z i I o ())
1 1

where Y,, ¥,, . . ., Y are the finite set of basic feasible solutions of .%,.
Hence, any solution X and ¥ solving (1) can be re-expressed in terms of
Ay pg; thus :

-

K L
Py + > JldX) + D plde¥) =b (120 4, >0)
1 1

K
(6) 3 le ;1
1
i/"i =1
1

! Historically, it was this special case that first gave rise to the more general concept
of a generalized linear program developed in § 22-1 [Dantzig and Wolfe, 1960-1]. The
decomposition principle approach was inspired by the proposals of Ford and Fulkerson
{1958-1] for solving multistage commodity network problems. W. S. Jewell [1958-1]
should also be credited with using a similar approach for the latter.

.
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and, conversely, any A and u satisfying (6), determine an X and Y by (4)
and (5), and give a feasible solution to (1). Denoting, in general, the linear
transforms of X and Y,

(7) - 8 =A4\X, T=A4
and, in particular,
(8) S, =4,X,, T,=4,Y, ¢=12,.. . ,K;j=12,...,1L)
the original linear program is equivalent to the problem:
Find 4, >0,. . ,Ag =>0; 4, >0,. . ., uz >0 and Max z, satisfying
" K L
(9) Poxo"r‘zsili"{"zT;‘/‘i:E (A4;=0; u;, =0)
1 1
K
Z }‘i =1
i
L

DerniTioN: The linear program (9) generated from the extreme point
solutions of %, by (8) is called the equiva.lent extremal problem, or the
full master program.

The basic solutions of ¥, and &, are probably far too numerous for us
ever to express this extremal problem explicitly ; rather, we propose to solve
it by generating only those columns S; and 7; which the simplex method
brings into the successive bases.

Let us suppose that we have at hand an initial, basic feasible solution
A; = A2 and u; = uf to the extremal problem. If b has m components, then
there will be m + 2 columns, say 8;, Sy, - - ., Sg; Ty Ty, - - -, T, in the
corresponding basis, where k£ + ! = m + 2. Corresponding to thig basic
feasible solution to the extremal problem, is the solution X = X°, ¥ = 1°,
x, = 2 to (1) given by

(10) Xo= 20X, + X, +. ..+ 42X, Ei=142=20
Yo=Y+ pug¥, 4+ pmY Eui=150120)

At the end of this section we will give a Phase I procedure by which such a
starting solution and representation may be found.

In order to test optimality of the basic solution or to generate a better
solution to the master program, let the row vector (m°; —s°, —i°) denote
the simplex multipliers associated with starting basis

Multipliers
P, 8 8...8, T, T,...T,] : (=@
(11 B=|0 1 1 1 0 O 0 : o (—s8%)
0 0 O 0 1 1 1 : (—19)
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where s, #° correspond to the last two rows of B. As discussed in § 22-1,
(m®; —s°, —1°) is determined such that

(12) Py =1, 7°8;=35° #T;=1

fori=1,2.. ,kji=12 .. .1

The standard simplex method now requires us to bring into the basis
that column of (9) which has the lowest relative cost, n°S; —s® < 0 or
7°T; — {° < 0, if any. That is, we must determine S, and 7', such that

(13) 78, = Miin 7°8;
7T, = Min »°T;
But ’
(14) » Min #°S; = Min (7°4,)X; = XlViion X
A, X =b,

where 9} = n°4,. That is, we determine S, by finding the solution, X, to

The Subprogram £, :

(15) 4,X =b (X =0)
'}";X = 2z, (Min) (7’01 = '”'01‘1-1)

If the simplex method is used on the subprogram, X, will always be one

of the X,, . . ., X. We can then form S, = 4,X, and bring it into the

basis. If '

(16) Minz = X, < s .

then the relative cost factor for S,, 7°S, — s° = p2X, — s°, is negative and
the introduction of S, into the basis will (assuming nondegeneracy) bring
about a finite increase in z,.

Likewise, we can determine 7', from the Y, which solves

The Subprogram & ,:

(17) 4,Y = b, , (Y =0)

¥sY = z, (Min) (vs = n°d)
If Min z, < #, then introducing 7', = 4,Y, into the basis will (assuming
nondegeneracy) increase z, by a finite amount. We introduce 8, or T,,
whichever has the lower relative cost factor.

On the other hand, if Min z, = s° and Min z, = #°, then all the relative
cost factors for (9) are nonnegative. Consequently, we are at the optimal
solution of the equivalent extremal problem, and therefore, X° and Y° given
by (10) constitute an optimal solution to (1).

Derinrrion: The program obtained from the full master program (9)
by dropping all the columns except those in the basis and the new S, (or T'y)
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about to be introduced, is known as The Restricted Master Program:
Find 4; > 0, u; > 0, and Max z, such that

(18) P+ Sudy + . - -+ Sidi + Syhe + Typty + . - .+ Tyt =5
M+ o+ A+ A =1
b4+ =1

Iterative Process and Final Solution.

We now proceed to solve the restricted master program. The resulting
optimal solution yields a new (m, s, t); these, in turn, determine new y,
and j, which constitute new objective forms for %, and %,. The sub-
programs are then solved with the new objective forms, and the optimality
test above is applied. If the test fails, a new column is added to the restricted
master program, corresponding to the subprogram failing the test. The whole
process is then repeated, and the cycle continued until the optimality test is
passed. The optimal solution is then given by X = >,;A,.X;and ¥ = 3,4, Y,
where the A, and u, are the solution to the final restricted master program
and the X; and Y are the solutions of %, and %, corresponding to columns
in the final basis of the last restricted master program. If the restricted
master programs are nondegenerate (or ¢-perturbed), the introduction of
each S, or 7T, will, as we remarked, increase z, by a finite amount. Hence,
none of the finite number of bases of (9) can reappear, so the iterative
procedure is finite. We have established

THEOREM 1: The solution X = X° Y = Y° corresponding to a basic

solution of the master program is optimal if there exist no solutions to the sub-
programs with z,, z, values less than those of the solutions which were used to
generate the basis of the master program, i.e., it is optimal if

- (19) Minz, = s°, Minz, =1
If the restricted master programs are nondegenerate (or e-perturbed) such an
optimum will be reached in a finite number of iterations.
THEOREM 2: An upper bound for the values x, is
(20) Max zy << 25 + (s° — Min z) + (©* — Min z,)
<z + (s —m08,) + (©° —7m°Ty)
ProoF: Multiply (9) by the multipliers, (m*; —s°, —¢°), and sum. The

constant term is zj, which is the value of z, for the basic solution. We have,
therefore, '

K L
(21) %+Z@ﬁ—mh+2w@rmw=4
1 1
K L
(22) Z+ » (Minz — )k + ) (Minz — o) <7
1 1

and the result follows.
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Computational Remarks.

The change of basis in the restricted master program is performed, of
course, by the simplex method using multipliers (Chapter 9). In this format,
the lexicographic ordering rule may be used to resolve degeneracy and assure
that no basis is repeated (Chapter 10). As various columns of the master
program are generated during the iterative process, one of the following
three variants is customarily used:

(1) The restricted master program is augmented by each new column,
but each column that drops out of the basis is dropped from the current
restricted master.

(2) The restricted master program is augmented by more and more
columns and those dropping out of the basis are retained as supplemen-
tary columns.

(3) The restricted master program is augmented by more and more
columns, and those dropping out of the basis are retained up to the
available memory capacity within the electronic computer; at this point
columns that price out most positive are dropped.

Observe also that on each cycle after the first we can start the solution of
a subprogram or the master program from the basic solution which was
optimal on the preceding cycle. Thus, no Phase I procedures are necessary
except before the first cycle, and there is a good chance that only a few
pivot operations will. be necessary for the re-solution of the subprograms
and master program.

Modifications Necessary for Unbounded .Z,.

Even though the set of feasible solutions to the entire problem (1) is
bounded, it is quite possible that the sets of solutions for some &, are
unbounded. In this case, there may be no lower bound for z,, and the
minimization of z, via the simplex procedure will result in a homogeneous
solution X,, Y, satisfying

(23) A4, X, =0o0r 4,Y, =0

11Xy <0or 9,Y, <0
These X, Y, as pointed out in a similar discussion at the end of §22-1,
belong to a finite class (extreme rays, Chapter 7). In this case we can generate
the full class of solutions to £; by considering solutions that are convex

combinations of the nonhomogeneous solutions and nonnegative combinations of
the homogeneous solutions. Thus, in place of (4) and (5)

(24) X’=Xlzl +X212 + . . '+XKZK
Y=Y+ Yofia+ . . .+ Yoy

where 1, >0, 4, > 0, satisfy a condition that the 1; and u,; must each sum
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to unity when restricted to those 4 and j corresponding to nonhomogeneous
solutions, i.e.,

(25) 0,0y + 83y + . . -+ Sy =1
Oifiy + Ogfia + . - -+ Opfip =1
where
(26) d; = 1 if X, is a basic feasible solution,
6; = 0 if X, is a homogeneous solution,

8; = 1 if Y, is a basic feasible solution,
d; = 0 if Y, is a homogeneous solution

This means that the basis B is redefined to be

P, 8...8 T,...T,
@7 B=|0 6...6 0 ...0
0 0...0 & ...

In the event b, = 0 or b, = 0, only homogeneous solutions are of interest.
In this case the corresponding restrictions (25) can be dropped from the
master program. .

Since there is only a finite number of homogeneous solutions generated
by the simplex process, the proof of the finiteness of the iterative procedure
remains valid.

Initiating the Algorithm.

We assumed in (10) an initial solution X°, Y° represented in terms of
basic feasible solutions X;, ¥; and—we may now add—homogeneous solu-
tions of .&, and .#,, respectively. Such an initial solution can be obtained
by a Phase I procedure.

Let X, and Y, be any arbitrary solution to .#, and %,, and §,, 7', their
transforms under (7). Let the starting basis of the master program of Phase
I be

(28) Pyxyg+ AS; + Ty £ Uy, £ Upeg - . . £ Upén =5
YN =1
51 =1

& + e+...+ ep—w=0

where U, is an m + 1 component unit vector with 1 in row 1, where m + 1
is the number of rows in [4,;, 4,]. The variables ¢, &, - - ., &m; Ty, A H1
and w form a basic set. The signs of the U, are chosen so that the artificial
variables ¢; are nonnegative in the basic solution. During Phase I, the
objective is to minimize w. Accordingly, the simplex multipliers are defined
so that all columns price out to zero except the (—w) column, which prices
out to unity. From the Phase I-Phase II process, we deduce:

THEOREM 3: An optimal basic feasible solution to the original system can
be represented as the sum of at most m + 2 basic feasible solutions of the two
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parts where m is the number of equations in the interconnecting part (2) exclusive
of the objective form.

23-2. DECOMPOSITION PRINCIPLE, ANIMATED

PROLOGUE

The coordinator, “Staff,” of the Central Agency must procure tankers to
assist his distributor, “Sub,” in the shipping of their product from two plants
to four terminals. Staff hates details and has asked Sub to furnish him with
only two numbers, the cost, ¢, of the proposed shipping plan, and the
number of tankers, ¢, required to support it.

Distributor, Sub, has two arrays, a unit cost matrix [c;], and a unit
tanker requirement matrix [t,;] (tankers required per unit shipped):

3 6 6 5 0 0 2 0
[cij]=[8 1 3 6}?[‘;‘5]:[0 2 0 0']

(The zeros in the [¢,;] array indicate shipments by pipeline instead of by boat.)
Since the general objective is to minimize costs, Sub sets out to solve the
transportation problem, below, where a; are the known availabilities at the
plants and b; are the known requirements at the terminals.

Available
Zyy 249 a:.n T4 9=a,
3 6 6 5
Zgy Ty Zyg Tog 8 =ay
8 1 3 6

Required: 2=10b, 7=b, 3=08, 5=,

Having taken a ten-day operations research course where he learned how
to solve small transportation problems, Sub soon discovers the minimum
cost solution to this problem to be

]y = 2 0 2 5
ATl 07 1 0

In this case ¢ = XXcz,; = 53, t = L3¢z, = 18. Hence, the two numbers
that Sub furnishes Staff, in his proposed plan, are

_leal |53
n= (2] =]
where P, represents the vector made up of the components of his first plan.
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Staff discovers, however, that a sudden shortage of tankers has developed,
and the most he can muster for Sub is 9 tankers. Noting that two out of
Sub’s eight possible shipping activities have to use tankers, Staff requests
Sub to find a solution that ‘“‘goes easy on the use of tankers.”” Sub, being
literal, forgets costs and immediately comes up with the following solution
that minimizes the use of tankers

o 7 0 2
[xif]Z_ 2 0 8 3

In this case TXc,z,; = 95 = ¢, LItyx,; = 0 =1,. Hence, Sub’s new

proposed plan is
Cy 95
P= (2] =[5

ACT 1.

Srarr: Well, whatever else one might say about Sub’s new plan, it cer-
tainly has gone easy on the use of tankers; in fact, none are used.
But look what has happened to costs—they have nearly doubled!
1 just can’t tell Sub that he can have only 9 tankers and let him
find his own least-cost solution; I tried that the last time there was a
tanker shortage, and costs soared. Somehow I wish I had sent Sub
to that six-week operations research course, instead of the ten-day
one. It would probably have been a lot cheaper in the long run.
Note: At this point, Staff has decided to call in his economist friend,
F. M. Dalks? as a consultant.

DaLks: According to good economic theory, what you should do is to tell
Sub that there may be an extra premium charge for the use of
tankers. This will teach Sub to keep the costs down and at the same
time not use tankers excessively, because they are now part of the
charges in the total bill.

Sta¥rF  (Enthusiastic and not above a bit of subterfuge if it gets results): Let’s
do just that. (F.M. is crestfallen; theory is theory, but putting it into
practice is another matter.)

Darks: Let’s go a little more slowly. It is not always easy to calculate
what the prices should be on scarce commodities. It depends on
many factors. But let me assure you it has been rigorously estab-
lished, beyond any doubt, that such prices always exist. (Seecing
distrust creep into Staff’s eyes, F.M. begins to toy with the idea of
coming down out of the ‘“‘ivory tower.”) In this case, however, we
have only one scarce commodity, tankers, and we could try various
premium charges for tankers and see what happens to Sub’s use of
them. This way we could eventually get Sub to come up with a
plan that offers both feasibility and least-cost.

t F. M. Dalks, like the letters of his name, is a.composite of leading mathematical
economists of his time, who have applied linear programming to economic theory.
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Sounds like a good approach.

According to theory, if tankers are in surplus, the price on tankers
should be zero. Since Sub’s latest plan, P,, doesn’t use any tankers
at all, this is certainly the case. As a start, we can tell Sub the
price, # = 0, on tankers. How’s that ?

(Sarcastically): Terrific! The only trouble with it is that we have -
already tried placing no value on tankers, and Sub came up with
some plan or other which we couldn’t use. I threw it away, but
maybe Marge saved a copy. . . . Ah! See how valuable a secretary
can be; here is a copy. See Sub’s old plan: P; = (53, 18). It isn’t
feasible, so what good is it?

I have another idea. I was reading an O.R. journal the other day.
Of course, I don’t usually read that kind of journal, but when I do,
I find it is not so peripheral to econometrics as some people think.
Anyway, a friend wanted my opinion about an article on a ‘“‘decom-
position principle.” He thought it might throw some light on how to
handle price problems when there are breakpoints due to dis-
continuity in the derivatives of the underlying production functions.
But this is beside the point. The article suggests that we should
take a weighted average of the two plans (ke moves to the blackboard)

like this:
5 957,
P, + Py = [12} i+ [ 0} IR

where 4, + A4, = 1, and, of course, 0 << A, < 1. For example, we
could try 4, = §, 4, = }. Say, this gives

353 + 95) = 74
184 0)= 9

which is a lot cheaper than 95 and happens to use up the available
tankers. How’s that?

That’s splendid, simply splendid ! But how do we know that we can
average Sub’s proposals in this way? How will Sub know what to
do? I don’t want to get into the details of Sub’s shipping schedule,
you know. .

Oh! Don’t worry about that. Just tell Sub to average the detailed
schedules he used for generating plans P, and P,, and he has the
answer.

That is a neat trick—averaging the old and new plans—and to
think I was smart enough not to throw away that old plan. The
boss is going to be very pleased when I tell him how we figured this
one out. Before doing so, let’s study this average plan of yours a
little to make sure it’s okay. Let’s see, 9 tankers and an over-all
transportation cost of 74. Isn’t 74 rather high, considering that the
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least-cost solution might have been 53, if it were not for the tanker
shortage ?

Well, according to the article, this does not necessarily give the
best solution. What we are supposed to do is set up a little linear
program that tells us how to ‘‘blend” old and new pla.ns in the best
way. Here it is.

534, 4 954, + (—z) = 0 (A; > 0)
A, + 182, + OA, =9
11 + Az - 1
[ J [ J ®

where A, is the slack (if any) in the use of tankers. It’s fairly
obvious, in this case, that 1, =0, 1, =}, 4, = 4, with a cost
2! = 74 so that we don’t learn anything we don’t already know.
The important thing is that it gives us an idea of what price we
should tell Sub to set on tankers. We do this by solving the dual
linear program.

I’'m afraid you are in over my head. What’s the solution?

Well, the dual solution is very interesting. It works out this way.
You see, the basic variables associated with the optimal primal
solution are indicated by the three dots @ @ @ under the 4, i,, and
—z columns. It means we should choose multipliers (1, =, —s!)
for the three equations in such a way that when we multiply and
sum, the A, and 4, terms vanish. It is easy to see tha.t the following
conditions must hold:

53 + 1871 — 8! = 0 (coefficient of 4,)
95 + Onf — s! = 0 (coefficient of 1,)

or 8! = 495 and 7! = %% = 2}.

I don’t understand why #! = 2} is positive. As I'understand linear
programming price-conventions, this means Sub is paid to use
tankers, instead of having to pay a premium for their use (§12-3).
Yes, but not in this case. For once, for this kind of problem, the

just as we economiists do. So, in this case, = means what it says. In
other words, we tell Sub that the premium charge on tankers might
be 2% units per tanker. Let’s try this and see what happens.

Quite an interesting game we are playing with Sub. What is this
st = 49517

Oh, that is to see whether or not we should try to blend Sub’s
proposal number three (when it comes in) with P, and P,. But we
can talk more about this later (§ 23-1, Theorem 1).

But I don’t understand. Does that mean that Sub is going to send
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us another ‘“‘infeasible’” proposal, and we will have to do some more
combining of proposals?

Yes, I am afraid it does, unless we are awfully lucky!

Note: At this point Sub is instructed to set up a new unit cost matrix,

3 6 644 5
o 24t ] =
e+ 24t =[5 0y °5 D)

In due course, Sub arrives at the following optimal solution to. his
transportation problem:

|2 205
ii.3_0530

- In this case, Xxcx,; = 57, and TZt,x,; = 10. Therefore, the third

plan he submits, is

= o] = 15)

ACT I1.

STAFF:

DavLks:

STAFF:

DALKs:

STA¥F:

1 begin to understand it now. What we do is set up a new little
linear program. Is there some special name by which we can refer
to it?

It is called a “‘restricted master.”” But first, we want to test to see
if P; is worth considering. Remember s* = 95?7 What we do is
*“price out” the new proposal and compare it with 95, the ‘‘break-
even value.” Since the new plan has a transportation cost of 57 and
there will be a charge of 2} units for each of the 10 tankers used,
we have 57 + 23} = 80}. This is less than s = 95, so we can now
go ahead with the restricted master. Here it is:

534, + 954, + 5745 + (—2) = 0

Ao+ 184 + OAy + 104 =9
I T =1
o [ ) [ J

Does it take very long to solve? I’'m curious to see what the
answer is. .
Well, in this case, no! According to linear programming theory,
only two of the three plans that Sub submitted are going to be
used. Since no average of plans No. 1 and 3 will have less than 10
tankers, this leaves only one new possibility, a combination of P'2
and P,. The new solution is easy. It is obviously A, = v, 4, = -
This gives a cost of 22 = 95(d;) + 57(:%) = 60.8.

That’s a big improvement! We have cut the cost from z° = 95 to
2! = 74 and now to 2z = 60.8. How much more do you think we
can reduce it if we keep this up?
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Well, not too much. It can’t go any lower than 53, because we
know that the value of z for the cheapest cost solution is 53 when
there is no restriction on tankers. But perhaps we can do a little
better. According to decomposition theory, we can always get an
estimate of a lower bound by going back to the previous basic
solution. Here is the formula (§ 23-1, Theorem 2):

Minz > 2! —s' +c¢5 + wlty = T4 — 95 + 57 + 23} = 59%
Fantastic! If you are right, very little saving below 22 = 60.8 is

possible. I would like to see what the true minimum is and see how
good your guess really is.
Okay, but it is not really a guess. Let us determine a new price on
tankers. Since 1, and A, are new bhasic variables, we have

95 + On? —st =90

57 + 107t —s2 =0
or s? = 95 and 7% = 3% = 3.8. It shows we should raise the ante
on tankers from 7! = 2} to »% = 3.8.
I hope Sub won't become too unhappy with our changing our
minds so often. He might start complaining to the big boss before
this noble experiment is finished.
Note: In due course, Sub sets up his new array . .

‘ 3 6 6476 5
fei;1 4+ 3.8[¢,1 = {8 I +7.6 3 6:]

and derives a new optimal solution

2 700
[zl = [o 0 3 5}

Here YEc,x;; = 87 and EXtyxy; = 0. So this, Sub's fourth plan,

becomes
el _ |87
r=[a]=10]

ACT I11.

STAFF:

This gets better and better. Obviously we can substitute v of P,
for the %P, that we used earlier and get a better solution. So, let’s
go ahead with the restricted master. Here it is.

531, + 951, + 5743 + 8TA + (—2) =0

Ao+ 184, + 02, + 104, + 0- 4, =9
L+ A+ A+ A =1
® [ @

Let us see what the new value of z is. Not much improvement,
2% = 57(s%) + 87(x%) = 60. Maybe your lower bound of 59% is not
so bad after all. Let’s try your formula again for the lower bound.
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. For this purpose, we go back to the previous basic solution. Is that

not so? That’s funny ! This time don’t we get
Minz > 22 — 82 + ¢, + n%, = 60.8 — 95 + 87.0 = 52.8?

It appears that our previous estimate of 59} was just a very lucky
one. I guess we should make the lower bound estimate each cycle,
because some are better than others.

T suppose now we will have to get a new price

57 4+ 107® —s3 =0
87+ O —s¥ =0
or s* = 87 and #® = 3. This time we tell Sub the price on tankers

has dropped to 3.
Note: Sub’s new problem becomes

3 6 6+6 5
[ei; 4 3] = [8 1+6 _j; 6:]

which he quickly solves because his last solution, [z;;],, s still optimal.
Also he finds that his previous one, [2,;], 45 also optimal.

ACT IV.

STAFF:

Darks:

STAFF:

DaLks:

What does this mean? Sub has come up with the same solution as
last time.

It means that there is no 1mprovement Let us try our lower bound
estimate and see what it says. If we use ¢, = 87, £, = 0 in the
formula, then

Minz >22 —s® 4+ ¢, + 7%, =60 — 87 + 87 + 0 = 60

If we use ¢y = 57, t, = 10, instead of c,, ¢, which is Sub’s other
optimum solution, we also get

z > 60 — 87 4+ 57 + 3(10) = 60
Since our lower bound 60 is the same as our value of z, this proves
we are done. i
I must tell the boss about our new decentralized decision process
and send out orders to Sub to form the weighted average of his
plans, namely, 9P, 4+ .1P,.
Note: When Sub carries out his orders he finds his optimal plan to be

Olzy;ls + A[zy], = [(2) Zi (3) 4§:|

Technically, this is not exactly what we economists mean when we
say ‘“‘decentralized planning.” A better term would be “central
planning without full information at the center.” A very interesting
experiment! I may write a paper on how for the first time prices
were used to control, in a precisely defined way, a real life situation.

The End
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23-3. CENTRAL PLANNING WITHOUT COMPLETE
INFORMATION AT THE CENTER?

The theory developed in §23-1 makes it possible to plan the over-all
operation of an organization without the central staff having full knowledge
of the technology of each part. We shall deal with the case in which the
technology matrix is constant over iime and there is no capital expansion
except for current needs.

Consider, then, an economy or industrial complex with 7' plants and m
items which are traded between plants. Plant p has a technological matrix,
A,, of m, rows expressing constraints on intermediate products, plant
capacity, and local demands. In addition to 4,, each plant has a trade
matrix, J,,, which has m rows that correspond to m commodities traded
between plants or supplied to the consumption sector of the economy. Plant
p also has a vector of constraint constants, b,. The constraints for plant p
are then

(1) A,X,=b, X,>0 (p=12...,T)

where X, is the vector of its activity levels.

The Central Trade Agency has constraints specifying that the amounts
of item j procured from various plants minus the amounts supplied to them
be greater than or equal to the amount it turns over to final minimum basic
demand (consumption, defénse, exports, and the like). Using I to denote the
identity matrix, these constraints may be written

(2) AX, +AX, +. . +AdpXp +1Y =0 (Y =0)

Y being the vector of final incremental demands in excess of the minimum
basic demand 5. (With our sign conventions the components of b are all
negative.)

The planners attach a certain set of values, specified by the row vector
—e¢, to final incremental demands so that —c¥ represents the value of the
plan to them. The total problem facing the economy may then be written

3) 4,X, = b
4,X, ] = b,
ApXyp = by
AX, + 4 X, + .. . +ApX, +1Y =0
¢Y = 2z (Min)

3 This section was also contributed by C. Almon to bring out some of the potentialities
of the decomposition principle for decentralized planning.
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This is an angular system which the theory of § 23-1 will decompose into
T subprograms and one master program. If the 4, matrices were all available
they could be sent to the Central Planning Agency where a large computer,
programmed to use our decomposition principle, would soon produce the
optimal solution.

In reality, however, the 4, matrices are hard to compose. It may require
substantial engineering time to specify each new activity even though no
real technological change, or basic innovation is involved. There may be
many things which no one doubts could be done, but which it would require
much valuable time to specify in detail. For instance, no engineer would,
just for the sake of adding an activity to the 4, matrix, spend a week to
carefully specify the characteristics of a transformer using copper wire
instead of aluminum if a few rough calculations showed that the resulting
product would cost about twice what the present one does and offer no
compensating advantages.

For such reasons, the complete 4, are probably not explicitly known;
rather we may regard them as potentially known to the plants, with some
effort being required to make them explicit. Since potential knowledge can
hardly be sent to the Central Planning Agency, this Agency lacks complete
information. It does not, however, completely lack information, for it has
available the records of Central Trade which show how much each plant
used and supplied of each common item for several preceding years, say two
for simplicity. Thus it knows the values of S, = 4,X, determined by two
feasible solutions to the entire program and hence to each subprogram: -

(4) A,XS =b,: 8= 4,X°
A4,X =06, 8 =4,X!

(p=1... .7

(If there was no capital expansion, the b, are the same in the two years.
If there was capital expansion, the first year’s plan could be converted into
a feasible plan for the second year and used in (4).)

The Central Planning Agency uses this data to make up a master program
with m + T constraints as follows:

(5) 834+ SIAT + 83l + S+ . . 4 8pA - ShAL + [Y = b
K+ A =1
24+ A =1

vt B =1
¢Y = z (Min)

The planners then solve this master program and come up with simplex
multipliers (; —s), = having m elements, and s having 7. Economically
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speaking, = is, of course, a vector of prices. For each plant we can then
make an objective form

Minimize z, = »S, = (74,)X,

In words, this objective form states: Minimize the excess of the cost of
purchases over the value of sales, i.e., minimize losses or, what ecomes to the
same thing, maximize profits.

The planners then announce these prices, 7, and instruct all plant
managers to propose plans for the operation of their plant in the next year.
Specifically, the plan is to state how much of each item they will buy and
sell to Central Trade. In making these proposals, they are to assume that they
can buy, at the announced prices, all they need of any of the m items and
likewise sell all they produce. They are further instructed to propose the
plan which will maximize their profits.

On receipt of these instructions, the managers call in their engineers,
give them the prices, and tell them to leave no stone unturned in looking
for ways to cut costs and increase profits at these prices. The engineers now
have the guidance they need to set about making explicit a portion of their
potential knowledge. In a month or so they produce what they believe to
be their optimal plans, and the managers give the plans to Central Planning.

It would be extraordinary good luck if these plans will satisfy (2) and
constitute a feasible program for the whole economy; usually Central
Planning will have to coordinate them. For each plant p for which the
proposed profits exceed s,, the Agency adds an activity, Sj, to the master
program (5). Then it re-solves this program, obtaining a new (m; —s), say
(m'; —s’) and also a 4 solution. The 1 are used to combine the new proposals
with the previous solutions to get what we may call the optimal feasible
plan, given the information possessed by the Central Planning Agency.

In principle, the planners could then announce 7', get new proposals,
and repeat the process until the optimal is found. In practice, planning takes
time, production must go on, and the planners reason that consistent plans
that get better and better are to be preferred over no plans. Hence, they
announce in quantitative terms their feasible plan. They tell each plant
manager how much of each traded commodity he must produce and how
much he is allowed to purchase; this information is summarized for plant p
in the column vector 8, = 5, AiS% where the values of 1, are those of the
optimum solution of the restricted master. They also announce the prices
(='; —¢') and direct that trade be conducted at these prices. They may also
instruct the managers that, subject to their meeting the quantitative goals
8,, they should also maximize profits. Such a rule is intended as a guide to
avoid possible waste in the event that S is not precisely achieved for one
reason or another. It is important to note that they cannot tell the man-
ager simply to maximize the profits (omitting production goals, S,) for
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if they did, Central Trade would almost certainly have difficulty with its
constraints (2).

Toward the end of the period for which production was planned, the
order again goes out to propose plans for the next period, this time using
7' as a guide. The managers, knowing that this order was coming, have been
at work all year looking for ways to make profits, and they soon have their
proposals. From these, Central Planning makes up new activities to add to
the master program and matters proceed as before, the values of the plans
always increasing. The essential point to bear in mind is that the master
program remembers all previous proposals, except those which it is no
longer using at all.

We leave to the reader’s judgment the problem of the economic signifi-
cance of the finiteness proposition of § 23-1. He should also consider the
related, though not identical, question of whether it will ever be possible
for the planners to abandon the quota and allotment system and simply
direct the managers to maximize their profits.

Concluding Remark.

Our discussion has been intended to elucidate the workings of the de-
composition principle as a planning tool, rather than to explain the methods
actually used by a present-day industrial complex or by a socialist economy.
We have shown that there exists a special method of allocation by a central
authority and a. specially devised system of prices that can induce the
separate plants to submit summarized proposals, which can be combined into
better and better over-all plans. Whether or not the system of allocation,
prices, and proposals used by a particular economy or complex approximate
those envisaged by our method, we cannot say. Qur iterative process can be
diagrammed as follows:

If prices stabifize,
determines optional

Planning duthority M= ————1 . ofnewandold [ 7

proposals |

!

1
Submits new piant Issuas new prices 2:1::;;:::(
proposals in terms of for evaluating scarce (tems
required scarce resources scarce resources (£) to plant
X)) to plants

Figure 23.3-1. Decentralized planning using the decomposition principle.

Many people familiar with planning in large organizations are conscious
of a flow of information similar to the above. The difference is that the
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decomposition principle replaces the not-too-well-understood procedure by one
that 1is rigorous and well defined.

23-4. DECOMPOSING MULTI-STAGE PROGRAMS

The methods developed in § 23-1 extend immediately to problems where
there are more than two subprograms, the so-called “angular” systems of
the form:

(1 A4,X, =b,
A4.X, = b,

AX +.. +A4AX +.. +AXp=b
O X, +...4+ CX,+ ...+ CpXyp=2(Min)

~ where the 4, and 4, are matrices, and X, and C; are vectors.
Let us now consider another important class of structures, those of the
form: Find X, and Max z, satisfying

(2) AJ.Xx =€ (X, =0
A4, X, + 4,X, =€
AzXz + 4,X, , = €3

A X3+ A X, + Py = ¢

where X, are vectors, 4, matrices, ¢, and P, vectors. These are called mults-
stage systems (so-called ‘‘staircase’” systems) and often arise in the study of
processes through time in which the activities of one period are directly
connected with those of the preceding and following periods but with no
others. In such cases, the several 4, may all be the same, as may be the 4,.
Although our results would permit computational advantage to be taken of
such constancy, we shall not assume it.

Following the general lines of what we did in § 23-1, we begin by making
a subprogram out of every other stage by rewriting (2) in the following form:
Solve the program: Find X, > 0 and Max z, satisfying

3) A, X, + 4.X, =€
fiaX:; + 4, X, + Py = ¢,
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subject to the constraints
(4) L AX =6 Py A, X, + A, X; = ¢,

Thus, equations (4) have been selected to play the role of the independent
parts, while equations (3) that of the binding constraints. The reader, of
course, recognizes that the roles of (3) and (4) could be interchanged and
that there are several other ways we could choose the subprograms.

We denote the extreme points of &, by X, = X;fort=1,2,. . , K
and those of &, by [X,;, X;;]forj = 1,2,. . ., L and denote their transforms
by
(4.1) S; = A‘Irxm [Ti == A2X2,-, Tj = 11'3X3,-]

In this case the master program takes the form: Find Max x,, 4, > 0, 4; >0
satisfying

t 4 |
(5) | Z Sk + Z Tu; i =€
: =1 j=1 |
! K §
S -1
P A=l i
CE T !
i ZT5#j+A4X4+ Pyry| = ¢
| j=1 ’ }
- ;
| . =
Yz =1
1

Starting with some basic set of variables 1,, u; and components X,, of
X, of the master program, we can solve for simplex multipliers, derive
objective forms for %, and &,, solve, use transforms of their solutions to
add columns to the restricted master, re-solve, and repeat the process until
the optimality test is passed.

When we set about to solve (5), however, the first thing we observe is
that the master program itself is of the staircase form (2), but with half the
number of stages. Hence, the logical thing to do is to decompose this master
program. Accordingly, let us refer to (5) as the first level master program
and proceed to its decomposition. We rewrite (5) in the form:

Find Max z, such that

L .
(6) Z Tip; + AuX, + Pz = € (H; =0; X, = 0)

J=1

[ 467 ]



A DECOMDIOSITION PRINCIPLE FOR LINEAR PROGRAMS

subject to

(7) 281 +ZT,/A,=62

j=1

R

pi =1

=
v
e

M

J=1

We denote the extreme points of &5 by 4, = 4}, y, = ud forg =1, 2,
., @, and denote for the latter its transform 3% T;u® = R,. Substituting
(6) we get the second level master program:

(8) Z By, + A Xy + Poxo = ¢4 (1 =20;X,20)
q=1
Q L
v, =1, where R, = Z Tul
q=1 j =

We have now decomposed the four-stage program into four programs,
L., &L, ¥, and (8), whose total number of equations is three more than
the corresponding number of equations of the four original stages.

Let us now outline the iterative procedure by which these programs are
solved. First, we solve a restricted second level master program (8) and deter-
mine, in addition to v,, the simplex multipliers (7 ; —u}) such that n{ Py = 1,
the basis columns R, price out to %], and those of 4, price out nonnegative.
(Compare with § 23-1-(12).) Next, we determine an objective form for &,
namely

L
9) Minimize z, = Z (m, T,

We assume we have at hand some feasible basis for .#;. The values of
simplex multipliers (73; us, v3) for this basis can now be determined using
the va.lues of (T pertammg to basis columns We now wish to test &,

.,Kandj= l, 2,..., L. However, since K a.nd L can bc largc we wish
to discover the columns % = i, and j = j, that price out the least without
actually generating all the columns in advance; we note by (4.1)

(10) T — 3T, = Min [m3T; — »3T;]
i
= Min [(—n3d,)X, + (ngs)Xz] <), (X Xg) €Zy)
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and

(11) —myS;, = Min [~ #38;] = Min[— (m3d))X;]< uw} (X, %))

Hence, the problem reduces to minimizing the two linear objective forms:
the first, (10), in variables (X,, X,), where (X,, X;) €.%,, and the second,
(11), linear in X,, where X, €.%,. If the solutions to these two linear sub-
programs yield equality, then subprogram %, was optimum and the problem
terminates. If not, then the transforms of the extreme point solution
X, = X,y or (X,, X,) = (Xy4, X,4) associated with the most negative one
is adjoined to the restricted .#; problem and used, in turn, to generate a
new extreme solution for the second-order master problem.

As in §23-1, we note that it is not necessary to carry over from one
cycle to the next any columns of (7) or (8) not in the basis. Non-basic
columns in these programs may be dropped and forgotten; they will be
generated again if needed.

Although we have been working with a four-stage program, our pro-
cedure has been perfectly gencral. Letting [p] mean the largest integer not
exceeding p, we can see the following:

TueOREM 1: A K-stage problem can be decomposed into K-subprograms ;
one corresponding to each stage, the total number of equations in the set of sub-
programs is K — 1 more than the total number of equations of the original
problem ; the subprograms form a hierarchy with [K[2] or [K[2] + 1 in the
lowest rung, [K [4] or (K [4] + 1 in the next, etc.

It will be noted that the procedure yields the optimal multipliers, but it
was necessary to do some side calculations to get the optimal values of the
primal variables. It may be useful to consider the dual of a multi-stage
program, for it has the same structure. The calculations carried out on the
dual permit direct evaluation of the primal variables and indirect evaluation
of the multipliers.

23-5. PROBLEMS

1. Consider the method used of decomposing the multi-stage system
§ 23-4-(2); develop the analogous method for decentra.hzed planning in
such a structure. Generalize.

- With reference to Problem 1, develop alternative methods corresponding
to other ways to decompose such a system.

3. With reference to the discussion following § 23-4, Theorem 1, dualize
§ 23-4-(2) and develop a method based on the decomposition principle
that will evaluate directly the primal variables.

4. Establish in general the statement in § 23-4, Theorem 1, that there are
K — 1 more equations in the set of subprograms than in the original
system.

o
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. Analogous to §23-1-(20), develop a lower bound for z for the simplex
method for the case where one of the equations is of the form >7x; = 1.
. Let «; be an upper bound for z; and let z, + > &%, = x5 show, in
general, that another upper bound for z, is 25 — Z¢;a;, where the sum-
mation is restricted to those j such that ¢; < 0.
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CHAPTER 24

CONVEX PROGRAMMING

24-1. GENERAL THEORY

Kuhn and Tucker in their paper on “Nonlinear Programming’ {1950-2]
[Tucker, 1957-1] considered the problem of minimizing a convex function
with variables z,, z,, . . ., =, subject to the condition that the values
assumed by a system of concave functions in these variables be nonnegative.
They showed that if the concave functions were differentiable, the method of
Lagrange multipliers could be appropriately extended to inequality restrictions
on concave functions (see discussion in § 6-5). Instead of concave functions,
their negative, convex functions (for definition, see § 7-1 and Fig. 7-1-VIII)
will be used whose values must be nonpositive. Following Slater [1950-1]

and Uzawa [1958-1], our object will be to show that their results hold even

if the functions are not differentiable, provided: (a) the domain of variation
is restricted to a closed bounded convex set R; (b) there exists at least
one point where the convex functions are all negative; and, (¢) the convex
functions are continuous! in R. We shall also give a constructive procedure
for solving such systems using the generalized programming approach.
Philip Wolfe first discussed this idea at the RAND Symposium on Mathe-
matical Programming, 1959, for convex objectives; at the same meeting,
H. O. Hartley discussed the case of variable coefficients in a column of a
special form. The first proof of convergence can be found in Dantzig [1960-3];
see also A. C. Williams [1960-1].

Problem A: Find a point z = (z;, %,, . . ., %,) in a closed bounded
convex set R and the minimum value of z satisfying
(1) dilz) <O t=12,...m)

$o(z) = 2z (Min)

where the ¢,(x) are continuous convex functions.

THEOREM 1: If there exists x° € R such that ,(x°) <Ofori=1,2,. . .,m,
then there exist multipliers #, > 0, #, >0, . . ., #, = 0 and an £ € R which
solves (1) with Min z and satisfies

(2a) F(%) = Min F(z) = Min [¢0(x) + Z ﬁ,.¢,.(x)}
z€R 1

1 Since a general convex function is always continuous in the interior of the domain
of definition, R, we are essentially assuming that this continuity extends to the boundary.
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or, if the ¢ (x) are differentiable, satisfies the Kuhn-Tucker condition,

- oF

(2b) J_—Zl (z; — %) o,
where F(x) 1s defined by the bracket term in (2a).

ExErcisE: Show that a convex differentiable function F(x) defined over
a closed bounded convex set R attains a minimum at z = £ if and only if
(2b) is satisfied.

Exercise: Show that the usual primal-dual complementary slackness
for optimality is a special case of (2b).

We shall consider Problem A in a slightly more general form.

=0 forallze R,
r=f

Problem B: Find a point z = (2,, &,, . - ., Z,) in a closed bounded
convex set R and Min z satisfying
3) Liz) =0 G=1,2...7)
Pix) <0 i=r+1,...m
Po(z) = z (Min)
where ¢{x) = Ly(x), fori =1, 2, . . ., r, are linear, and ¢,(z), for 1 = 0 and
r+4 1,. . ., m, are continuous convex functions.
As noted in § 22.-1, we may rewrite (3) in the form
(4) o/ =1 (us = 0)
Yiko =0 )
Yrho =
Yraaho + tria =0
Ymho A + tm=0
Yoho "= z (Min)

where y; are variable coefficients that may be freely chosen subject to the
conditions that y;, = L{z) for 1 <i<rand y; > diz) forr + 1 <i<<m
for some z € R.

Exercisg: Show that the set of possible P = (1, ¥y, Y5, « - -, Ym» Yo 18
a convez set and that (4) is a generalized program; see § 22-1-(27), (28).

Nondegeneracy Asswmption. There exists at least one nondegenerate
basic feasible solution to a restricted master problem, (5), generated by some
p choices of admissible P:

(8) MPi+ . . .+ P+ peaUpy + - - -+ U + (—2)Upyy = U,
(lj >0, Hi = 0)
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where U, denotes the unit vector with its unit component in equation ¢ of
(4), where 1+ may range from ¢ = 0 to i = m -+ 1. This restricted master,
which we assume for convenience to be the initial restricted master, whose
columns form a basis, is shown explicitly in detached coefficient form and in
greater detail in (6). Because the basic solution is nondegenerate, the values
of 4, and u,, are positive.

(6)

Initial Restricted Master Program for Problem B, Cycle k
(for Initial Basis set k = 0,p = r + 1)-

M=0 ... 4,20 .. . 2,20 4,20 ... u,=0 (—2) Constants| Multipliers

1 B 0 vt i 0 1 {ma)

yi R ¢ N A 0. it 0 0 (m)
y! 4 - .. yptE 0. e e 0 0
Yrav -0 YR ... YR 1 0 0
y},, .« e yo e y:’,;‘" 1 - 0 0 ()
i 7 S 7 - 0 C e 0 1 0 (1)

Exercisg: Show that the nondegeneracy assumption implies the exist-
ence of a point 22 such that Lj(x®) = O fori = 1,2,. . ., rand ¢ (z*) << 0 for
i=r+1,... m

ExErcise: Show that if there exists a point z° satisfying the above
conditions and a nondegenerate basis for the system of r linear equations
Lz} = 0 above, then there exists a nondegenerate basis for the system as
a whole. ‘

Since we have shown that (4) is a generalized program, we are in a
position to apply the methods of §22-1 to affect a solution. This is an
iterative procedure that was shown to converge in a finite number of steps
when the variable coefficients associated with any column are drawn from
a convex polyhedron. However, in both Problems A and B we are dealing
with general convex sets and our purpose is to show that the process, if infinite,
converges to a solution.

EXERCISE: Assuming that the iterative procedure converges, formulate
a ‘“‘Phase I"” type problem that will yield, in a finite number of iterations, a
nondegencerate basic feasible solution satisfying (5), if one exists. Hint: Make
use of the two previous exercises.
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Finding an Initial Nondegenerate Basic Feasible Solution to a Re-
stricted Master Program.

Under the hypothesis of Theorem 1, where there are no linear equations
L{x) to be satisfied, there exists an z = 2° such that ¢(2°) < 0 for
1=1,2, ... m. The nondegeneracy condition is then satisfied by the
basic solution formed by using m siack variables and the variable 1; = 1,
where the coefficients of 4, are y? = ¢,(2°) [see (7)]. Hence for Problem A,
there always exists at least one nondegenerate basic feasible solution.

(7) Initial Restricted Master (and Basis) for Problem A
A Hy . . . B (—z)  Constants
1 1
$1(z°) 1 0
Bmlz?) B 0
$ol2°) 1 0

For Problem B, we assume that we have at hand a nondegenerate basic
feasible solution to some restricted master with which to initiate the
algorithm. See the first and second exercises above.

Iterative Procedure.

We now review the iterative procedure given in Chapter 22 for a general-
ized program. The restricted master (5) for some cycle k is optimized,
yielding a new basic feasible solution A*, and a new set of simplex multi-
pliers #*. These multipliers are used to generate a new column P,,,,, for
the restricted master for eycle k& <+ 1 where all columns of the master program
for cycle k are retained and used in cycle k + 1. (Note that retention of the
columns was optional in Chapter 22, but here it is required for the proof of
convergence.)

The components of A%, the kth basic feasible solution, will be denoted by

}'llc’ '1]2‘» e j~lz‘;+k’ /‘}:+1’ SRR :“m =0
and
p+k
ZF = Z l,yo
j=1

In order to express conveniently the ktt approximation, £*, to a minimizing
solution of Problem B, we will assume that each column P; of the master
program is defined by choosing some value r = 27 and setting

Pi = <l’ qsl(xi)r ¢2(xi): LS ] ¢m(zj); ¢0(xj)> (.7 = 1’ 2’ . "p ‘f— k)
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In this case the ktt approximation to the minimizing solution of (3) is

Ptk
®) = > M 2 = o (2
j=1

The simplex multipliers for cycle k satisfy the following conditions:

9 T Uy =1
mEP; = 0] | . . .
AU, = 0} if 4; or y, is a basic variable
ﬂ'kPj 2 0

o s . abl
~U, > 0} if 4; or u, is a nonbasic variable
It follows that the components i = r 4+ 1,. . .,mofn* = [#k,a%,. . 75 ;1]
are nonnegative because 7% = #*{/, > 0 for these 1.

To test whether or not the £t approximate solution (8) is optimal, the

function
m

(10) Aalr) = gola) + > miu(@) + 5
1
is minimized over all x € R.

THEOREM 2: If Min Al{zjn*) > 0 for € R, then £* is optimal.
ProoF: Let z € R satisfy

(11) Lz) =0 (t=12...r71)
Pix) < 0 G=r+1,...,m)

Multiply_ing the ith relation by %, where >0fori=r+1, ..., m,

ana adding gives -

(12) : Z"’f‘ﬁi(x) <0

Adding ¢g(x) + 7% to both sides of this ineéua,lity yields

(13) Alzlr*) < dol@) + 5

Setting A = A* in the master program (6), multiplying its rows by the
corresponding components of 7*, and summing yield, by the complementary
slackness conditions (9) of the optimal solutions to the primal and dual systems,

(14) —2k =
So that
(15) Alz|mg) + 28 < Po(2)

On the other hand, for the approximate solution £#* = ¥z, it follows from

the convexity of ¢,(z) that
p+k p+k

(16) ¢o(§3k) < Z l?ﬁl’o(xi) = z l}‘y{, = 2k

j=1 j=1
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By first selecting that z which minimizes ¢o(z) in (15) and then that z which
minimizes A(z|n}), it is easy to see that
THEOREM 3: Lower and upper bounds for Min ¢y(z) are

(17) Min A(z|7t) + 2% << Min ¢o(z) < y(£F) < 2%
zeR

Continuing with the proof of Theorem 2, setting # = £ in (13), noting (16),
(18)  Min Afzln*) < A(g}n*) < ¢ol#) + mh = po(#) — 25 <0 |
If now we employ the hypothesis Min A(z}n*) > 0, the above implies
(19) Min A(z|nk) =0
and, by Theorem 3,

20) — 7k = 2F = gy(#¥) = Min $y(2)
which establishes Theorem 2.

EXERCISES:

(a) Prove Theorem 3 in detail.

(b) Show that a nonnegative weighted sum of convex functions is a
convex function.

(¢) Show that A(z|n*) is a continuous convex function on E.

(d) Show that there exists an £ € R, such that A(£{n*) = Min A(zjn*).

Generating a New Column for the Master Program.
If Min A(z|m*) < 0, define 2¥*! € R and P, ;,; by
(21) A(z* k) = Min A(zjr*) <0

r€R
(22) Ppien = (L ga(zF), o o o, $ml(@H1) ;5 dolz™ 1))
It follows from the definitions (10}, (21), and (22), that
(23) WPy e = A@*+ k) < 0

If we could now show that Min A(z|*) tends to zero as k — o, it would
be easy to show convergence of ¢y(z*) from Theorem 3, since z* forms a
monotonically decreasing sequence bounded from below [see Exercise (d)].
However, note that convergence can also be established if Min A tends to
zero on some subset of the k’s: indeed, the latter is all we shall be able
to prove. For this purpose we first show

THEOREM 4: If a nondegenerate basic feasible solution exists for some
master program, there is an infinite subset K of values of k, such that Lim m*
exists for k € K. k@

Proor: Let B be the basis of some master program associated with the
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nondegenerate basic feasible solution. For convenience, let this be the
solution for (6), the initial master program k = 0, and let

(24) B =[Py, Py, . . ., Pppy, Unsil

where some of the P; may be the U, associated with the slack variables.
Thus 2° = {43, 43, . . ., A%y, —2°) satisfies

(25) Bl = U,

and, by nondegeneracy, the components A] are positive. Thus
(26) =B, =[A%,. .. 2, =27 where 12 > 0

On the other hand, any =* solving the dual master program for cycle &
satisfies w*P; > 0, 7*U,,,, = 1 by (9), and therefore the components of a
vector y* = (%, %, . . ., 9%, 1) defined by (27) are nonnegative

27) B = y¥ >0 i =0)
Observe that #* = y*B~!, and in particular, that
m§ = wkU, = yH(BIU,) = pH0
=P+ YA YA —
Hence, noting that 75 = —z* < —¢(£*) << — Min ¢,(z), we have
(28) 2 — Mingo(z) > A1 + A+ -+ Yhadi) (> 0)

It is now easy to see, because y¥ > 0, and 12 > 0, that by reducing the right-
hand side of (28) by dropping all products except the ith,

(29) 0 < 4 < [* — Min gola)}/2

Therefore the components of y* have finite upper and lower bounds and
Theorem 4 follows from the exercises below.

Exgrcise: If the components of y* have finite upper and lower bounds,
then the same is true for any linear transform, in particular, the components
of =%, where n* = y*B-1,

Exercise: If the components of n* have finite upper and lower bounds,
there exists an infinite subset, K, of values k such that Lim #* exists for
keKask—co.

TrEOREM 5: For x satisfying the conditions of Problem B,

Lim ¢y(#%) = Min ¢y(x)
k—

Proor: Either the process is finite and an optimum solution is obtained

or for all & we have

(30) Min A(zlrt) = m£ Py, < 0
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and, since the master program for any cycle I >k contains the column
P,.,,, we have also for all £ and all I > k,

(31) 7Py, =0 >k

For k € K and ! € K the difference, (7* —#!) >0 ask — oc and I > &,
by Theorem 4. Since R is bounded and ¢,(z) is continuous in R, ¢,(x) is
bounded in R and so is the ith component, ¢,(z;), of P; over all j. Because
the components of P, are bounded from above and below, the difference
(n* — 7%} P,,, must also tend to zero. But, if the difference between the left
sides of (30) and (31) goes to zero and =*P, ., is negative and ='P,,, is
nonnegative, then n*P, ;, must come arbitrarily close to zero; that is, for
any & > 0, there exists a k, such that for any k¥ € K and greater than k,,

(32) —e < Min A(z|n*) < 0 (k>k,kek)
reR

From Theorem 3 and (32), the convergence of z; to Min ¢,(z) now follows on
the set ¥ € K. But the z, are monotonically decreasing for all k. We con-
clude z, tends to Min ¢y(z) for any set & — oo (not just for k € K). Since
2y is an upper bound for ¢,(£*), the latter also must converge to this limit.
This establishes Theorem 5.

THEOREM 6: Let # = Lim,__ w* for k € K and let £ be any optimum
solution to Problem B, then

- (33) F(£) = Min F(zx) = Min [960(1) + Z 1‘7,1;5,:(17)}
TeR i=1
where # has nonnegative components fori =r +1,. . ., m.

Proor: From (32), for k > k,and k € K
(34) —e < Afz|m®) < polx) + 7k

where the inequality on the right is from (13). In the limit, letting k— + oc,
g =0, Lim #* = # and

(35) 0 < A(z|#) = F(z) + 7y < dolx) + g
where A(x}#) is defined by (10).

On the other hand, by (20)
(36) #y = Lim 75 = Lim (—z,) = — Min ¢o(z) = —¢y(£)

r€R

Hence, substituting = = £ into (35) and noting the above, we have
37 0 = F(8) + #, < F(2) + #,

thus establishing Theorem 6 and, as a special case, Theorem 1.
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24-2. HOMOGENEOUS OBJECTIVES AND THE CHEMICAL
EQUILIBRIUM PROBLEM

Homogeneous Objective Functions of the First Degree.

In some applications, such as the chemical problem to be discussed
later, we have to minimize a convex function

() o =z0 (25,2
gz Z
where
(2) E=24+2,+. ..+,
subject to a system of linear equations in nonnegative variables,
n
(3) a;%; = by, >0 (i=12...,m)
2

Note that if each component of x is multiplied by ¢, the value of G(x) is
multiplied by ¢:
(4) G(tz) = tG(z)

That is to say, G is a homogeneous function of first degree. - .
We will assume that G{u) > 0 is a continuous convex function on the
set of possible u satisfying

(5) ) U+ U+ .U, =1 (u; = 0)
During the iterative process, we shall generate solutions £, £2, . . . satisfying
(3), such that G(£*) is monotonically decreasing. Letting z, be an upper
bound for G(z), for x = #* we have for such z

(6) G(z) = TQ(u) < 24 (x = £¥)

0 < £ < z,/Min G(u)
It follows that the components of such z are bounded from above and
below.
Consider the equivalent single-variable generalized program

I ayu;| =25b £E>0,u; >0, u,~=l)
e | =5 (zowz03
z Zaﬁui] = b,
(7) < Lj=1
r n
z Qi | = by
|£G(w) = =z (Min)
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where £ = 0 is the variable whose coefficients are linear in u; subject to (5).
This gives rise to a master program that forms a general solution out of a
nonnegative linear combination of columns of coefficients generated by
various solutions u* to the subprograms. This is in contradistinction to the
usual case where convex combinations are required. This greater flexibility
is possible, because the set of coefficients are homogeneous functions in u.
To be explicit, we start with some set of m vectors u = u? satisfying (5)
and, setting [a;;] = A, generate

(8) , = Au? (p=1,2,...,m)
¢, = G(u?)

Assuming that the m columns form a feasible basis the first restricted
master becomes

8,4L = b (A >0)

»”p

9

A, == 2! (Min)

)
3

This determines the simplex multipliers = which satisfy
(10) w8, + ¢, =0 (p=12...m)

To test optimality, the expression

(11) Alufr?t) = G(u) + (wtA)u
is minimized over all u satisfying (5). If Min A > 0, the solution
(12) ‘ g="> Aur

Z :

is optimal. If not, choose u™+! such that
(13) - Gum+) + (rid)yum+t = Min A (u|m?)

Augment the master system (9) by Sp., = Aumtl and Cpyy = Gum™tl),
optimize the new restricted master with 1 = 72, and repeat the cycle with
new multipliers = = =%, ete. : .

A slight variation in our earlier proof given in § 24-1 (to take account of
the fact that we no longer have the £1, = 1 constraint or its multiplier s)
yields the following

THEOREM 1: If there exists at least one mondegenerate basic feasible
solution to a master program, then the modified algorithm converges to an
optimal solution.

ExErCISE: Show that, if G(z) is a linear objective form, then it is also
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convex and homogeneous of the first degree, and that the procedure just
developed reduces to the standard simplex method.
ExERCISE: Prove Theorem 1. What role does (6) play in the proof?

The Chemical Equilibrium Problem.
For an application of the preceding theory, let us consider the problem
of determining the molecular composition of the equilibrium state of a
gaseous mixture containing m different types of atoms [White, Johnson, and
Dantzig, 1958-1]. While in theory these will combine into all chemically
possible molecular species, in practice only the standard types which occur
in measurable amounts are considered.
Let
b, = the number of atomic weights of atom type ¢ present in the
mixture,
z; = the number of moles of molecular species j present in the
mixture, where
(14) z; >0 (j=12,...m)

Z# = the total number of moles of gas in the mixture, i.e.,

(15) £ = Zx,-

a;; = the number of atoms of type ¢ in a molecule of species j.

Then the mass-balance equations are
n
(16) Zai,-xj = bi for ¢ = l, 2, e, Mm
i=1
The determination of the equilibrium composition of a gaseous mixture
is equivalent to the determination of the values of the mole numbers z;
that obey constraints (16) and minimize the total free energy of the mixture
given by
n

A7) Gy @) = D o+ ) zjlog (z;/)
1 1

=2z [Z ci(;[%) + 12 (z;/Z) log (xj/j):I

= z (csu; + u;log u;) (u; = z;[% = 0)
1
which can be shown to be a convex function. The ¢; are the values of Gibbs
free energy functions F°{RT of the atomic species at a given temperature
plus the natural logarithm of the pressure in atmospheres.
Our problem is to minimize (17), s first degree homogeneous form, subject
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to the linear equality and inequality constraints (14), (15), and (16). The
function

(18) ' Glu) = z (c;u; + u; log u,:)

is clearly convex.
For this application, then,

(19) A =G+ k> ag
- Z (w;log u; + é¥u;)

where 7% are the simplex multipliers of some iteration defined by relations
analogous to (10). Let

F
%
e

(20) = + a;
To find the Min A subject to
(1) z u; =1 (u; > 0)

we ignore the relations %; > 0 and find the unconditional minimum of the
function

(22) A= (wlogu + cu) =03 u —1)

where 0 is a Lagrange multiplier (see § 6-5). We set the partial derivatives of
A with respect to u; to zero; thus

aA
(23) —=1+logu; + & —0=0
ou;
whence «,; may be written in the form
k
(24) u; = Ae —4
where 4 = e~} >> 0. Substituting into (21) determines 4 and
: EN
(25) u,-:e—ej/Ze"':i
i=1
so that the conditions u; => 0 hold at the minimum. These, then, are the values
u; = u¥™" with which to initiate the next iteration.

24-3. SEPARABLE CONVEX OBJECTIVES

DerintTION: If the objective function to be minimized, instead of
being linear, is of the form

M > $ila;) = z (Min)

i=1

=
A
&

A
N:-‘

[482]




24.3. SEPARABLE CONVEX OBJECTIVES

where ¢ ;(x;) is a convex function, it is called convez-separable, a term used by
Charnes to describe this class of objective forms [Charnes and Lemke, 1954-1;
Dantzig, 1956-2]. We shall assume that %, is a given finite upper bound for z;
and the z; are subject to

(2) Zaﬁxj = b,' (i = 1; 2; LI m)

i=1

To illustrate, if the first 100 units of an activity can be performed at $1
per unit, the next 50 units at $1.25 per unit and the next 50 units at $1.50
per unit, then the total cost ¢(z) is convex in the range 0 << z < 200. In
general, if the first «; units cost s, per unit, the second a, units cost s, per
unit, . . ., the last a; units cost s, per unit, then the total cost ¢(z) is convex
ifs; <8, <. . .< s, but is not convex if, for any 7, s, > 8,,;.

ExercisE: The definition of a convex function is given in §7-1. Show
that it is equivalent to the definition: a function ¢(z) is convex if

(3) (D> d) < D Alan)

for any 4, > 0, such that X1, = 1.

Exercise: Show that, if the cost of the jtb activity-is proportional to
the square of the jtb activity, ¢,(x;) = c;2?, then $(z;) is convex for ¢; > 0
but is not convex for ¢; < 0.

As a third example, if the total cost ¢(x) consists of a fixed charge f and
the remaining cost is proportional to the activity level, then ¢(z) is convex.
On the other hand, if there is a fixed charge f only if z > 0, then we can
write

@ ¢(x)={f+hx,ifz>0

0, ifz=0

In this case ¢(x) is not convex, if f > 0.

ExEercise: Show that if f <C 0, §(x), above, is convex.

To replace equations (1) and (2) by a standard linear programming
problem, we assume that ¢;(x) is a broken-line function. Later we shall
remove this restriction. (In the event that ¢,(x) has a continuous derivative,
one can select k -+ 1 points on the curve such that the broken line fit-
through these points is a sufficiently close approximation.)

The Equivalent Linear Program.

Forr=0,1,2,. . . klet (f,;,g,; be the coordinates of the break points
(z;, ¢s(z;)) of the function ¢,(x) (see Fig. 24-3-I). Any z; in the range
Joi < %; < fi; may be represented by

(3) 2 = Aoifoi + Aufui + - - -+ Al ) (s = 0)
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where

(6) 1= Aoy + A+ - - - + Ay

/P(’u- 9ej)

¢ /
S ()
/
JRe (’2/" Uz/')
o *
R T R T 2PL%
/’d H 9_‘ ) T
_- g-venx/-§ rjftr;.
(’o,',ﬂo,')cr
o x

x9 /
/

Figure 24-3-I. Converting a convex function into a linear programming format.

Since ¢; is a convex function, we then have, by (3),

(7) $:(2;) < Aoigo; + Auighs + - - -+ A
To solve (1) and (2), determine A,; > 0, and Min 2’ satisfying

n

(8) z @il Aoifos + Aifri + - - -+ Awfis] = b; =12,...m)
j=1
9 A Ay ..+ A, =1 (4=1,2,...,n)
(10) z [A0i90; -+ Aisghs + - - -+ Aegis] = =7 (Min)
i=1
and substitute the resulting 1 into (5) to determine z;. To prove that solving
(8)—(10) is equivalent to solving (1) and (2), we have only to show that
Min z > Min2". From (7), Minz << Min 2’. To show that Minz > Min 2’,
take the z; yielding the minimum to (1) and (2) and represent them as combin-
ations of the abscissas of the two breakpoints immediately to the left and
right. The resulting A satisfy (8) and (9) and satisfy (7) with equality, so
that the z’ resulting in (10) equals Min z. Hence, Min z > Min 2/, as we were
to show.

Bounded-Variable Method.

It will be noted that the above procedure increases the number of
variables and increases the number of equations by one for each ¢;(z;). By
use of the upper bounding method, it is possible to maintain the original
number of equations. The original variables will be replaced by sets of new
bounded variables which (except in the cost row) will all have their several
columns of coefficients identical (so that a number of short cuts are possible;
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see Chapter 18). In Fig. 24-3-I1I the slopes of the broken line are denoted by s;
and the width of the intervals by «,.

Cost ¢

JI(NODQ)

ax

et O

B+ Ba+ -+,

Figure 24-3-II. Converting a convex function into & linear programming
format using bounded variables.

From the convexity of ¢(z) follow the relations

(11) <8< .. .8y

We now assert that

(12) &(z) = gy + Min [8,A; + $,4, + . . . + 8;:4,]
where

(13) x=07 + A+ ..+ A

and

(14) 0<A, <y

Indeed, since s, << 8, <. . . << g, it is obvious that the way to find the
minimum is to choose A, as large as possible until it hits its upper bound «,,
then take A, in turn, etc., until a A, is reached, such that setting A, = «,
the value of z is exceeded, in which case the value of A, is reduced so that
(13) holds. It is clear that this process is simply generating the curve ¢(z)

from 0 up to the value z.

Equivalent Linear Program.
To solve (1) and (2), determine A,; > 0 and Min 2’ satisfying

n

(15) za,-,-[Au + Ayt ..+ Ay)=b  (G=12...m)

j=1

[81581; + 805895 + . - . + 81;845] = 2’ (Min)
& -
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- where

(16) 0 A< oy

and determine z; by

(17) ;= Ay 4 Ay + .-+ Ay

The Variable-Coefficient Approach.

This method has the advantage that it uses the original convex functions
instead of a broken line fit. While the procedure appears to be the continuous
analogue of our earlier procedure, we do require the convergence proof of
§24-1 to justify it. Referring to equations (5), (6), and (7), we may write
in a purely formal way

(18) z; = bf;
1= }»5
éi(z;) < Ayg;

where (f;, g;) is a pair of variable coefficients. The set, C;, of possible
values for these coefficients consists of those points (f;, g;) for which
g; = &, f;). Since the function ¢, is convex, this set is convex by definition;
it is therefore appropriate to use the variable coefficient method given in
Chapter 22. In that chapter, however, we assumed that the C; were defined
by a finite number of linear equations. In that case the iterative process is
finite. The process is an infinite one if the derivative of ¢, is continuous and
non-constant. (See § 24-1 for convergence proof.)

Formally, the full system with variable coefficients takes the form:
Find z; > 0, f;, 9; = ¢;( f;), and Min z satisfying

(19) Multipliers
an % F X+ U Ty = b, )
Gy 2, A I = b, Ty
a’mlxl + amzx‘z + . + Cmnn - bm Tm

z, — My =0 =8
A =1 t
zy — Aofe = —Sg
).2 - 1 tz
T, — ]"nfn =0 —8p
i =1 Iy

Mg, + Ay + . .+ - + Agp =2 (Min) |
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where the multipliers associated with the system are shown on the right.
In all, there are 2n + m constraints.

Exgrcwsg:  Show that the set of possible coeflicients (f;, ¢,) in (19)
is a convex set.

According to the variable coefficient theory (Chapter 22), a basis is
formed using particular values for f; and g, where one is allowed to form
columns using more than one set of (f;, g,) values for a given j. Certain of
the j will have associated with them just one column of values ( fiv 95)in
the basis, and others will have two associated values (f;,, g;) and ( Fies 9i2)-

ExERCISE: Show that it is not possible to have zero or more than two
different (f;;, g;:), 4 =1, 2,3, . . . in a basis.

We will use 4,, for the variable associated with ( fii 95:)- It can be arranged
that all the z; are in the basic set. For example, we could initiate Phase I
with z;, 1;, and a set of m artificial variables as a basic set. Since z; can be
assumed unrestricted in sign, they will remain in all subsequent basic sets.
Assuming no artificial variables remain at the end of Phase I, it follows,
because there are 2n -+ m basic variables, that » are x;; m — m are singles,
4;; and m are pairs, 4;, and Aj,.

Interpreted another way, m of the z;, say Z,

x; , satisfy a
relation

]-2, .. ey

(20) sz <fp (J =Ji
while the remaining z; satisfy
(21) z; = fi (J #3732

ExsrcisE: Discuss the case where there may be artificial variables in
Phase II.

THEOREM 1: The simplex multipliers are determined by

(22) 8 = (g52 — 95 [(fso — f31) (G=Jvde - - +Jm
m
(23) z Q7T = 8; (j =jlrj2) .. '7jm)
i=1 :
m
(24) 8; = Qyi7ry for j 5~ j;
2
(25) ti=9n — 8fn all j
Proor: From (19) we have that
(26) 8ifn +ti=gn (F=1trJe- - o Jm)

8ifis + 8 = g3

Subtracting the first from the second and solving for s; give (22). Equations
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(23)-(25) follow directly from (19). Note that in (23) the s; are known and
- the 7r; are to be determined, while in (24) the 7r; are known and the s; are

determined. In (25), only ¢; is unknown.
For optimality of a solution z; = x7, we require that

(27) gj—(sjfj+tj)20 j=1L12...,n)

for all possible choices of (f;, g;)-
ExeRcISE: Why is this sufficient ?
Since s; and ¢; are fixed, we solve the subproblem of minimizing

z; = ¢:(f;) — s;f;- If ¢; has a continuous slope, ¢;(f;), we seek f; > 0 such
that

(28) d:f) =s;

In Fig. 24-3-111, we graph the function g; = é,(f;), and for each point (7, g3) on
the curve we consider the line passing through it, g; — 8;f; = g2 — s3f?. We
then seek that line with minimum g; intercept, denoted by z;. By (28) this
occurs at the point of tangency if such a point exists.

t K/, .
(Case 1) tj

z; % =Min 2/ .
J n gy 2;*:Min 2

Figure 24-3-IIT. Solving a separable objective problem using a generalized
programming approach.

It may not be possible to find such a tangency point (f;, g;), for it may be
that the slope at f; = 0 is greater than s;; then the best choice is f; =0,
g; = $;(0), since convexity of ¢;(z) implies a monotone increasing slope. If
$i(f;) < s; for all f; > 0, then the best choice is f; = h;. If j corresponds
to a variable having two associated A’s in the basis, then the slope of the
line joining (f;1, g51) t0 (fia 952) i8 85, by (22); in this case there is always
somewhere between these two points, a point satisfying (28), provided the
slope is a continuous function of f;. We conclude

[ 488 ]




24-3. SEPARABLE CONVEX OBJECTIVES

THEOREM 2: A solution (23, z}, . . ., 28) is optimal if for each j the
simplex multipliers s; determined by Theorem 1 satisfy

s; =¢i(x) if 0 <2l <Ay
s;<$)(0) if 0=22
8; > ¢ (hy) if 23 = h;

or, more generally, ¢J(x}) << s; << $X(2%) where ¢* and $*, the left or right

derivatives, are omitted for $*(0) or $F(h;).

Algorithm.

The foregoing analysis suggests a variant of the simplex method in
which m variables z; are considered basic, with bounds f;; < z; < f;, and
n — m variables are non-basic at fixed values f;,. It is assumed a basic
feasible solution z; = z7 of this type is at hand to initiate the algorithm
whose steps are as follows:

Step 1. Compute slopes s; = $;(z5); for basic variables z;, either decrease
upper bound, f;,, or increase lower bound, f,;, so that the adjusted bounds
are closer together and satisfy
(29) 5; = (a9 = T2 " In (2, basic)

fre = fa

“(In case ¢j(z;) is discontinuous, replace ¢;(z;) by the left derivative ¢X(x;)

in the above discussion.)
Step 2. Compute the simplex multipliers =; by (23).
Step 3. Compute the s; and ¢; for non-basic variables by (24) and (25).
Step 4. For non-basic j, determine f* such that

@) J5 =0 if s, < 420)
(b) f¥ = &; if s; = ¢F(h;)
(¢) dHfF) < s; < $R(fF) otherwise

7

Step 5. Compute g} = ¢,(f¥) and 2¥ = g¥ — s,fF.
Step 6. Determine p, non-basic, such that
(zF — ) =Min(z* —1;) < 0
- J non-basic
If Min (z; — ¢;) = 0, terminate. The basic solution is optimal.
Step 7. Keeping all other non-basic variables at their values f;,, adjust
the value of z; and the basic variables as follows:

Decrease or increase z, from its fixed value f,; according to
whether f¥ is less than or greater than f,;. Drop the basic variable which
hits its upper or lower bound first or stop if z, hits the value f* first. In the
latter case, f¥ is the new fixed value of z, which is still non-basic. In the
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former case, z, becomes a new basic variable with J¥ and f, as its new
bounds; the basic variable which hits its bound is then dropped from the
basis and fixed at the value of this bound.

Convergence: It is not known whether or not the algorithm as given
above converges to Min z. In order that the proof of convergence given in
§ 24-1 apply, some provision must also be made in the algorithm for first
re-introducing into the basis any previously generated column such that
9; —sfi — 4 <0.
~ Exercise: Expand the algorithm to allow the re-introduction of
previously generated columns. Review the proof of convergence and show
why it breaks down if the latter is not done.

Exsrcise: Develop a simpler form of the algorithm by replacing the
upper and lower bounds f;, and f;,, as defined above, by f;, = O and fj; = &;
and setting s; = ¢;(zj) for basic z;.

24-4. QUADRATIC PROGRAMMING

Although a convex quadratic objective can be treated by the methods
of § 24-1 and can be reduced to the convex separable case discussed in § 24-3,
the linear nature of its partial derivatives has given rise to an elegant theory
important in its own right. It is doubtful at this writing that the full poten-
tiality of this theory has been realized.

Quadratic programs can arise in several ways; four listed by Wolfe in
his [1959-1] paper are as follows:

Regression: To find the best least-square fit to given data, where certain
parameters are known a priori to satisfy linear inequalities constraints.

Efficient Production: Maximization of profit, assuming linear production
functions and linearly varying marginal costs [Dorfman, 1951-1].

Minimum Variance: To find the solution of a linear program with
variable cost coefficients which will have given expected costs and minimum
variance [Markowitz, 1956-1, 1959-1].

Convexr Programming: To find the minimum of a general convex
function under linear constraints and quadratic approximation [White,
Johnson, and Dantzig, 1958-11. .

Historically, it was Barankin and Dorfman [1958-1] who first pointed
out that, if the linear Lagrangian conditions of optimality were combined
with those of the original system, the optimum solution was a basic solution
in the enlarged system with the property that only one of certain pairs of
variables were in the basic set. Markowitz [1956-1, 1959-1], on the other
hand, showed that it was possible to modify the enlarged system and then
parametrically generate a class of basic solutions with the above special
property which converged to the optimum in a finite number of iterations.
Finally, Wolfe [1959-1] proved that an easy way to do this is by slightly
modifying the simplex algorithm so as not to allow a variable to enter the
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basic set if its “complementary’” variable is already in the basic set. Thus,
by modifying a few instructions in a simplex code for linear programs, it
was possible to solve a convex quadratic program! We shall present here a
variant of Wolfe’s elegant procedure. The chief difference is that ours is
more nearly a strict analogue of the simplex method ; it has a tighter selection
rule and a monotonically decreasing objective.

Preliminaries.

Before stating the problem, let us note that every quadratic form can be
conveniently expressed in terms of a symmetric Tnatriz associated with its
coefficients. For example, for n = 3 variables,

(1 Q) = €472 + €2} + 2z + 20152,%5 + 20037575 + 26137,

Cuu G2 Cy3 z r
=[%), Ty, T3] [C12 Cop Cpa| [Zp| = 2"Cx

Ci3 Caz Ca3 T3

where T stands for transpose.
DerFiniTION: A quadratic form is called positive definite if z7Cz > 0
for all x % 0; it is called positive semi-definite if z7Cx > 0 for all z..
Problem: Find z = (z;, 2, . . ., 7,) > 0 and Min Q(z) satisfying

(2) : Az =b 4 = [ay) G=1,2...m)
zT0x = Q(z) C = [¢;]

where @(z) is a convex quadratic function.

LemMa 1: zTCx is convex if and only if it is positive semi-definite.

ProoF: Assume z7Cx is a convex function. To prove z7Cz >0,
suppose on the contrary, (x°)TCx° < 0 for some z = z°. Then, for ' = —2°,
it is also true (z')7Cz’ < 0 and for any convex combination, z*, of z° and '’
we also have (2*)TCx* < 0 because z7Cx is convex. In particular, for
z* = }2° 4}’ we have (32° + 32')T0(32° + $2') < 0 or (0)TC(0) < 0, a
contradiction, since $2° + }z’ = 0.

The convexity of a positive semi-definite form follows from Lemma 2
below because a linear transform, £, of the variables z reduces Q(z) to a
sum of convex functions in Z.

Lemma 2: If z7Cx is positive semi-definite, there exists a non-singular
matrix E such that a change of variables x = EZ yields

(3) xTCx = Aijg’ (}., 2 O)
2.4

where A; > 0 is the jtb diagonal element of a diagonal matrix ETCE.
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Proo¥: Select any variable, say z,, with ¢;; > 0. (See first exercise
below.) Express @Q(z) as a quadratic polynomial in z; and “‘complete the
square’’; thus

n n n
4y 2TCx = ¢, 22 + 2z, Z €, + z z 4% 5, (e > 0)
iz iTwj o2
1 " 2 1 " 2 noon
=~ Z Y Z ci%; |+ z CiiTi%;
11 i=1 11 j=2 1=2j=2
1 n n
= — i+ z X3
c e
u i=2j=2

where £, = S"_, ¢,;z; and ¢j; = (€365 — €1i€15)[6n1- The process may now be

Li=1

repeated using the quadratic expression in (g - - -» %,) on the right. The
process terminates in k < n steps. Set Z; = z; and A; =0 forj =k + 1,
N
ExgrcisE: Show that either ¢, > 0 orall ¢y =¢p - - - = ¢ = 0in

a positive semi-definite quadratic form.

Ex©ERCISE: Show that the determinants of all the principal minors of
C are positive if @(z) is positive definite, in particular ¢;, > 0.

Exercise: Show that if k = n, Q(z) is positive definite; and that if
k < n, it is semi-definite.

ExErcisE: Apply Lemma 2 to show that, if xTCx is positive semi-definite
and if (2°)7C2° = 0, for z = 2°, then Cz* = 0.

Exgercise: Complete the proof of Lemma 1.

Optimality Conditions.
Let A4, C; denote the jth columns of 4 and C, respectively, and let
(5) y; = Cle —md; (m =1y, Tgs o« o )

TuroreM 1: A solution x = 2° is minimal if there exist m = m° and
y = y° such that

(8) Axe=b, 22>=0
(7) ¥ = CFx —m4; =0 (j=1,2,...,m)
(8) =0 if 29> 0

Proor: Rewrite Q(z) in the form

n

©) Q@) — Q@) =2 > [Z c,-,-x:] (w5 — )+ > > eulws — 2z — )
j=1

j=1 i=1

i=1

=2 Z (CT2)(z; — 20) + (& — 2°)Clx — =°)

j=1
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Let z = 0 be any solution satisfying Az = b, then
(10) Alz —29) = > dylw; — ) =0
j=1 -

Multiplying on the left by 2#° and subtracting from (9) yield

UDQw—mw=22w%—wgm—@+u—wmu—w
i=1

=2Zﬂ%—m+u—mmu~m

=1

For the class of solutions with the property y? = 0 for z > 0, (11) simplifies to

a2 Ae) — Q) =2 3 oz + (@ — 2970 — )

v3#0

Note that (12) holds by (8) and ¥; = 0 holds by (7), thus all terms in (12)
are nonnegative, therefore Q(z) > Q(2°).

Improving a Non-optimal Solution.
Consider the system

(13) Az =b (x >0)
Cx —ATrT — Iy =0

where 2TCz is assumed to be positive semi-definite. Let z°, #°, %° be a basic
feasible solution associated with a basic set with the complementarity property,
namely, for each j either z; or y;, but not both, is in the basic set. We shall
assume further that the right-hand side has been perturbed to insure that
all basic solutions are nondegenerate. Note that neither = nor y is sign
restricted; only x > 0 is required for a feasible solution to (13); an optimal
solution will have been obtained if y; > 0 and zy; = 0 for all j.

TreoREM 2: If a basis is complementary and 32 < 0, then any increase
of the non-basic variable z,, with adjustment of only the basic variables, generates
a class of solutions z', n’, y', such that zTQux decreases as long as y, < 0.

Proor: Let z be any solution in the class above, i.e., generated by
increasing z,; in particular, let 2’ be generated by z, = z,. Analogous to
(11), Q=) — Q(z") = 2y,(z, — z) + (x — z')TC(x — ') since for all VECR
either 2; = ] = 0 if 2, is non-basic or if z; is basic y; = y; = 0 by the
complementarity assumption. The adjusted values of the basic variables are
linear functions of z,, hence it follows that (z — ') = (z, — x/)v where v is
a constant vector. Hence, Q(z) — Q(z') = (z, — z))[2y, + (z, — z})(vTCW)]
and it is clear that, if y; < 0, the right-hand side is negative for sufficiently
small (z, — z} > 0.
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Moreover for Q(x) to decrease ‘with an increase of z, > 0 from, say, z,
to z!, it must be accompanied by y, < y, because

Q") — Q') = 2(z] — x,)y, + (%7 — x;)ivTCv
and, by interchanging the roles of z’ and z",
Q') — Q") = 2z, — 2)ys + (2 — =) Cv

whence 2(y” — y!) = 2(z! — z/wTCv > 0. But v7Cv # 0 because v7Cv = 0
implies Cv = 0 for positive semi-definite forms (see last exercise following
proof of Lemma 2) and if Cv = 0, then from (9), Q(z") — Qz') = 2(z) — x,)
(@)TCv + (z; — x)%TCv = 0 which contradicts Q(z") — Q(z') <0; we
conclude ¥, > v,.

As in the simplex method, we require that all solutions generated by
increasing x, and adjusting the basic variables remain feasible, i.e., z; > 0 for
all j. In this process, either y, attains the value zero first, and thus can be
dropped from the basic set, or the value of some basic z, attains the zero
value first and is dropped.

THEOREM 3: If z, drops as basic variable, introduction of y, either causes
zTCx to decrease (and some z, or y, to be dropped) or causes z7Cx to stay
fized and y, to be dropped; if =z, is dropped, this theorem may be reapplied;
if y, is dropped either initially or upon increase of y, Theorem 2 may be
reapplied.

Proor: Our proof is completely general; however, for convenience we
will illustrate it on system (14)

(14) T, T, Ty x, zg | —m —mltn Yo Y Ya  YUs Constants
A Gy Gz Ay Qg b,
Qg Qg Qg Gy Qg by
€31 €2 C3 G G5 | Sn  %: -1
Cig Ca Coz Caq  Cas | %1z O22 -1 0
Cjz3 Ca3 Cag C3q Cs5 [ C1a  Cos -1 0
Cia  Cas €3¢ Caa Cas | B4 G -1 N g

Let system (14) in vector form be

(15) Plxl+P2x2+P3x3+P414+P5x5+(P6171+P7112)
+P1?/1+sz2+Psy3+P4?/4+P5ys=Po

We suppose that we have on some cycle a basis B and a basic feasible com-
plementary solution (2°, #°, 3°) with basic variables z;, Z;, 3, %4, 71, T2» Ys
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and the value of y; = y2 < 0. In this case, z; will be the new basic variable
and we assume that x, will drop. This yields a new basis B’. In (14), the
heavy dots (@) indicate that the column is in the basis B, and the star
indicates that the column P; associated with x, is replacing a vector P, of
the basis B to form basis B’; see second row of dots. The dropping of z,
automatically requires that y, become the new basic variable for the basis
following B’; see % in the B’ row of (14).
Let the representation of both P and P, in terms of the basis B be:

(16) P5=P1“1+Pz“z""Ps“3+P4“4+(Ps“s+P7“7)+P5°_‘5
(17) P4=P13-1+P2]~2+P3}~3+P4}-4+(Pa;-s+P7}~7)+Pszs

We first show that 4, < 0 in (17). Setting A = (4,, Ay, A3, 4,), the first six
rows of representation (17) yield (18) and (19):

T —

(18) oy a1z a3 ay)d = 0
T —

(@21 Gy @y ag] A = Y

Ci1 G2 C13 Cyg ay an 0

) Cla Coz Coz Cgy Q32 Q29 0

(19) AT + }-s + A7 = 0

€13 Ca3 C33 Cyy a13 Qo3
Ci1a Caq Cag Cyy Q14 oy -1

Multiplying (19) by A4 on the left and denoting the square matrix by C,
yield, by (18), AC, AT = —4,. Since AC,AT is positive semi-definite (C, is a
principal minor of ), ACAT > 0 and 4, < 0.

Case 1, < 0: Our objective is to show that, if 2, drops out of the basic
set upon introduction of z; into the basic set and if the non-basic comple-
mentary variable to z,, namely y,, is subsequently increased (with adjust-
ment of the values of the new basic variables), then z; and y; will continue
to increase and zTCx to decrease as long as y; remains negative. This
assumes 1, < 0. (Later, for the case i, = 0, we shall show that z; and
z”Cz will remain unchanged but ys will decrease to zero when y, is increased
in value.) Let the representation of P, in terms of the basis B’ be

(20)  Py= P} + Pod; + Pody + Pli + (Peh; + Pody) + P,J;
and let the basic solution associated with B’ be
(21)  Py= Pz + P, + Py, + Pz, + (Pgmy + Pyr;) + Py,

We observe that in the representation (16) of P; in terms of B, the
weight «, on P, is positive (since z, decreased when z, increased). Since (20)
is obtained by eliminating P, from (16) and (17) and since 1, < 0 and
ay > 0, it follows that A5 <0, If y, = 6 > 0 units of P, are introduced into
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the solution and the values of the basic variables are adjusted, we obtain
from (20) and (21),

(22) P, = Py(x! — ) + . - - + Plzy — 043) + Play — 045) + . - .
+ P + Pyly; — 04;)

Thus x5 = , — 0; will increase wheny, = 0 > 01is increased since A; << 0.
Moreover, we may adopt the point of view for the purpose of the proof, that it
is the increase in z that is “‘causing’ the increase in y, (instead of the other
way around), so that we are, in fact, repeating the situation just considered
of increasing zs and adjusting the other “‘basic” variables, except here y, is
in the basic set instead of z,. It follows, therefore, as before, that an increase
in z, decreases 27Cz as long as y; remains negative in value in the adjustment
of the basic solution by the increase of ;.

Case A, = 0: On the other hand, if 4, =0 in (17), then we must set
1; = A} in (20) because the representation of P, is the same, whether in terms
of B or B'; hence, 4, = 0. In this case 1C,AT = —A, = 0 and therefore,
because C is positive semi-definite, C,4 = 0. In addition, A = 0 must hold
because 1 # 0 implies a dependence of the first four columns of (18) and
(19) which is impossible because then the square array of coefficients of (18)
and (19), and in turn B, would be singular. Setting A, . .. A = 0in (20)
and (21), we observe (and this holds in general) that P, is dependent only on

the columns of =; and of y;, and therefore the values of zj — 62; remain

unchanged in (21) with increasing values of y, = 6.

Because the y; are not sign restricted, y, can be increased until y; is
dropped out of the basic set at value zero (since all z; values are unaffected).
Hence, in this shift of basis there is no change in the value of z7Cxz; however,
the introduction of y, into the basic set and the dropping of y, give rise
to a new basic set that satisfies the complementarity property. We may thus
reapply Theorem 2 to reduce 2TCx.

The Quadratic Algorithm.

Step I. Initiate: Let z° be a basic feasible solution for Ax = b,z >0,
with basic variables z;, z;, . . ., %; 3 choose for the initial set of basic
variables z; for the enlarged problen’xn these x; , the complements y; of the
non-basic z;, and the set of =;. _

Step 1I. For the values of y; of the basic solution, determine Min y} = 7.
If 42 > 0, terminate; the solution is optimal. If 4° < O introduce into the basic
set z,; if y, drops from the basic set, repeat Step II. Go to Step III if x, drops.

Step III. Introduce y, into basic set. If y, drops, return to Step II;
otherwise, if some z, drops, repeat Step III with r, playing the role of 7.

THEOREM 4. The iterative process is finite.

ExgrcisE: Prove Theorem 4.

Exercise: Extend the results of this section to cover the case of a

convex objective form consisting of mixed quadratic and linear terms.
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24-5. PROBLEMS

Determine s by

Minyf =ys°.

No

Terminate; basic
solution s optimal.

Yes

Increose xg; adjust

bosic voriabies.

Drop

Ys -

Drop 4,5 increose
yr‘;adjust
basic variabies.

Figure 24-4-1. Flow chart of the quadratic programming algorithm.

24-5. PROBLEMS
. Show that the bounded variable problem of §24-3-(12), (13), (14) is

equivalent to the original convex-separable problem.

to enter the basic set if A, is in the basic set.

easier ?

. Show for §24-3-(15), (16), (17) that, if A,q 18 in the basis, A, is not,
where ¢ 5 p. Show under the simplex criterion that A,, is not a candidate

. Solve the distribution problem below by both methods of § 24-3. Which is

Total
Tin iz T3 Xy 9
Loy Tag Taz Ty 9
T3y Zap Tzz Ty 9

5 10 4 8
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.where the cost per unit shipped from (i) to (j) has incrementally increasing
costs per total amount shipped as follows:

1st unit
2nd ynit
3rd unit
4tb unit

..........

Cost per Unit

4. Show that the total cost ¢(x) of shipping z = z;; units from ¢ to j in
Problem 3 is ¢(z) = z(z + 1)/2 if z is an integer. Show that, if we set
#(z) = z(z + 1)/2 for fractional values of z, the optimal solution has

fractional values for x,;.

5. Show how to get a solution to a distribution problem with integer-valued
variables when the objective form is convex-separable. To be precise,
find integers z;; = 0, Min z satisfying

M=
2

.
]
-

Z;j

e

-
[]
—

L

i

a; (t=12,...m)

b,' (j=1,2,...,'n)

§5¢ﬁ@mﬁ:=z(hﬁn)

where a; and b; are integers, and ¢,;(x;;) are convex functions (for example,

biilxy) = o or z;(x; + 1)/2).
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CHAPTER 25

UNCERTAINTY

In the final analysis, most applied programming problems involve un-
certainty in either the technology matrix or the constant terms. The
techniques discussed so far, however, do not take into account the uncertain
nature of the coefficients of the program. In the period 1955-60, various
individuals have tried to extend linear programming methods to deal with
the problem of optimizing in some sense an objective function, subject to
constraints whose constants are subject to random variation [Dantzig,
1955-1; Ferguson and Dantzig, 1956-1]. One of the basic difficulties is that
the problem is capable of many formulations, with only fragmentary results
for each of the formulations [Madansky, 1959-1]. In this chapter we shall
examine some of the solved problems in this area, cautioning the reader
that the treatment is incomplete and that much research remains to be done.

For the concepts of probability and statistical theory used in this chapter,
the reader is referred to [Feller, 1957-1].

25-1. SCHEDULING TO MEET VARIABLE COST

By way of background let us recall that there are in common use two
essentially different types of scheduling applications—one designed for the
short run and one for the long run. For the latter the effect of probabilistic
or chance events is reduced to a minimum by the usual technique of pro-
viding plenty of fat in the system. For example, consumption rates, attrition
rates, and wear-out rates are all planned on the high side; times to ship,
times to travel, and times to produce are always made well above actual
needs. Indeed, the entire system is put together with plenty of fat with the
hope that it will be a shock absorber, which will permit the general objective
and timing of the plan to be executed in spite of unforeseen events. More
precisely, the fat is introduced into the system so that, whatever be the
random unforeseen event, the activities chosen will still be feasible. Activities
which satisfy this proviso are called permanently feasible.

The effect of chance events is also reduced to a minimum by the technique
of providing plenty of slack in the system. By this we mean that scarce
exogenous inputs to the system are estimated on the low side, so that it is
highly unlikely for the set of chosen activities to be infeasible because of
shortages.

In the general course of things, long-range plans are revised frequently

[499 ]



UNCERTAINTY

because the stochastic elements of the problem have a nasty way of intruding.
For this reason the chief contribution, if any, of the long-range plan, is to
effect an immediate decision—such as the appropriation of funds or the
initiation of an important development contract.

For short-run scheduling, many of the slack and fat techniques of its
long-range brother are employed. The principal differences are attention to
detail and the short time-horizon. As long as capabilities are well above
requirements (or demands) or if the demands can be shifted in time, this
appreach presents no problems, since it is feasible to implement the schedule
in detail. However, where there are shortages, the projected plan based on
such techniques may lead to actions far from optimal, whereas these new
methods, where applicable, may result in considerable savings.

Minimum Expected Costs.

A nutrition expert wishes to advise his followers on a minimum-cost diet
without prior knowledge of the prices [Stigler, 1945-1]. Because prices of
food’ (except for general inflationary trends) are likely to show variability
due to weather conditions, supply, etc., he wants to assume a distribution
of possible prices rather than a fixed price for each food, and determine a
diet that meets specified nutritional requirements and minimizes the
expected total cost. Let z; be the quantity in pounds of jtt food purchased,
p; its price; let a,; be the quantity of the ith nutrient (e.g., Vitamin A)
contained in a unit quantity of the jtt food; and let b; be the minimum
quantity required by an individual for good health. Then the z; must be

chosen so that -
n

(1) Za“xj > b, x; 26 (z=1,2,...m)
j=1

The cost of the diet will be
n
(@) C=> pp
j=1

However, the x; are chosen before the prices are known, so that for the fized
selected values of z; the total cost C becomes a random variable that is a
weighted sum of random variables p;. We shall denote the expected value of
any variable, say u, by €u or &(u). Accordingly, the expected cost £ of such
a diet is clearly

(3) E=8C = b
j

where 7, is the expected price of food j. Since the p; are assumed known in
advance, the best choices of z; are those which satisfy (1), and minimize £.
We have, therefore, in general
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THEOREM 1: If the unit costs p; in (2) are randomly distribuled inde-
pendently of the x;, then the minimum expected total cost solution is oblained by
Jinding x;, > 0 satisfying (1) and minimizing C with p; replaced by p; = &(p;).

On the other hand if each p; depends on z;, we write p;x; = ¢,(x;, p;);
remembering the expectation of a sum is equal to the sum of the expectations:

4) E=&C = i&ﬁj(xf: p;) = i éi(=;)

j=1 j=1

where ¢(z;) is some (not necessarily linear) function of x,. Special methods
for minimizing E for the case where ¢(z;, p;) is convex in the z; were given
in § 24-3.

The following example illustrates a case where the expected cost is not
linear in the x;. Let z; be the quantity of the jtt good manufactured and let
the constraints be manufacturing capacity restraints. Assume that costs are
threefold: there are a non-random manufacturing cost ¢,;, a non-random
stockage cost c,; for those items not bought by a random demand, and a
non-random shortage cost ¢,;, if the random demand exceeds the supply; -
then

E= Z CosZ; + Z € i6(x; — djlz; > dj) + Z 8 (d; — zjlz; < dy)
J 2 2

where the symbol &(4|B) is read the expected value of A given that B i3 true.
This problem, though set up as a one-stage problem with the uncertainty
appearing only in the objective function, could be set up as a two-stage
problem with the uncertainty in the constraints instead. As such, it becomes
a problem of the type described in § 25-2 and. treated more fully in §25-3
and in Elmaghraby’s paper {1960-1].

Minimum Variance for Fixed Expected Costs.

Referring again to our nutrition problem, it may be desirable to control
‘the variance V of the expected costs. Thus, a solution to (1) and (3) that
results in a low expected cost, but one that has great variability, may not be
as desirable as one which shows greater cost stability. This certainly was the
case considered by H. Markowitz in his analysis of “portfolio” selections
[Markowitz, 1952-1]. Stockbrokers often advise their customers to buy a
variety of stocks, some of which they regard as very safe, low-yield stocks,
while others (like oil exploration stocks) may have a high average yield but
show great variation (depending, say, on whether or not oil is discovered).
The objective of such an analysis is to produce for each of a variety of
expected profit levels —E, portfolio selections that minimize variance (Fig.
25-1-1).

It is then left to the customer to decide what combination of “yield
level” and “risk level” (Min V) he wants.
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Let us now assume that the price is independent of z; and that we know
the variance (or standard error squared) o? of p;, the price of an individual
item, and the covariance o;, between two prices p; and p;. Let o, = 0;0%0;x
where the correlation coefficient between the two prices p;; satisfies —1 <
ps << +1. Since all z; units are purchased at the same cost p;, the variance of

Minimum varionce Minimum variance

Expected cost (£) Expected protit (-£)

Figure 25-1-I. Minimum variance is a convex function of expected cost or profit.

z;p; is given by xfo? and the covariance between z,p; and x,p, is given
by x;2,0;. From this it follows that the variance V of E is given by the

quadratic expression
n

(5) V = é[C — EP ='Z Z %05k (03 = 03)

j=1k=1

If, in particular, food prices are highly correlated so that for all practical
purposes p;; = 1 and g;, = 0,04, then in this case it would be advisable to
replace V! by the linear expression bounding it given in (6),

(6) V< 2,00 + %305 + - - - + Zu0n

where equality holds if all correlation coefficients pj = 1. On the other
hand, if the prices are independent so that p;; = 0, then

(7) V = 22¢? + alol + . . . + zkon (pir = 0)

We now address ourselves to the general problem of determining the
solution to (1), (3), and (5) that minimizes V for fixed E.

Case I: VY is Linear. 1f (6) holds, then we solve the problem of
determining Min V* subject to £ << E*, where E* is an upper bound which
we wish to impose on expected costs. Since the restriction is linear, we may
study the effect on ¥V of varying E* as a parameter. In this case we have a
standard parametric programming problem (see § 11-3).

Case II: V isa Sum of Squares. If (7) holds, then V is convex-separable
and the convex functions z? may be approximated by broken-line functions.
This reduces the problem again to a standard parametric programming
problem (combined with an upper-bounding technique, if desired). Here
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we are varying one of the constant terms. See § 11-3 and § 24-3. However, the
following alternative is recommended. Replace V by

(8) V=2alo?+ale+ ...+l +k-E* (E < E*)

Again using a broken-line fit for 22, the problem is first solved using k& = 0;
it is easy to see that this corresponds to setting E* = + co. If now & is
allowed to increase gradually, a critical value k = &k, would be determined
for which the solution would no longer be optimal. This will result in one
or more basis changes until the solution is again optimal. After this, k can
again be increased until a new critical value k& = %, is obtained, ctc.

ExEercise: Prove the latter procedure is the first parametric linear
programming method in disguise. Develop other alternatives based on § 24-3.
Why is E* instead of E used above ?

It is probably worth while, however, instead of choosing to increase k&
gradually, to choose a number of discrete values in advance. The solution
will generate a number of different pairs of E* and V values that can be used
to spot points on the curve. A plot of E* against k£ can be used to
determine what new % values to use if a better spacing of E* values is
desired.

Case II1: V Is General. Since V is positive (semi-) definite, it can, by
a suitable linear transformation, be reduced to Case I1; hence this procedure
can be used in general to effect a solution to the problem. Alternatively, a
general quadratic programming procedure such as that developed by
Markowitz [1956-1] or by Wolfe [1959-1] may be used, combined with a
parametrie programming method for the right-hand side (see § 11-3). How-
ever, an analogue of (8) using an E* term weighted by a parameter k is
recommended.

ExEercise: Combine methods for solving quadratic programs and
parametric programs as given in §24-4 and §11-3 to solve the minimum-
variance problem.

25-2. SCHEDULING TO MEET AN UNCERTAIN DEMAND

Let us consider a simple case: A factory has 100 items on hand which
may be shipped to an outlet at the cost of $1 apiece to meet an uncertain
demand d. In the event that the demand should exceed the supply, it is
necessary to meet the unsatisfied demand by purchases on the local market
at $2 apiece. The equations that the system must satisfy are

(1) 1000=2+y (@, y,v,8 =0)
d==x +v—=s
C=z -+ 2
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where {x = number shipped from the factory,
y =: number stored at factory;
{v = number purchased on open market,
s = excess of supply over demand;
d = unknown demand uniformly distributed between 70 and 80;
C = total costs.

We view the shipping and purchasing as part of a two-stage process. In the
first stage a decision is made consistent with the initial inventory of amounts
to ship. In the second stage, the unknown demands occur.

The simple example above belongs to a general class of two-stage
problems that have the following structure. In the first stage, 2; > 0, u, >0
are determined such that

n

(2) Z%@=wi G=1,2...,m)
j=1
n

Z Aty U k1,2, ..p)
i=1

where the initial inventories b, for i = 1, 2, . . ., m are known; the z; > 0

represent decisions in the first stage resulting in specified quantities u, being
made available for the second stage. For the second stage, the quantities v,
and s, are determined such that -

(3) dy = Uy + v — 8 k=1,2,...p)

where d,, is the unknown demand whose probability distribution is known,
v, is the shortage of supply, and s, is the excess of supply over demand.
Assuming for convenience no purchases on the open market in case of
shortage, the total cost is of the form

n ?
(4) C = Z cit; — ka(dk — v,) where v, = 0 if u, > d;
=1

j=1 k

where c; is the cost of performing the jt# activity and f, = 0 is the revenue
from satisfying one unit of demand. Thus, it always pays to sell as much of
the amount, u,, supplied as possible so that (d, — v,) = Min (u,, d;) and

n y 4 .
(5) C= Z C5%; — ka Min (u,, dy)
j=1 E=1

It is clear that, for any particular choice of x; and u, consistent with
the first-stage equations, the value of C' depends on this choice and on the
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unknown demand. Hence, for fixed choice of z; and u; the expected value
of C is given by

n 2
(6) &C = Z c; — szé’ Min (u;, d;)
j=1 k=1
Since the expected value of Min (u, d;) depends on u,, let us denote
this function (of ;) by
(M $i(ur) = € Min (uy, dy)

Given the demand distribution of d,, the function ¢(u;) is easily calculated.
Suppose di, = 1, 2 with probability 1, 4, respectively, then ¢,(u;) is easily
determined.

Amount Sold Expected
Amount . 1
Supolied d, — v, = Min (u,, d,) Value
(8) PP (revenue)
(1) where d;, = 1 | where d,, = 2 rluy)
* (1) (2) 3)
O<uy, <1 Uy Uy Uy
u, =1 1 1 1
l<u,<2 1 Uy 1/2 + u,/2
Uy = 2 1 2 3/2
2 < uy 1 .2 3/2

! Entries in column (3) are formed by multiplying the entries in
column (1) by p, = 4, those in columnn (2) by p, = }, and summing.

In general, to compute ¢(u) = & Min (u, d) where d can take on succes-

sive values e, < e,, . . ., < e, with probability p,, p,, . . ., p,and 3! p, = 1,
we note
9) Min (u,d) = u ifd>u

Min (u,d) = d fd<<u

Suppose e,_; < u < e,, then
$(u) = u Prob (d > u) + Prob (d < w)(d|d < u)
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whenco
(10) $(u) = w(py + Proa + - - -+ 2) + (P + €Pe + . . -+ €r1Pr-1)
=ul—py—Ps— . . . —Prog) T (@D + 2P+ - - . + e,_1Pr1)

where we define, for r = 1 in (10), ¢, = 0 and p, = 0. Thus, ¢(u) is a broken-
line function starting at the origin with initial slope s; = 1; at u = e, the
slope decreases to s, = 1 — p,, ete. (see Fig. 25-2-I).

Expected revenue

#(v)

Amount supplied: v

Figure 25-2.1. Maximum expected revenue is a concave function
of the amount supplied.

Referring to our section on convex separable functions, § 24-3, it should
be noted that —d(u) is conver because of the decreasing slopes in Fig.
25.2.1. Indeed, s; — $;,, = p; > 0. We have therefore shown a result of
H. Scarf (informal demonstration to the author).

THEOREM 1: The total expected costs under uncertain demand 18 a convex
separable function

an 0= o/~ S febutn

j=1 k=1

where $.(uy) is a broken-line function whose slope between two successive
demands d,, = e, y, and e, ; is equal to the probability of exceeding the demand

er.k
TreorEM 2: To minimize expected costs, determine xz; >0, u; >0,

satisfying (2), such that the convex separable function (11) is minimized.

Continuous Demand Distribution.

To illustrate an example involving a continuous dlstnbutlon consider
the small two-stage case described earlier in (1). The costs are given by

(12) C =z + 2Max (0,d — z,)

where d is uniformly distributed between 70 and 80. The determination of
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expected costs requires the evaluation of & Max [0, d — z,] as a function
of z;:

75—z, fo<2, <70

(13) & Max (0,d — z,) = { & :" (¢ —z)dt  if 70 < z, < 80
1

0 if 80 < =,
whence from (12)

150 — z, if0 <z <70
(14) EC = {z, + (80 — 2,)2/10 if 70 << x, < 80

z, if 80 < =,

It then follows that Min,  6C = T1.5 occurs at x, = 75, i.e., it is best to ship
the expected demand in thls case.

Exrrcise: Modify the above problem to show that it is not always
best to ship the expected demand.

When is it best to ship the expected demand? The following result, due to
Madansky [1960-1] (see also Reiter, [1957-1]), is a generalization of earlier
results [Theil, 1957-1; Simon, 1956-1], and gives a sufficient condition for
the solution of the linear program when the demand is replaced by its
expected value also to solve the problem of scheduling to meet uncertain
demand. If C can be expressed as C,(d, z) + C,(d) where C,(d, z) is a
linear function of d for each x and Cy(d) involves only d and not z, then
the z which solves the linear program with d replaced by &(d) also solves
the uncertainty problem.

ExEercise: Prove this result. Does the example above satisfy the suffi-
ciency condition ?

25-3. ON MULTI-STAGE PROBLEMS?

The Two-stage Problem with General Linear Structure.

We shall prove a general theorem on convexity for the two-stage problem
that forms the inductive step for the multi-stage problem. We shall say a
few words about the significance of this convexity later on. The assumed struc-
ture of the general two-stage model (of which § 25-2-(2) is a special case) is

1) b= 4uX, (X, X, > 0)
by = AnX; + AnX,
C = ¢(X;, X,|E,)

where A,; are known matrices; b, a known vector of initial inventories; b,

an unknown vector whose components depend on a set of parameters E,;
and C, the cost, depends on X, X,, and E,.

? The material for this section is based on [Dantzig, 1955-1].
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We assume the following sequence of events:

(1) X, =0 is chosen to satisfy b, = A,,X,. We denote by €, the set
of possible vectors X,. It is assumed that Q, is nonempty.

(2) E, is drawn randomly as a point from a multidimensional sample
space S, with known probability distribution. E, determines b,.

(8) X, >0 is chosen to satisfy b, = AgnX, + Ay X,. We denote by
Q, = Qy(X,|E,) the set of possible vectors X,. It is assumed that Q, is
nonempty, that is to say, there exists at least one such vector whatever be
the values of X, and E, chosen above.?

The problem is to select X, and later X, s0 that the expected value of C 1s
minimum.

Observing that the nonnegative weighted sum of convex functions is
convex and that an expected value is such a sum (or more generally a Stieltjes
integral), the following useful lemma results:

Lemma 1: If $(X|E) is convex in X € Q whatever E be chosen from a
sample space S with known probability distribution, then the function
H(X) = EH(X|E) is convex.

B

TugoreM 1: If $(X,, X,|E,) is a convex function in X, €,
X, € Qy(X,|E,), then the function

@ $olXy) = € [Inf X, XolEy)]

is convex and has the property that X, = X} solves the uncertainty problem if
$o(X¥) = Min $o(Xy)

The expectation (&) is taken with respect to the distribution of K, and the
greatest lower bound (Inf)* is taken with respect to all X, € Qo(X;|Ey).

Proor:® In order to minimize &p(X,, X, By, it is clear that, once X,
has been selected and E, determined by chance, X, must be selected so that
#(X,, X,|E,) is minimized for fixed X, and E,. Thus, the cost for given X,
and E, is.given by

(3) $1(X,|By) = Inf $(Xy, Xo|Ey)
X,68,

The expected cost for a given X, is then simply the expected value of
$:(X,|E,) and this we denote by $o(X,). The optimal choice of X, to mini-
mize expected cost is thus reduced to choosing X, so as to minimize Po(Xy)-

3 This assumption can be interpreted as assuring either that there is enough fat in
the system or that there are enough slack variables in the system so that the set of
permanently feasible (X, X,) is not null.

4 The greatest lower bound instead of minimum is used to avoid the possibility that
the minimum value is not attained for any admissible point X, € Q, or X; € ,. In the case
where the latter occurs, it should be understood that while thers exists no X; where the
minimum is attained, there exists X, for which values as cloge to minimum as desired
are attained.

s This proof is along lines suggested by I. Glicksberg.
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There remains only to establish the convexity property. We shall show first
that ¢,(X,|E,) for bounded ¢, is convex for X, in Q,. If true, then applying
the lemma, the result that ¢,(X,) is convex readily follows. Let us suppose
that ¢,(X,|E,) is not convex; then there exist three points X;, X7, X"7in Q,,
X=X, + pX{, (A+ u=1,0< A< 1) that violate the condxtlon for
convexity, i.e.,

(4) AP (XL Ey) + udy(X7|E,) < (X' E,)

or

(8) (X || Ey) + puy(XT|Ey) = $y(X7|Ey) — & (60> 0)

For any ¢, > 0, however, there exist X, and X such that

(6) ; (X |Ey) = $(X;, Xy|Ey) — & 0< & < g
$(XT|Ey) = $(XT, X5|E,) — & 0< &, < )

Setting X,;' = 1X,; 4+ uX; we note because of the assumed linearity of the
model (1) that (AX; + uX3) € Qu(X7|E,) and hence by convexity of ¢

(7 AB(Xy, X By) + ub( XY, X3l Hp) = HXT, X7'| By)
whence by (6)

(8) A (X[ Ey) + pdy(XEy) > XY, X | By} — Aey — pey
and by (5) .

9) (X7 Bo) > S(XY, X7 Bp) — A&y — pey + &
where 0 < l¢; + ey, < &g, which contradicts the assflmption that

G| By = Inf $(X], X[ )
X,eQ,

The proof for unbounded ¢, is omitted; see [Dantzig, 1955-1]. For an illus-
tration of the use of this theorem in solving a linear program under
uncertainty, see Chapter 28.

The Multi-stage Problem with General Linear Structure.
The structure assumed is
(10) b, = 4, X,
by = An X, + A5 X
by = Ay X, + Ap X, + A X
by = A Xy + 4y Xy + 4 Xy + 44 X,
by = A X, + Ao Xo + ApsXs+ . - . - Lo+ dpnX
C=¢(X;, Xy,. . . Xp|Ep Ey,. . LE,)
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where b is a known vector; b; is a chance vector (t=2, ... m) whose
components are functions of a point E; drawn from a known multidimen-
sional distribution; 4;; are known matrices. The sequence of decisions is as
follows: X, the vector of nonnegative activity levels in the first stage, is
chosen so as to satisfy the first-stage restrictions b, = 4,;,X,; the values of
components of b, are chosen by chance by determining E,; X, is chosen to
satisfy the second-stage restrictions b, = Ay X, + A X,, ete., iteratively for
the third and higher stages. It is further assumed that:

(a) The components of X; are nonnegative.
(b) There exists at least one X; satisfying the jth-stage restraints, what-

ever be the choice of X, X,, . . ., X;_, satisfying the earlier restraints
or the outcomes by, b,, . . ., by,

{¢) The total cost C is a convex function in X,,. . ., X, which depends
on the values of the sample points E,, Es, . . ., Ep.

THEOREM 2: An equivalent (m — 1)-stage programming problem with a
convex payoff function can be obtained by dropping the m'h-stage restrictions
and replacing the convex cost function ¢ by

(11) po( Xy, Xy, . . o Xma|Eg o - o Epey)
— & Inf §Xy Xgr- - o Xm|Bo- - o B

Epn Xm€Q,

where Q,, is the set of possible X,, that satisfy the m'b-stage restrictions.

Since the proof of the above theorem is identical to the two-stage case,
no details will be given. The fact that a cost function for the (m — 1)t stage
can be obtained from the mth stage is simply a consequence of the fact that
optimal behavior for the mth stage is well defined, that is, given any state,
(Xy, X, - - ., Xm—y) at the beginning of this stage, the best possible actions
can be determined and the minimum expected cost evaluated. This is a
standard technique in “dynamic programming.” The reader interested in
methods built around this approach is referred to R. Bellman’s book on
dynamic programming [1957-1].

While the existence of convex functions has been demonstrated that
permit reduction of an m-stage problem to equivalent m — 1, m — 2 ...
one-stage problems, it appears unlikely that such functions can be computed
except in very simple cases. The convexity theorem was demonstrated not
as a solution to an m-stage problem but only in the hope that it will spur
the development of an efficient computational theory for such models. It
should be remembered that any procedure that yields a local optimum will
be a true (global) optimum if the function is convex. This is important
because multidimensional problems in which non-convex functions are
defined over non-convex domains lead, as a.rule, to local optima and an
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almost hopeless task, in general, of exploring other parts of the domain for
the other extremes [Dantzig and Madansky, 1960-1]. See § 26-3.

The General Two-stage Case.

When the set of possibilities for the chance vector b, is b, b,

., b with probabilities p,, P, . . ., Pr, (Zp; = 1), it is not difficult to
obtain a direct linear programming solution for small k, say k¥ = 3. Since
this type of structure is very special, it appears likely that techniques can
be developed to handle large k, which could be used to approximate the
solution when b, has a general distribution. For k = 3, the problem is
equivalent to determining vectors X, and vectors X, X{?, X{¥ such that

(12) b, = A4,X,
b;” = AnX, + Azzx(zl)

bg) = 4y X, + A22X(22)
b = Ay X, + Az‘zX;.s)

6C = yX, + p1y2X(21) + P272X(22) + Pa}’zX(za) = z (Min)

where for simplicity we have assumed a linear objective function. Thus a
general two-stage linear program with an uncertain constant vector for the
second stage reduces to a linear program of a special structure like (12).

Exzrcise: Develop an algorithm for solving systems like (12) for large &,
by dualizing and then using the Decomposition Principle (Chapter ‘)3) Take
advantage of the repetitive appearance of 4,, and y,.

25-4. PROBLEMS

1. Prove that the quadratic expression given in § 25-1-(5) is positive semi-
definite, i.e., V > 0.

2. Prove that any quadratic expression @ can by linear transformation be
reduced to sum and difference of squares of the new variables. Show
that Q cannot be positive definite if it involves differences of squares.
{Review.)

3. Show that if Q is positive (semi-) definite, @ is a convex function. (Review.)

4. Show for V and z satisfying § 25-1-(1, 3, 5) and E << E*, where E* is a
parameter, that Min V is a monotonically decreasing function of £* if we
allow E* to take on increasing values.

5. Show above that if Q@ is any convex function of z, then Min @ is a convex
function of E (where E and x satisfy § 25-1-(1, 3).

6. Solve the same problem as §25-2-(1) using the discrete distribution
d=170,71,12,. . ., 80 with probability 1/11 each.

[511]



UNCERTAINTY

7. (a) Solve the transportation problem

Available:

Zyy Zy9 Ty Ty 3

2 3 4 1
Zoy Zyg T3 Z3q 2

7 2 5 1
T3 T3 Z33 T34 5

4 3 2 2

Required: d, d, dy d,

where the demands are

d, = 3 with probability 1

dg=3 ” ,
dy =2 » »
=2 » ”
" (b) Solve, if
d, = 2, 3, 4 with probability § cach
d, =234 , ” »
=123 , " .
=123 , ”» »o»

Compare this solution with that of 7(a) which uses expected demands
in place of the variable demands 7(b).
. Consider a linear program where all coefficients are subject to uncertainty.
Suppose (fort =1, 2, . . ., m) that
n
&@) = D ays; +a, <0 (2; = 0)
j=1
&) = D agw; = 2 (Min)
j=1
is desired but, unfortunately, all x; must be selected prior to a random
choice of the coefficients a,; whose distributions are, however, known.
Denote by o,(z) the standard error of ¢,(z). Show that

n n }
g:(z) = [Z Z xjxké’(a'i:‘ — ) @ — dik):i
j=1 k=1
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Suppose we solve the program (fori =1, 2, . . ., m)

Ei(x) + tio(z) <O

(z=0)

&y(x) + tyo4(z) = z (Min)

where ¢, = 3, say, means that we have built in a safety factor so that
£/(z), the expected value of £,(z), is three standard errors below zero. Prove
that this is a convex program. Apply § 24-1 to solve such a problem. SHow

by Tchebycheff’s inequality that

1
Prob l:ei(x) > O:I < P

What is the above probability if e,(x) is approximately normally distrib-
uted? Show that if the a; are independent and normally distributed,

then ¢,(z) is normally distributed.
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CHAPTER 26

DISCRETE-VARIABLE EXTREMUM
PROBLEMS

Our purpose now is to solve programs involving variables that have
integer values. This first section is confined to a general survey; the second
section describes Gomory’s Method of Integer Forms, which has now replaced
the earlier incomplete work in the field; and the third section gives an
appreciation of these results by describing a large class of difficult mathe-
matical problems which are reducible to integer programs. In § 26-3-(14) a
simple device is given for transforming a discrete-valued variable to an
integer-valued variable.

26-1. SURVEY OF METHODS

A number of important scheduling problems, such as the assignment of
flights for an airline or the arrangement of stations on an assembly line,
require the study of an astronomical number of arrangements to determine
which one is “best.” The mathematical problem is to find some short-cut
way of getting this best assignment without going through all the combina-
tions. By allowing the unknown assignments to vary continuously over some
range, one can obtain pseudo-solutions in which one or more assignments
turn out to be fractions instead of whole numbers. It is common practice
to adjust such values to whole numbers. Because mathematical models are
often imperfect mirrors of reality, this approach is recommended for most
practical problems. But since such procedures can occasionally give far
from the best answer, mathematicians have been working on improved
techniques.

The purpose of the present section is to review some recent successes
using linear programming methods in this difficult area. We shall also say
a few words about the functional-equation approach of dynamic pi'ogra,m-
ming; one example is presented in which this method provides an efficient
algorithm.

To be more explicit, certain classes of problems are combinatorial in
nature and easy to formulate, but mathematicians have had only partial
success in solving them. These arise often in the form of discrete-variable
programming problems, such as:

1. The empty-containers problem. A transport company has a large
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number of objects for shipment that it places in empty containers of fixed
size. What is the least number of containers required ?

2. The multi-stage machine-scheduling problem. A machine shop has a
large number of different types of tasks to be performed. Each task must be
processed first on machine A, then B, then C, . . .; the time required depends
on the task. In what order should the processing be done to complete all
the tasks in the least time ? [Johnson, 1958-1]

3. The flight-scheduling problem. Given a number of sources that must
ship specified quantities to a number of destinations, arrange an efficient
flight schedule [Markowitz and Manne, 1957-1].

4. The trim problem. Newsprint comes in rolls of varying widths that
are cut from rolls many times these widths. How are these to be cut to
minimize trim? [Paull and Walter, 1955-1; Eisemann, 1957-1; Land and
Doig, 1957-1; Doig and Belz, 1956-1.]

5. The fixed-charge problem. See §26-3.

6. The traveling-salesman problem. See § 26-3.

Examples of problems that have yielded to analysis, as we have seen in .
earlier chapters, are the following:

7. The assignment problem. See Chapter 15.

8. The problem of the shortest route in a network. See Chapter 17.

The mind seems to have a remarkable facility for scanning many combin-
ations and arriving at what appears to be either a best one or a very good
one. The number of possible combinations can be extremely large, however,
making it difficult to verify that the choice is, indeed, a good one. Any
ideas, therefore, that help verify that a conjectured solution is optimal are
of interest. We shall consider the following class of problems:

Find z; satisfying

(1) @y = t=12...m)
2

and

(2) z;=0o0r1

that minimize the linear form -

n

- (3) Z Ty =2

j=1

For a programming problem to be discrete, it is not necessary that the
variables be 0 or 1. In flight-scheduling problems, for example, the variables
that represent the number of flights are required to be nonnegative integers.
There exists, however, a very simple device by which such problems can be
reduced to the “0 or 1” form if the variables have known upper bounds.
Indeed, let x be a variable that can take on only nonnegative integral values
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and let the integer & be an upper bound for z, so that z <C k; then x can be

replaced by the sum 4
T=y;+ Y2+ ...+ Y ({yj =00r1)

For this reason the representation (1), (2), and (3) of a discrete programming
problem is often referred to as the standard discrete form. ’

An important property of any set of points whose coordinates satisfy
equation (2) is that the points are vertices of a convex polyhedral set in
n-dimensional space. This is perhaps intuitively obvious since a point such as
(qO, L,0,. .. 1)is one of the vertices of the unit n-cube (which of course is
convex). As we know in a linear programming problem, if an optimal solu-
tion exists, there is one that is an extreme point of feasible solutions. This
suggests that, in seeking a solution to the standard discrete problem, we
first weaken the hypothesis as follows:

z;=0orz; =1 } { 0z, <1 }

4 Repl . . :
“) epiace {a discontinuous range a continuous range

Because the replacement given in (4) is less restrictive than the condition
(2), it follows that the set of feasible solutions to the linear programming prob-
lem (1) and (4) forms a convex polyhedral set C that contains the convex poly-
hedral set C*, which is the convex hull of the solution points of (1) and (2).
It is easy to see, however, that every extreme point (vertex) of C* is an
extreme point of C (see open dots in Fig. 26-1-I); but there may be extreme
points of C that are outside of C* (see closed dots in Fig. 26:1-I). The

Z = Min

Figure 26-1-I. Schematic representation (two-dimensional case) of the polyhedral
set ('* whose vertices are the solutions for a discrete program and of the convex polyhedral
set (' of solutions for the corresponding continuous problem.
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parallel lines in Fig. 26-1-I represent different positions of the hyperplane
Ty - €y - . . . - €,x, == 2 == constant

and it is clear that, depending on the values of the ¢;, an extreme point
corresponding to minimum z may belong to C* (as in Fig. 26-1-I) or may
belong to C and not to C* [Hoffman and Kruskal, 1956-1].

A remarkable property of the “assignment’” problem, and the same
holds true for the ‘“shortest-route’” problem, is that

5) C*=C

Indeed, this result holds true for a general class of “‘transportation” problems
of which these are special cases. Thus, in the marriage problem (Chapter 15),
when we replace the condition z;; = 0 or 1 by 0 < z;; < 1, we are, in effect,
allowing the class of solutions to be extended from the monogamous to the
polygamous situation in which sharing mates is possible. The fact that
C* = C states that monogamy will turn out to be the best after all!

The Knapsack Problem.

In certain types of problems, we can get extreme-point solutions for
which not all the values of the z; are either zero or one. When any of the
z; have fractional values, the corresponding extreme points are referred to
as fractional extreme points. An example of this occurs in the knapsack
problem : A person is planning a hike and has decided not to carry more than
70 pounds of various items, such as bed roll, geiger counters (these days),
cans of food, ete.

We try to formulate this in mathematical terms. Let a; be the weight
of the 5t object and let b; be its relative value determined by the hiker in
comparison with the values of the other objects he would like to have on
his trip. Let z; = 1 mean that the jtt item is selected, and z; = 0 mean
that it is not selected. We express the weight limitation by

(6) z a;x; << 70
j=1
(7) z; =0orl

‘and wish to choose the z;, so that the total value

(8) Z"b,x, =z

g1
is & maximum.

Now we can show this pictorially in the plane (Fig. 26.1.II) if one
coordinate axis measures weight, a, and the other measures value, . Each
object then is represented by a point having coordinates (a;, b;). The problem,
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graphically, is to select a subset of these points that represents the set of
itemns that he carries with him on his hike; the others he rejects. Let us see
what type of graphical solution is obtained if the condition z; = 0 or 1 is
replaced by the condition that the variables can lie anywhere in the interval
from 0 to 1. The latter problem can be solved by regular linear programming
methods; indeed, because of its very simple form, it admits an immediate

——
\\
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~
~
~
~
~
\\
olon: 2y) ol . %5)
= of%:2s)
2
é 0(03'03) o(%i0r210)
» o
O(alz i2) (9e:2¢) (97.27)
[}
(@1:8))
[o]
(94:24)

weight {a;)

Figure 26-1-I1. Graphical solution of the knapsack problem (continuous case).

solution: Rotate clockwise a ray with the origin as pivot point and b axis
as starting position. Items corresponding to points swept out by the ray are
selected in turn until the sum of their weights exceeds the weight limitation.
If upon selection of item j the weight limitation is exceeded, the value z;
is chosen as that fractional part of its weight a; that would make the sum
come exactly to 70 lbs. With the exception of this one item, all the items
swept out by the ray have the value z; = 1, while those not swept out
have the value z; = 0. It will be noted that this is very close to the kind of
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solution desired; all the z,’s are either 0 or 1 with the exception of the one
that has a fractional value.

Now at this point the natural question is, ‘What happens if the solution
is rounded?’ The effect of rounding up or down is of course to change the
total weight carried to & number different from 70 lbs. If the model is im-
perfect (in other words, if the hiker really has a limitation of roughly 70 1bs)
this may be a satisfactory way of getting rid of the fractional solution; this
is particularly true if the weight of individual items is small relative to
70 lbs. For most practical problems, this is probably all that is nmeeded. Our
object here, however, is to explore ways of getting an exact mathematical
solution.

T'he functional-equation approach of dynamic programming (see § 1-4) is the
best technique so far devised for the case where there are only a few items
and only one kind of limitation. Extensions to two or more limitations—
say one on total weight and another on total volume—can be done, but
there would be a considerable increase in the amount of computational
work. The method consists in ordering the items in any arbitrary way
and determining what items would be carried if (a) the selections were
restricted to only the first & items, and (b) the weight limitations were
w=1,2,... or 70. For example, if £ = 1 and w < a, (where a, is the
weight of the first item), then the item would not be selected; but if w > a,,
it would be. From this it is easy to decide what the selections would be for
the first two items (k = 2) for every total weight w =1, 2, . . ., 70, and
then, inductively, for k = 3, 4, . . ., n. To see this, suppose we wish to
determine whether we select the (k 4 1)t item if our weight limitation is w
when we know how to make the selections for the first % items for any
weight w=1,2,...,70.

Let F(w) be the highest total value that can be obtained with the first
k objects under weight limitation w. Then, under the same weight limitation
w, the highest total value that can be obtained with first k& + 1 objects is
F(w) if the (k + 1)t object is not selected, but is by, + Fr(w — a4,y if
the (k 4- 1)t object is selected. Hence, the (k + 1)t object is or is not
selected depending on which of these is higher. Thus, not only is the selection
for the first k + 1 objects determined, but it also is clear that F,,(w)
is given by
©) Fyoo) = Max [Fiw), bpyy + Filw — a,,)] for w =ay,,

Fyw) for w<ap,

The procedure is iterated for each w and repeated fork =1, 2, . . ., n.
Although for the functional-equation approach the terms were ordered in
an arbitrary way, it is recommended that in a practical application they

be ordered initially in sequence corresponding to decreasing b;/a; (see
Fig. 26.1.11).
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The linear programming approach consists in adding new linear-inequality
constraints to the system, so that the fractional extreme points of C in the
neighborhood of Max z will be excluded, but the set of extreme points of the
convex hull C* of admissible solutions will be in the new C. The procedure
would be complete except that the rules for systematically generating
additional constraints require the use of methods discussed in the next
section.

DEFINITION: A cutting plane is the hyperplane boundary of an added
linear inequality constraint. It is thought of as ‘“‘cutting off”’ part of the
convex of feasible solutions to form a new convex.

Let us suppose, as in Fig. 26-1-11, that the ray swept out items 5, 3, 12,
11, 8, and 9 before the weight limitation was exceeded, but included item 6
just after it was exceeded ; then

ag + Az + a, + ay;, + ag -+ ag < 70
as + a; + ap + ayy + a5 + a5+ ag > 70
We wish to exclude the fractional extreme-point solution
(10) L=y =apy=ay =2 =2y =1, Ze=f (0</<])

and z; = 0 for all other j.

It is clear that for an admissible solution not all z; = 1 for the seven
points j =5, 3, 12, 11, 8, 9, 6, because the weight limitation would be
violated. This means that the sum of these variables cannot exceed 6, or

(11) T+ T3+ Typ + Ty + Ty + T+ Tg < 6

Since the fractional extreme-point solution (10) does not satisfy this con-
straint, it is clear that the effect of adding the particular inequality (11) is
to exclude this fractional extreme point. Form (8) is maximized under
conditions (6) and 0 <C z; < 1, but with the constraint (11) added. Again a
new fractional extreme point may turn up for the new convex C, and it
will be necessary again to seek a condition that will exclude it. For the most
part the conditions added will be other partial sums of the z; similar to (11).
However, at times more subtle relations will be required until at last an
extreme point is obtained that is admissible. The method discussed in the
next section provides a straightforward way to determine these constraints.

Many experiments by the author and others indicate that very often a
practical problem can be solved using only such obvious supplementary
conditions as (11). In an experiment with a number of randomly chosen
traveling-salesman problems involving nine cities, simple upper bounds and
so-called simple “loop conditions” on the variables were often sufficient to
yield the desired discrete solution [Dantzig, Fulkerson, and Johnson, 1954-1,
1959-1]. To appreciate the power of this procedure it should be noted that,
for each nine-city case solved, the tour that minimized the total distance
covered was one from among 362,880 ways of touring nine cities and was
selected in about two hours of hand-computation time.
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26-2. GOMORY'’S METHOD OF INTEGER FORMS

In this section we shall present a method due to R. Gomory [1958-1, 2]
of automatically generating cutting planes or integer forms which gives
promise of providing an efficient solution to linear programs in integers in a
finite number of steps. This approach has been generalized to the case where
some variables are continuous and some are constrained to be integers.
This was first done by E. M. L. Beale [1958-1], and by Gomory [1958-3] in a
different way, which we follow here.

We begin by giving the method in a precise form and then discuss
various ways that it may be relaxed in practice. Our concern is with linear-
programming-type problems where, however, some of the variables must
have integer values and the others may have fractional values. The former
we shall call integer variables and the latter fractional variables.

ProBLEM: Determine Min v and y; > 0 for j = 1, 2, . . ., # such that
v and y; are integers for a subset J of the indices j and such that

1) auth + Y+ .. Ay =1 (yr=0)
Yy + BgaYs + - - .+ BaYn = by

Amy¥y + Aol + -« .+ UpplYn = bm
G+ CYs+ . . .+ &y, = v (Min)

Note that v as well as y, for j €J are required to be integers while the
remaining variables are allowed to take on fractional values.

The Initial Primal and Dual Systems.

To initiate the algorithm, the problem is first solved ignoring the integer
restrictions. Suppose the canonical form obtained on the final iteration is

(2

Guth + 8wyt - - -+ GnmYnom + Ynemar = 51
@Y+ 8nYst+ . - -+ G Ynm + Ynomro = b,
a-mlyl + dma”/z +...+ d'm.n—my-n—m + Yo = Em
Gyt Yt .. ot CnnYnm =v—7,
where we have assumed, for convenience, ¥, _p.1, - - -» Yo 88 basic variables.
Because our solution is optimal, we have for 1 =1, 2, ... m and

i=12,.. ,mn,
(3) b;>0,6=>0
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If we now set
4) Y = t=12,...n—m)

for all the non-basic variables and solve for basic variables in terms of ;

n-—m
(5) Ynoma = bu — > duem (k=1,...,m)
=1
n—m
v =Py + z o 2%
f=1
then all the variables y;, ¥,, . . ., ¥y, are expressed parametrically in terms
of ;.
In the expression for y; let us now denote by +«;; the coefficient of m;,
by a,, the constant terms, and by «;, the coefficients of v. Setting

(6) m=mn—m

then the original problem can be cast in the following form:
Find Min v, y; > 0, o, where » and y; are integers for j €J, such that

(7) h=ayg +aym + . . -+ oy
Yo = Qg + ppmy + . . .+ opmn
Yn == Qg + ATy + - - - + 5,75
Vo= ogy + Xy + . . . AT

If we set aside the integer restrictions, we can replace (7) by

2

aoj+zaﬁﬂi20 G=L1L2,...
%o + Zuio‘"’f“—"-'"(Min)

and it is clear that the dual problem for (7) becomes
Dual: Find Max z, and z; > 0 for j # 0 satisfying

(8) Ty + 2 %y + Rgay + . . . G Ty = Agp
U2y + Ry Ty . L Wa Ty = Gy
Lim1Z1 + Ao + .« o - Lgp®n = g
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Because system (7) is by definition the same as (4), (5), system (8) is the
same as (9) below

9 Z, + baxpg+. ..+ bz, =7,
21 — OGPy — - o G¥y =6
Tgm — Gy — + « « — Op¥n =

which is in canonical form and the basic solution is feasible and optimal
(6; >0, ¢; > 0). The actual order of the variables z, can be the same as in
the primal, and the order of the equations can correspond to the order of
the non-basic variabies in the primal. We shall assume that this is the case.
Moreover, we assume that the variables of the primal have been previously
arranged so that all the integer variables are akead of the others. This assumption
is not made merely for convenience of exposition; indeed, the finiteness of
Gomory’s algorithm depends on its being satisfied.

To illustrate, consider the problem of finding Minv, y; >0, where
v, ¥y, ¥» are integers satisfying

(10) 2y, + Yo + $Y3 =3
in +dt+ya=1%
in + $ys =0+ 1%

If we set y, = m,, y; = m;, then

(11) Y = ™
Yo= W —2m — $m,y
Ys = g

Ya = f—dm—im
v =—T72'+i‘”1+%773

where the parameter 7, is an integer. Ignoring the integer restriction, the
dual of (11), is

(12) @ b AEm =
x, — 2z, — iz, =1
$2o + 23— 37, =%

Generating New Restrictions.

If the minimizing solution to the primal problem happens to satisfy the
integer conditions, this solves the original problem. Thus, if the values of
v = g9 and y; = «y,; are integers for the integer variables, the basic solution
is integral and optimal. If not, then the constant term is fractional for at
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least one expression for an integer variable or for the expression for v as
given in (7). In our example, we have two such:

(13) v= —v% + }m + #m;

Y = 12 — 2my — $m;
Any such expression can be used to generate a linear inequality (indeed a
class of inequalities) which is not satisfied by the current basic solution
formed by setting =; = 0.

It will be convenient to introduce! the symbol {«;]* which represents
here the greatest integer <C a;; we define

(14) Ji=o; — [a]* =0

to be the positive proper fractional part of ;. For example, if a; = %, then
[0,]* =1 and f; = }; if a; = —$, then [«;]* = —2 and f; = §. We also
define the complement, f;, of the positive fractional part of a;, as the positive
proper fractional part of —a;. It is easy to see that

ﬂ=r—ﬂ if f;>0

ta) 0 if f;=0

TuEOREM 1: If y is an integer variable and w; = 0 are parameters related
by
(16) Y=g+ om + . . -+ G ([xe]* < )
where a; = 0, for 1 ¢ 0, then the linear inequality
(I7) 1< fo+oym + .. .+ ammg

holds for all =; generating integral y but is not satisfied by the basic solution
generated by m;, =0 fori =1, . . ., m.

ProorF: Since «; > 0, and 7; >0, Min y > «,; but the possible values
of y are integers, so
(18) y =>[ax]* +1

Subtracting from (16) yields (17). Moreover, writing y — y* = [otg]* + 1
where y* > 0 is an integer and subtracting from (16) yield

(19) y* = "‘fo +oym + . - T TR (y* =0)

This is a stronger form of (17) because the new slack variable, y*, is required
to be a nonnegative integer.
In our illustrative example

(20) v= —1% + {m + im

1 The customary symbol for the largest integer part of a number is a bracket without
a star; however, with a star there is less possibility of confusion with ordinary brackets.
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where v is an integer variable unrestricted in sign apd m >0, my = 0.
(Actually 7, > 0 is required to be an integer also.) Applying our theorem
we have, setting y* = y;, say

1) Ys = — 7% + bmy + #my (ys = 0)

where y; > 0 is a new integer variable.

System (11) may now be augmented by the expression for this new
(basic) variable in terms of =, my. It will be noted that the basic solution
generated by setting =, = 73 = 0 is no longer feasible, because y; = —%.

It will be also noted that the dual of the augmented system is formed by
adding a new variable, say z;, with coefficients (— %, }, #); see (57).2 The dual is
still in canonical form, and its basic solution is feasible but no longer optimal.
It will be shown later that the sequence of basic changes required to make it
optimal, correspond to a change of the parameters =, used to represent the y,.

We may also generate other inequalities by multiplying expression (20)
by any integer %, since, if v is an integer, so is kv; thus

7
(22) kv—————— k+ - 1r1+%]‘-:7r3 (k> 0)
7k 4k
* —_—— - — *
Yy [+12k] 12k+4’ﬂ'1+37’3 (y* =0)

where y* is an integer.

The knowledge that one or more of the m; are integers can be used,
however, to generate in general new, even stronger inequalities.

THEOREM 2: If y is an integer variable and the m, > 0 are integer-valued
variables related by

(23) Yy=a9+om + ...+ axTs ([oro]* <o)
Then the linear inequality,
(24) 1<fot+fim+ ...+ fams

holds for all m; generating integral y but is not satisfied by the basic solution
generated by setting all 7w, = 0.

Proor: Note that in this theorem the «, may have either sign, and the
7; are nonnegative integers. Substituting «; = f; + [«;]* in (23) yields

(25) ‘3/ — [oo]* — Z [“i]*’"’i} =fot+fim+... +fv‘r'n""ﬁ

The left member is an integer and f; > 0; hence, Theorem 1 may be applied
to yield (24) or the stronger form

(26) y** = _fo +fim + fore + . - -+ frma ¥**=0)
where y** is an integer-valued variable.

* In (57) we have used a stronger condition than (21) by applying Theorem 2.
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Exercise: Interpret (24)iffy =fy,=...=fa=0.
For example, suppose y = 0 and the 7, > 0 are integer variables related
by
y =%+ (T1/4)m — (8/3)my + (1/2)ms

then a new condition is
y* = —§ -+ (34)ym + (13)my + (1/2)my (y* = O integer)
Another new condition can be generated using 2y, thus
2y = 32 + (14/4)m, — (16/3)m, + (2/2)my
implies
y** = —§ + (1/2)m + (2/3)m, (y** = 0 integer)
A simple extension of these two theorems occurs in the case where some
a; refer to integer parameters m;, fori =1, 2, . . ., k, and the remaining

parameters may take a fractional value with the property all «; >0 (or all
a; << 0) for ¢ > k; then the mixed expression

@7 y*=—fo+fim+ ..+ fimet+ Qeaea -+ aEmE)
holds for the case «; > 0, for all ¢ > k, and .
y* = —fo+fim + . . .+ fome — @ T - -+ %ETE)

- holds for the case a; << 0 for all i > k, for any m; generating integral y
where y* > 0, an integer. (This y* is not the same y* used earlier.)
In our illustrative example

(28) Yp =4 — 27 — §my

where 7, > 0, #, = 0 are- integers and =3 > 0. Applying the second case,
setting y* = y,, then

(29) Ye= —} + ¥

where y, = 0 is a new integer variable whose expression in terms of the 7, may
also be used to augment the system (11) and (21).

If all parameters , are integers, then it is interesting to observe that a
particularly simple relation exists consisting of a partial sum of ;. This
condition is not as strong as earlier ones, since it can be found by combining
two known inequalities. Thus for k¥ = 7, (27) implies both

(30) y*=—fo+fm+ ... +fam (y* =0)
y* = —fo+fim + . . .+ fama (y** = 0)

where »* and y** are integers, and we have by adding and setting y' = y* +

y**

(31) Yy =—14+6m~+...+ dama (¥ =0)
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where §; = 1, if f; > 0, and 6; = 0, if f; = 0. For example, if =, and m,
were both integer variables in (28), then a new relation would be
(32) ¥ =-1+4m

It is also interesting to observe that a strong condition can sometimes
be generated from an integer variable y, which has an integer value in a
solution when all 77; = 0. For example, suppose

(33) =2+ %771 — ¥m,
where 7, and , constitute all the parameters. Writing
(34) Yy—2—m+m=13m+dm

we note that the left member is integral. Because the right member is
nonnegative, we conclude

(35) y* = im + im,

where y* > 0 is an integer. However y* = 0 is not possible, because then
m = 7y, = 0 and the other integral y; would have to take on the fractional
values of the current basic solution. Hence y* = y** -+ 1 > 1 and

(36) : =1+ m + b,

becomes the new restriction. In general, if for some j, ag; = [«;]* and
fi = ay; — [a]* > 0 for all © # 0, then a new restriction is

37) Yy =1+ D fm, (f #0)

Generating New Conditions for the General Mixed Integer Case.

For problems involving mixed integer and “fractional” variables
(variables which may assume fractional values), we must however, in
general, be able to generate new inequalities when the coefficients of the
fractional variables have either sign. Let

m
(38) y=a+ ) am=ay+ P—N ([etgl* < tg)
i=1
where P and — N are the partial sums of the positive and negative terms,
®, is not an integer and y is an integer variable.
~ If for certain values of w;, P — N >0, then, since y = «y + P — N must
be an integer so must f, + P — N; but the latter is strictly positive (for
we are assuming that «, is non-integral). Hence we must have

(39) l1<fo+P—N
f<P—~N
i<lp _lylp ly

Lo h
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If for other values of #;, N — P >0, then —y = —ay + N — P is an
integer ; therefore

(40) 1<f+N—-P
' fo<N-—-P
1 1 1
1<1N——Pg-N+-p

~— Jo fo fo fo

Hence for any set of =, values,

1 1
41 l<—-P4+—~N
@l =7P*5

THEOREM 3: If y is an integer variable, and m; 2> 0 satisfy

.
(42) y=a+ ) am where g > [o]*
1

then
1 1 )
(43) 1< < ( fars+ D am| + ¢ ( fori — aim)
F\2gmt Do) 7 | 2 dm= 2,
holds for all m; generating integral y but is not satisfied by the basic solution
generated by 7; = 0. Here
(44) i1 e I, if f; < f, and =, integral
i el,if a; > 0 and =, fractional
i eI, if f; < f, and =, integral
i el,ifa;, < 0 and =, fractional
Proor: If 7, is an integer, set in (42) «; = [«;]* -+ f; or «; = [a,]* +

1 — f; according to whether f; < f; or f; < f,. Moving all integer terms to
the left and calling the left member y’, we have

(45) Yy =y + {Zfﬂfi + z “i"i} - {Zfi”i - Z ai'”i}
I, I, T, I,
where y’' is an integer variable. Identifying (45) with (38), relation (43)
corresponds to (41) and the theorem follows.
If we let y* > 0 represent the slack in the inequality (43), then the new
relation may be written

(46) y*=—1+ l {z Sfims + Z“iﬂi} + ‘1‘ [Z f;‘”i - Z “iﬂi}
fo T, T, fo A T

However, it no longer follows that the added new variable is an integer as
was the case with all previous relations that have been developed. (This is
too bad because, as we have seen, when y* is an integer this fact can be
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used to advantage to develop, at a later stage, new stronger inequalities.)
To illustrate, suppose

(47) ?/='g‘+§'771+%772—"2'773—'2774 (m; = 0)
where y, 7,, and 7, arc integers. We may rewrite this
(48) (y—1+my) =%+ 3y + 87y — Fm1y — 374

which, if we simply group positive and negative terms, leads to the
inequality

1 1
(49) 1< ; (%‘"’1 + %77'2) + %(%‘”’3 + %‘"‘4)
We may alternatively in (48) set 3w = =, — ;. Then grouping integer
terms
(50) Yy—1+m—m =3%+ (dm) — Gm + 3my + 3m))
leads to the inequality
1 1
(51) 1< ; (%772) + %(%7’1 + ‘3773 + '25774)

This is a stronger inequality than (49), because it has a smaller coefficient
of ;.

Indeed, we may arrange matters, in general, so that the coefficients of
all the integer variables never exceed unity when the constant terms on the
new constraints are unity. To see this, suppose m; > 0 is an integer; replace
«; by either [o;]* + f; or [a,]* + 1 — f}, according to whether f, << f; or
fi </f, In the first case the coefficient of w; becomes f,(f, < 1 and in the
second case f;/f, << 1.

It is also possible to develop a second type of inequality for the general
case that introduces a sharper inequality but increases the size of the system.

Leti=1,. . . kreferto integer variables and ¢ > k to fractional variables.

Set _

(52) §= am —n* O<m*< 1)
ik

where 7 is a new integer variable unrestricted in sign and #* is the positive
proper fractional part of the sum of fractional variable terms; then the new
restriction becomes

k
(63) y* = —fo+ > fori+ 7t O<m*<1)
1

where y* is an integer. Since the new restrictions now involve a bounded
variable 7*, it is probably better to stay in the primal system rather than pass
to the dual system.
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Iterative Procedure.

Any new restriction
(54) Ye = gt + 0y + - o - T AmTR

used to augment the initial system will result in a new variable z, for the
dual system with coefficients «;,. The dual system is still of course in canonical
form but the basic solution is no longer optimal (since xy < 0). Hence, z,
will be introduced into the basis by pivoting on some element «,, in the
dual system. This transforms the dual matrix [«;;] into [«;].

On the other hand, if we go back to the primal system and introduce a
new parameter y, in place of =, (by solving equation (54) for =, in terms of
the other 7, and v,), and substitute in the expressions for y; and v, then it
is easy to see that the matrix [a,;] will also be transformed into [«/;].

Thus the new dual corresponds to the primal being represented by a set of
parameters such that the slack variable of the mew restriction becomes a mew
parameter in place of one of the old parameters. In general, each subsequent
dual cycle corresponds to using one of the variables y; as a mew parameter in
place of a previous one.

‘If, after a pivot operation, the dual is still not optimal because some
ag; < 0, the simplex algorithm is applied until it is. Formally, this corresponds
to successively using as “new’’ restrictions for the primal any existing rela-
tion (54) with «,, < 0.

ExamprLE: Find integers Min v, y; > 0 satisfying

(55) 2ttty =%
X2} +¥+y =1
in + $va =v+ 1

Fortunately, the system is in optimal canonical form if the integer constraints
are set aside. Next, set non-basic variables y; equal to 7; and represent all
variables in terms of ;. (In the steps below, each y; used as a parameter is,
for convenience, identified by setting =; = y;.)

Primal Cycle 0:

(56) Y = m
Yo = K —2m — gmy
Ys = T3

Yo = T—tm—im
v =""112'+i771+§'”3

Ys = —1z + 37 + I3

where the new restriction y; is derived from v. We now dualize and optimize:
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Dual Cycle 0:
(87) Ty -+ lslxz + ‘2‘-7"4 - '112'135 = “1_72'
r, — 2z, —dx, + Ix | = P
— ot xy—fry | + x5 = H
[ ] (o] [ ] *
Dual Cycle 1:
(58) Ty + %x1 - %xz + %g'x(: =0
4z, — 8z, — 2zt s =1
— 42, + 8% + 25 — 2, =1
[ ) * [e] [ ]

This corresponds to eliminating s, from the primal, using
m o Y= — s

where we have let y; = 7; be a new parameter; operationally, this is accom-
plished by pivoting on the }m, term in (56) after first moving the 7; term to the
right-hand side, next to the =, term. After pivoting, the pivot equation is
dropped. The 7, terms after elimination are all zero and do not appear. Thus

Primal Cycle 1:

(59) h= %+ 4my — ’%ﬂ's
Yo= —% — 8w + 8m;
Yz == Ty
Yy = lLf.: — 2y — ”11'27’3
Ys = s
v o= ™+

Returning to (58), since the basic solution is not optimal, we perform the
indicated pivot step. This yields (except for the boxed column):

Dual Cycle 2:

(60) zy -+ 2z, + iz + H, —3xg =%
— 4z, + 6xy — Bz, + x5 =17
— %+ xy+ fx; — ey + 3% | = %

[ J o @ *

This corresponds to eliminating 7, from the primal by formally adjoining
one of the existing relations, namely,

Ty =Yg = —% — 8m; + 7,

and letting y, = =, be a new parameter; we can accomplish this by pivoting
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- on the $m, term above with respect to (59) (after first moving 7, = y, to the
right). This will eliminate 7, from the other equations, yielding

Primal Cycle 2:

61) Y= 2—dm;— m
Y2 = K
Y= t+6m+ im
Yy = 1 — 3ms — e
Ys = s

v = i+7‘"5+ %’”2

Yo = —1 +iﬂ"2

The new column for (60) is derived from the coefficients of x; which corre-
spond to y; = } + 6m; -+ $m,; namely, the new column corresponds to the
new restriction yg = —3 + $m, > 0 shown in (61). Iterating

Dual Cycle 3: (Optimal Integral Solution)

(62) o+ 234+ 2+ 234+ 24 =1
"—4;51 +6x3— %x4+x5 =17
_%xl+%'x2+ -'i'a‘_'llz'xq +zg=1

[ ] ® [ )

Primal Cycle 3:

(63) | =1 dmg— s
Yy =1 + %’”6

Yg=1+4+ 675+ ¢
Yo =1 — w5 — vhme
‘v=1+7ﬂ'5+ T

where the optimal solution is found by setting 75 = m¢ = 0.

Proof of Finiteness of Algorithm. [Gomory, 1958.2, 3.]

For this purpose we regard the initial dual’s right-hand side (8) as per-
turbed by the columns appearing on the left for j % 0. (See Chapter 10.)

(64) z + i ®gi&; = z &oit? = ay(€)
. .
Zaﬁxj = Zaﬁej = o,(€) (z=1,...m)
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Thus the values of the basic variables become polynomials in e. It will be
assumed that the leading term (i.e., the lowest-power non-zero term) of each a,()
18 positive except possibly i = 0.

If the basic variables can be arranged ahead of the non-basic variables as
in (9), this assumption is initially satisfied. However, as noted in the para-
graph following (9), we require for the convergence proof that z; correspond-
ing to integer variables y; precede the fractional variables.

Exercise: Use artificial variables and the simplex algorithm with
perturbation to obtain in the latter case an initial canonical system with the
requisite properties, provided one exists. What happens if none exists ?

After each augmentation with a supplementary variable (corresponding to
a new restriction) we require that the simplex method with perturbation be
applied to (64) until it is rendered optimal. We shall refer to this as an optimal
stage; at such a stage, the coefficients of a(¢) are just the values of v and y; of
a feasible solution to the primal, ie., ag; > Oforj =1, 2,. . ., n. Because we
assume that the convex set of feasible solutions to the primal is bounded, the
values of the «y; will have, at each such optimal stage, a finite upper bound.
If the k + 1 leading coefficients gy, otgy, - - -, %oz Of 2q(€) are all integers then
the nonnegative coefficients solve the primal and the process terminates.
However, if any among the first k 4 1 are fractional, let j = j, be the first
such. Let j = n + 1 be the index of the new column generated from j = j,;
then since oy ,,, < 0, the new pivot (r, $) is chosen in column s = » + 1 and
row r = 1 where «;,,; > 0 and

(65) 0 < X&) _ ppin 8

Xr,n41 e— 0 %ine1

Because (64) is in canonical form it is not difficult to show that the choice

of pivot is unigue (see Chapter 10). As a result of the pivot the new value
of xy(e) is

(66) ag(e) = agle) — o (e)@o,ns1/®r.nr1) > ole)

For clarity we give again the definition of j = j, and also define j = j*:

(a) Let j = j, be the subscript of the first term of a,(¢) with non-integral
coefficient.

(b) Let j = j* be the subscript of the first term of a¥(e) — ay(e) with
non-zero coeflicient.

THEOREM 4: Either j* < j, or j* = j, and oy, = [ogs, J* + 1.

Proor: The j, coefficient of a¥(e) is

(67) aa;'o = &oj, — an‘,(“o.n+1/“'r.n+1)

The first non-zero term of af(s) — a,(e) is positive by' (66). If it does not
occur before j* = j,, then a,; > 0 (since «y ,,; < 0 and the pivot a, ., > 0,
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it follows that «,; < 0 would contradict the inequality in (66)). The remainder
of the theorem follows from the relation between

(68) Yi, = %oj, T Z %5,
i
and the new restriction on y*. If all 7, are integer parameters, then
(69) y* = ~fo+ D fim
where «;; = [a; ]* + fi, so that

(10)  ak = g, — {{a )* + fH—=Solfr) = (o0s, + fo) = [ogsJ* + 1

which establishes the theorem for this case. If some m; are fractional param-

eters, we have (46) as the new relation for y*. In this case a4, = —1.
If =, is integral, then
(71) % ni1 = Min [I"‘, .fi] <1

’ Jo I

where the latter relation was established in the discussion following (51).
The remainder of the proof parallels (70) if ¢, »,; = f,/fs- On the other hand,
if0 <ay g =f/fo<1,then
(72) “&o = ®gj, — {[“n'o] + 1 '—fr}(—f()/fr)

= ag;, + (folfr) — fo> g5, + 1 — fo = [2e;,)* + 1

Finally, if 7, is a fractional parameter, then (since «, ;, > 0) -

(73) Erony1 = a'r.i.,/fo >0
so that (67) reduces simply to
(74) ' o, = tg; + fo = [es]* + 1

THEOREM 5: If the convex of fractional solutions is bounded, then the
algorithm 1s finite.

Proor: Suppose, on the contrary, the algorithm is infinite; then oy(¢)
forms a monotonically increasing sequence. However, the first term must
assume some finite integer value after a finite number of iterations and
remain unchanged thereafter. Otherwise (because of the assumption of a
bounded convex) for some infinite sequence of optimal stages it would take
on a set of values increasing toward or attaining some upper bound, and
hence, an infinite sequence of non-decreasing fractional values, whose differ-
ence tends to zero. By the preceding theorem, af each optimum stage & solution
is obtained such that the first term of «y(¢) which takes on a fractional value,
must on the next eycle be at least equal to the next higher integer value.
Here j, = j* = 0. Hence, the fractional value of one optimal stage and that
of the one after the one which follows are separated by at least unity—a
contradiction. .
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Having established that the first term has a constant integer value after
p, iterations, the second must also after p, + p, iterations. The argument
is the same: Since a,(¢) is monotonically increasing for sufficiently small ¢, it

* means that after p, iterations the second term must be non-decreasing.

Because of boundéedness of the convex, the values at the end of successive
optimum stages must approach or attain a finite upper bound. It cannot take
on an infinite set of fractional values because by the preceding theorem it
would (because the first component is fixed) on each subsequent stage assume
values at least equal to the next higher integer values, etc. The argument may
thus be repeated until the first k components which correspond to integer
variables are all integers.

Variations.

In practice the selection of the new restriction is not always made by
the lowest-index rule; i.e., generated by the integer variable y; with the
lowest index whose value is fractional in a basic solution. Instead, j is often
selected so that —f;; is minimal. This has sometimes cut down the number
of iterations in & number of test runs. If this rule is periodically mixed with
the lowest index rule, convergence is still guaranteed. Another device is to
impose not one but many new constraints simultaneously. If this is done
for our example, the simultaneous imposing of all constraints generated by
the integer variables and their multiples yields the required integral solution.

. If it did not, new simultaneous sets of conditions would have to be imposed

and the process repeated. Using perturbation and noting that «f{z) is at least
as large as before, this variation will converge to a solution in a finite number
of steps.

Another weakness of the lowest-index rule is that it requires that v be
an integer corresponding to the lowest index. It would be much more satis-
factory if v could also be a fractional variable. Gomory has devised special
rules to guarantee convergence where v is a fractional variable and all other
variables are integers. The proof, however, breaks down in the mixed case
if conditions (46) are used. It is not known what happens if (53) are used
instead. In practice, of course, the above variants are often used even when
v is not an integer.

ExEercise: If » is a fractional variable and all other variables are
integer variables, show for rational coefficients that another form can replace
the v form which can be maximized instead and whose value is an integer.

26-3. ON THE SIGNIFICANCE OF SOLVING LINEAR
PROGRAMMING PROBLEMS WITH SOME INTEGER
VARIABLES

Our purpose is systematically to review and classify problems that can
be reduced to linear programs, some or all of whose variables are integer
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valued [Dantzig, 1960-2). We shall show that a host of difficult, indeed
seemingly impossible, problems of a nonlinear, nonconvex, and combina-
torial character are now open for direct attack. The outline for this section
is as follows:

I. General Principles.
(a) Discussion.
(b) Dichotomies.
{c) k-fold Alternatives.
(d) Selection from Many Pairs of Regions.
(e) Discrete-variable Problems.
(f) Nonlinear-objective Problems.
(g) Conditional Constraints.
(h) Finding a Global Minimum of a Concave Function.
II. The Fixed-charge Problem.
III. The Traveling-salesman Problem.
IV. The Orthogonal Latin-Square Problem.
V. TFour-Coloring a Map (if possible).

I. General Principles

{a) Discussion. Let us now turn to the main subject, types of problems
that are reducible to linear programs some or all of whose variables are
integer-valued.

Quite often in the literature, papers appear which formulate a problem
in linear programming format except for certain side conditions such as
Z, * z, = 0, or the sum of products of this type, such as 2, - 2, + 2, -z, = 0,
which imply for nonnegative variables that at least one variable of each pair
must be zero. Superficially this seems to place the problem in the area of
quadratic programming. However, the presence of such conditions can
change entirely the character of the problem (as we shall see in a moment)
and should serve a warning to those who would apply willy-nilly a general
nonlinear programming method. If we graph the conditions z, -z, = 0,
z 20, 2, >0, z; + z, > 1, the double lines depict the domain of feasible
solutions (see Fig. 26-3-I). It will be noted that this domain has two dis-
connected parts. If there are many such dichotomies in a larger problem, the
result can be a domain of feasible solutions with many disconnected parts
or connected non-convex regions. For example, k pairs of variables whose
products are zero might lead to 2% disconnected parts. Usual mathematical ap-
proaches can guarantee at best a local optimum solution to such problems,
i.e., a solution which is optimum only over some connected convex part.

It is well known that in many cases, local optimum solutions could be
avoided by the introduction of integer-valued variables, but this fact has
been of only passing interest until the recent developments rendered this
approach practical. Our purpose here will be to systematize this knowledge.
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(b) Dichotomies. Let us begin with the important class of problems that
have “either-or’” conditions. For such a problem to be computationally

2

AN

N ol

Figure 26-3-I. A disconnected region arising from linear inequalities
and conditions like z,z, = 0.

difficult, there must be many sets of such conditions. Let us focus our
attention on one of them; say

1) esther: Gz, 2y, . . .,%,) =0
(2) or: H(zy, 2y, . . .,2,) =0
must hold for vectors (z;, 25, . . ., z,) chosen from some set S. We do not

exclude the case of both holding if this is possible. For example, a contractor
in a bid might stipulate either z, > $10,000 or z, = 0. If all bids are
nonnegative so that z; > 0, then we can write

3) either: 2z, — 10,000 >0

or: —x, >0

From other considerations it may be known that no bid can exceed
$1,600,000, so that the set S of interest is 0 << z, << 1,000,000.
We now assume that lower bounds for the functions G and H are known

for all vectors (z;, z,, . . ., z,) in S. If Lg is a lower bound for G and Ly
for H, then for § = 1 the condition

Gz, %, . . .,2,) — 0Lg =0
holds for all (z,, ,, . . ., z,) in 8. Similarly for § = 0 the condition

H(zy, 2y, . . z) — (1 — Ly =0
holds for all (z,, z,, . . ., x,) in S. For our example we would have

(4) z; — 10,000 — §(—10,000) >0
—z, — (1 — 8)(—1,000,000) > 0
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The either-or condition (1), (2) can now be replaced by

(5) G(@y, Zg, .+ - %) — 0L =0 (6=0,1)
(6) Hzy,zg,. . y2)) — (1 —0)Ly >0
M 0<<d<1

where J is an integer variable. The effect of = 1 is to relax the G condition
when H holds and that of 6 = 0 is to relax H when @ holds. If G and H
are linear functions, we have reduced the either-or condition to three
simultaneous linear inequalities in which the variable 6 must be 0 or 1.

A dichotomy can be used to describe an L-shaped region (non-convex):
for example, z; >0, 2, >0, z, < 2, 2, << 2, and either ; <1 or z, < 1.
We replace this by

(8)

O_<_x|5|+8
0<% <%2-3

If now a problem contains not one but several such pairs of dichotomies
(1) and (2), each one would be replaced by a simultaneous set (5), (6), (7)
in integer variables §;. :

(c) k-fold Alternatives. More generally suppose that we have a set of
conditions g

(9) Gy(@y, Tgy o .« %) =0
G2(x1! Ly, = o xn) 2 O
G, Zo,. . ., Ty) =0

Suppose a solution is required in which at least k of the conditions must
hold simultaneously. We replace (9) by

(10) Gy(z) — 6L, =0
Go(x) — 6pLy =0

Gyx) — 6,L, >0

where L, is the lower bound for Gy(z) for z = (2, s, . . ., %,) in S, and d;
are integer-valued variables satisfying
(11) O+ 6+...+0,<p—¢k
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and
(12) 0<é6<1 (6; = 0orl)

An example of this type of problem might occur if one wishes to find
the minimum over the shaded regions described by G; > 0, G, >0, G; > 0,
and at least two of the conditions G, > 0, G; > 0, G5 = 0 as in Fig. 26-3-11.

(d) Selection from Many Pairs of Regions. The six-pointed “Star of
David” region shown in Fig. 26-3-II (lower part) can best be described as

\ Z,
'
G420
@
,’/0 o\\l
[Chd o °
9\] A/
v Yo GV Y
W’ Y
Gg Z [4]
%
\\\ /V
\ [V
kﬁ('

2

/
/g
PS40
7/

Figure 26-3-II. Examples of non-convex regions represénta.ble by a
’ mixed-integer program.

a dichotomy in which a point must be taken from one of two triangles. It
is only when there are many such pairs to be chosen at the same time that
the problem becomes significant. In general we might have several pairs of
regions (R, R;), (R,, R;), « . (Rn, R.), and the solution point z must lie
in either R, or R; for each i. For each pair B and R’ we proceed as follows.
Let region R be described by a set of inequalities Gy{z) > 0, Gylx) >0,
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., G.(z) >0, and R by H,(x) =0, Hy(x) >0, . . ., Hy(x) = 0. The
condition that the point must be selected from either the first or the second
region can be written ‘

(13) Gyl@) — 0L, =0, Hy(z) — (1 — 8L =0,
G,(z) — 8L, =0, Hyz) — (1 — 8)L; >0,
G.(x) — 6L, >0, H,(z) — (1 — 6)L,’, >0,

0<é<l1 (6 =00r1l)

where L, L, are lower bounds for G; and H, The more general case of
selection from several regions can be done by introducing several J; as in
(11) and (12).

(e) Discrete-variable Problems. Suppose that a variable is constrained
to take one of several values: z, = a, or 2, = @y, . . ., OF T, == @; and at
the same time several other variables are also constrained the same way.
It would be a formidable task to test all the combinations. Instead we
replace each k-fold dichotomy by

(14) Z, = 4,0, + @90y + . . . + ax0;

(15) 1= 61-‘}- 62+"'+6k (6,:001’1)
Similarly let x = (2;, %5, - - ., %,) represent a vector which may only take
on specified vector values z = a! or x = a® or x = a® . . . . This may be
replaced by

(16) x=as, +a%, + . . . + a*,

(17) 1= 61+ 62+.--+ 61&: (5,~=—‘00r1)

This device permits the replacement of a nonlinear function F;; = Fy(x;),
in a system 37, Fi(z;) =0 for i =1, 2, ... m, by the values of the
function corresponding to a sprinkling of representative values of z;, say
z; =z} where r =1, 2, . . ., k. In this case the vector takes on the set of
values Fy;, Fy;, . . ., F,,; for each value z; = 2}

(f) Nanlinear-objective Problems. Referring to Fig. 26-3-111, suppose the
objective form can be written

(18) > $i@s) = = (Bim)
j=1

where ¢, is nonlinear and non-convex. Let each ¢(z) be approximated by &
broken line function. These define a set of intervals ¢ =1, 2, . . ., k of
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(93.23)

& ("|-°u)| ! (”5-’a)|
| 1 |
e /1 } h2 *% "3-1"—I 04-——"1“'—-—”5'—"{
1 1 1 i J
l .

Figure 26-3-III. Converting a non-convex function into a
mixed-integer-programming format.

width h; and slopes s, for the approximating chords. We now define y; as
the amount of overlap of the interval from 0 to z with interval <. Then

(19) t=y +y.+ ...+ Y%

and ¢(z) is given approximately by

(20) Hlx) = by + 83y + Seya + - . -+ S

where

(21) o<y, <h G=12 ...k

In the case of convex ¢, the procedure is to replace z and ¢(z) by (19) and
(20) and conditions (21). Here the slopes are monotonically increasing so that

(22) 58 <. . . <&

For a fixed z, ¢(z) would be minimum if ¥, is chosen maximum and if for
y, maximum, ¥, is chosen maximum, etc. In other words, for the minimizing
solution the y,’s are the overlap of the ith interval with the interval 0 to z,
and all is well. See §24-3. ’

However, if ¢(z) is not convez as in Fig. 26-3-II1, then simple replacement
of z and ¢(z) would result, for fixed z, in those y; with smaller slopes being
maximized first. In this case the segments that comprise  would be discon-
nected and our approximation for ¢(x) would no longer be valid. In order to
avoid this, we impose the condition that

(23) either b, — y, = 0 or Yi =0

which implies that unless y, is maximum, y,,, = 0, and if y, is maximum,
then y,., > 0 is possible. We rewrite this condition

(24) either y;, — h; > 0 or —Y;,; =0
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and then replace it formally by

—“h+h=0
kb, — (—h)S: >0 v =1,2,. . ., k—1
(25) y‘l 1 ( l)al— (z )
— Y1 — (=R )1 — 6;) =0
0S6,£1 (1=00r1)

Upon substitution of §; = 1 — J,, (25) simplifies to

ylshl
R h.o! r=1,2,.. ,k—1
(26) ol ¢ )
Yirr < by 05
0<é <1 (6; =0o0r1l)

which together with (19) and (20) formulates the problem (note that (21) is
not required). The above procedure for the non-convex case was discussed
in the paper of Markowitz and Manne [1957-1]). The convex case will be
found in [Dantzig, 1956-2] and [Charnes and Lemke, 1954-1].

A second method based on (18) is worth noting. Any point on the curve

@{(x) can be represented as a weighted average of two successive breakpoints.

Hence we may replace z and ¢(z) by

7) { T = Agag + Ay + . . .+ Ay 0<i)
d(x) = Abg + Liby + .+ .+ Ay
(28) 1=2 +4 +...+%4%

and then impose the conditions that all A; = 0 except for one pair 4; and
Aiyy- For k = 4 this may be expressed by

(29) A< 6y
W< 8+ 6y
A< 0, + 4,
< 0y + 05
<< 8y + &,
i< )

where the J; are integer-valued variables satisfying
(30) S+ 06+ 0+ 03+ 0+ 65=1 (6; =0, 1)

Indeed it will be noted that, when J; = 1 for some i = 1, the inequalities
involving 4, and A, ,, are relaxed but the remainder satisfy 1, < 0 since
their §; = 0 by (30).

(g) Conditional Constraints. Suppose z and y are functions of several
variables. We assume that an upper bound U, is known for z, and lower
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bounds L, and L, are known for z and y. We wish to impose conditions
such as

(31) z2>0=>y>0
We can write (31) as
(32) eitherz > 0,y >0orz <0
which we rewrite as
x> 6L,
(33) y=>4L,
< (1 - 8T, (0=0,1)

where the first inequality is written (=) instead of (>) because the condition
¥ > 0 is automatically relaxed for x = 0 by selecting 6 = 1.
We can now elaborate this method to impose conditions such as
(34) z2>0=u>0
2<0=>w>0

which may be written as

(35) x> (1 = &)L,
<< (1 —d)U,
z = 6,L,
u > 6L,
z < 6,U,
w > 8,1,
S+ 0, =1+ 0, (6; =0, 1)

For example, suppose in a T'-period program we wish to complete a

~specified work load by the earliest period possible. Let x, be the cumulative
. sum of activity levels from the ¢th period through the last period T', then we

wish to arrange matters so that z, = 0 for the smallest {. Note in this case

z; > 0 implies 2, > 0 for s < k. In this case we candefinefort =1,2,. . ., T,
(36) 0 =0=>z,=0 )
We may rewrite (36)

(37) 0<z, < 0,U, (6, =0,1)
where U, is an upper bound for z,, and then determine Min z where

(38) z2=06+06+ ...+ 0p

(h) Finding a Global Minimum of a Concave Function.® Suppose the

3 This application was developed jointly with P. Wolfe.

[543 ]



DISCRETE-VARIABLE EXTREMUM PROBLEMS

concave function Z = Z(x,, %,, . . ., Z,) is to be minimized over a region
R.If R is convex, this is intrinsically a difficult problem because the concave
funetion could have local minima at many, indeed at all, the extreme points
of R. We shall in fact assume R convex, for we note that the devices discussed
earlier allow us to use a convex domain coupled with integer-valued variables
to solve a wide class of problems expressible by either-or conditions. We
suppose R to be given, after suitable change in variables, in standard linear
programming form

(39) Ex =, x>0

where E is a given m X n matrix and e a given m-component vector.

The concave function Z may be given explicitly or be given implicitly.
As an example of the latter, suppose vector y and quantity Z for fized z is
given by

(40) Fy=f+Ex, y=>0
Max Sy = Z (Min)
viz

where £ and F are given matrices and f and § are given vectors.

Exercise: Prove Max,, fy is a concave-function of z. Prove that
é(x) = Min{ $,(x), d5(x) . . .}is a concave function if $,(x) is concave for all 7.

An illustration having a striking parallel in the real world can be given:
Consider a two-move game in which the first player, 4, by choosing his
activity levels x consistent with (39) modifies the inventory f of his opponent
by an amount Ez. The second player, B, by choosing his activity levels y
consistent with (40) obtains a payoff fy. A’s problem is to choose z so as to
minimize the maximum payoff to B.

We shall suppose that Z can reasonably be approximated at all points =

in R by the minimum Z of a finite set of k tangent hyperplanes,

(41) Z =0y + Qs+ . . .+ 02, — b (1=1,2,...k)

to the surface Z = Z(x). The problém reduces to choosing z, Min Z satisfying
(39) such that (z, Z) satisfies at least one of the conditions

(42) Z —[ayxy + apxy + . . . G2, — 6] =0
Z — @y, + Gogy + . - -+ Gopty, — b1 =0

Z —[anzy + GpaZs + . - .+ Gty — b =0
We may rewrite (42) as

43) Z —f[anzy +apxs+ ...+t apr,] =>M1—-4,) =1,2,.. k)
61+62+..-+6k=1 (6,=0,])

where M is some assumed lower bound for the differences. This solution
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depends on the approximation of the function Z = Z(x) by k hyperplanes.
The solution, given in [Dantzig, 1958-2], for the case where Z is given
implicitly by (40), requires finding x, y, Minz, and auxiliary variables
m=(my, My . . ,Am)andy >0,forj=1,2,.. . n satisfying

(44) Ex = ¢, Fy = f + Ex, z =By

mF+n—p8=0
either n; >0ory, >0

where 7 = (my, mg, . . ., Tn) iS & TOw vector, y; is the jth component of y,
and 7; the jtt component of 7.
Exzrcise: Verify (44).

II. The Fixed-charge Problem.

Earlier we described a problem where a bidder required that the size
of the bid satisfies either z = 0 or z > a. In this and many other problems
there is an underlying notion of a fixed charge that is independent of the
size of the order. In this case z = a represents the break-even point to the
bidder. In general, the cost C is characterized by

kx+b ifx>0

45) ¢= {0 ifz=0

where b is the fixed charge. We may write this in the form
(46) C - kx- 8b (& = 0, 1)

where z = 0 if § = 0, which we impose by

(47) << 6U
and
(48) 0<é<1 b6=01)

where U is some upper bound for z. A discussion of the fixed-charge problem
including this device will be found in the paper by W. Hirsch and the author
[1954-1].

III. The Traveling-salesman Problem.

The Problem. In what order should a traveling salesman visit n cities
to minimize the total distance covered in a complete circuit? We shall give
three formulations of this well-known problem. Let z,;, = 1 or 0 according
to whether the it directed arc on the route is from node ¢ to node j or not.
Letting z;;,,, = %;;, the conditions

(49) z gy = z o Got=1,...n)

i k
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(50) > wg =1 (G=1,...n)
s <
(51) z dyssys = 2 (Min)
i, ¢
express (a) that if one arrives at city j on step ¢, one leaves city j on step
t + 1, (b) that there is only one directed arc leaving node i, and (c) the
length of the tour is minimum. It is not difficult to see that an integer
solution to this system is a tour [Flood, 1956-1].

In two papers by Dantzig, Fulkerson, and Johnson [1954-1, 1959-1] the
case of a symmetric distance d;; = d;; was formulated with only two indices.
Here z;; = z;; = 1 or 0 according to whether the route from ¢ to j or from
j to © was traversed at some time on a route or not. In this case

62) zx,-,-=2 G=1,2...n7)
and *

(53) z di,'xﬁ =2z (Min)

express the condition that the sum of the number of entries and departures
for each node is two. Note in this case that no distinction is made between
the two possible directions that one could traverse an arc between two I
cities. These conditions are not enough to characterize a tour even though
the z,; are restricted to be integers in the interval .

(54) 0<z,;<1 -
since sub-tours like those in Fig. 26-3-IV also satisfy the conditions. However,

3 4

2 S

Figure 26-3-IV. Loop conditions are added to rule out sub-tours
in the traveling-salesman problem.

if so-called loop conditions like
(65) Zyg + Xpg + Xy < 2

are imposed as added constraints as required, these will rule out integer
solutions which are not admissible.

[ 546 ]




268-3. SOLVING L.P. I’ROBiEMS WITH SOME INTEGER VARIABLES

ExErcise: Construct a fractional solution to (49), (50), (51) that is
extremal. Show that any integer solution without sub-tours is a full tour.

A third way to reduce a traveling-salesman problem to an integer
program is due to A. W. Tucker [1960-1]. It has less constraints and variables
than those above. Let z,; = 1 or 0, depending on whether the salesman
travels from city ¢ to j or not, where 1 =0, 1, 2, . . ., n. Then an optimal
solution can be found by finding integers z,;, arbitrary real numbers u,,
and Min z satisfying

(56) §}ﬁ=1 G=1,2...n)
i=0
n

xii=1 (’i=l,2,...,n)

i=0
U — Uty <n—1 1<t #j<n)
Z z d;%; = z (Min)
i=0j=0

The third group of conditions is violated whenever we have an integer

" solution to the first two groups that is not a tour, for in this case it contains

two or more loops with £ < n arcs. In fact, if we add all inequalities corre-
sponding to z;; == 1 around such a loop not passing through city 0, we will
cancel the differences w; — u; and obtain nk < (n — 1)k, a contradiction.
We have only to show for any tour starting from i = 0 that we can find u,
that satisfies the third group of conditions. Choose u; = ¢ if city 1 is visited
on the 't step where ¢t =1, 2, . . . n. It is clear that the difference
%; —u; <<n — 1 for all (4, j). Hence the conditions are satisfied for all
zy; =0;forz,; = 1weobtainu, —wu; + nzy=(t) —(t+1)+n=n—1.

IV. The Orthogonal Latin-Square Problem.

A latin square consists of n sets of n objects (1), (2), . . ., (n) assigned
to an n X 7n square array so that no object is repeated in any row or column.
Two latin squares arc orthogonal if the »? ordered pairs of corresponding
entries are all different; for example

(87) 1) 2 @ : @ 3 @
@ & @1 @ E
@G @M @ : 6 @O @

It was conjectured by Euler that there are no orthogonal latin squares for
certain n. After a great deal of research, the case for n = 10, for example,
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was settled* in 1959. Tt has been suggested informally by David Gale that
integer programming be tried in this area.

The formulation is straightforward and well known. Let z;;, = 0 or 1
according to whether or not the pair (¢, j) is assigned to row k, column I.
The condition that each pair (i, j) is assigned to only one location is given by

(58) ik = 1 (":,j == 1, 2, Le ey n)
2

The condition that one pair (i, j) is assigned to each location k, ! is:

(59) Ty =1 k,1=1,2,.. . mn)
2 |

The condition that ¢ appears only once in the first latin square in column !

is given by (60). The condition that j appears only once in the second latin

square in column k is given by (61).

(60) S D w1 G1=1,2...,n
Wk ,

(61) :zxm1=1 G, 1=1,2,...,n)
ik

Similarly the condition that ¢ and j appear only once in the first and second
latin square respectively in row k is given by

(62) S @i =1 (k=12 ...n)
3,1
zxﬁklzl (j,k=1,2 .. ., n)

i1

It is interesting to note that all pairs of subscripts possible out of four are
summed to form the six sets of n? equations. For n = 10 there are 600
equations which are too many for any integer programming code devised up
to 1962 to, handle. However, with some short-cuts introduced, it might
become tractable.

V. Four-Coloring a Map (If Possible).

A famous unsolved problem is to prove or disprove that any map n the
plane can be colored using at most four colors; regions with a boundary in
common (other than a point) must have different colors. We shall give two
ways to color constructively a particular map, if possible. While this does not

+ R. C. Bose and S. S. Shukhande proved that Euler’s famous conjecture about the
non-existence of orthogonal latin squares of certain even orders was false. E. T. Parker
has constructed a pair of orthogonal latin squares of order 10. For further information
the reader is referred to Abstract 558-27 of the August 1959 Notices of the American
Mathematical Society. A non-technical report of their results has appeared in the
Scientific American, Vol. 201, No. 5, November 1959, pp. 181-188.
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contribute to a proof of the truth or falsity of this conjecture, nevertheless
an efficient way for solving particular examples on an electronic computer
may serve as an aid in finding a counter example.

Without difficulty it can be arranged (as below) so that three regions

YELLOW - { BLUE

have at most one point in common which will be called a node. There will
be, accordingly, three arcs leading from any node i to other nodes j. It is well
known that if it is possible to four-color a map, then (and this will be true
conversely) it is possible (treating the nodes as cities and the arcs as routes
between cities) either to tour all the nodes or to make a group of mutually
exclusive sub-tours of the cities in several even (sub-cycle) loops as in Fig.

< O

Figure 26-3-V. The four-color problem is equivalent to finding a set of
even-order sub-tours.

Exzercise: Show that the number of arcs lS a multiple of 3 and the
number of nodes is even.

We may associate with each such even-cycle sub-tour, directed arcs that
reverse their direction as we pass from node to node. This means the nodes i
can be divided into two classes: those which have two arcs pointing away
from them and those which have two arcs pointing toward them. Let us set

z;; = 1, if the directed arc (¢ —7) is part of such a sub-tour; otherwise
z;; = 0. Hence

(63) 0< z; <1

It is understood that only arcs (i, j) and variables z,; are considered corre-
sponding to regions that have a boundary in common. All arcs (i, j) that do
not correspond to boundaries are omitted in the constraints.

The conditions

(64) D 2y =20, (8 =0,1)

i
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express the fact there must be two arcs on some sub-tour leading away from
node i if §; = 1; otherwise there are none. The conditions

(65) zkﬁ=2—2@
T

state there must be two arcs on some sub-tour leading into node 1 if §; = 0,
and otherwise none. The three sets of conditions (63), (64), and (65) are
those of a bounded transportation problem and will be integers (at an extreme
point) if the §; are integers. This would seem to imply that it is only necessary
to assume that the &, are integers and the z,; will come out automatically
integral in an extremizing solution without further assumptions. However,
the wrong choice of integral §; could lead to an empty solution set. As an
alternative to using an integer programming method to solve this problem,
it might be practical to allow the ¢, to vary 0 << d; <1 but to randomly
choose various objective forms (since these are open to choice) until an
optimal extreme-point solution with integral z;; is obtained.

A second formulation suggested informally by Gomory is straight-
forward. Let the regions ber = 1,2, . . ., R, and let ¢, be an integer-valued
variable such that

0<t, <3

where the four values ¢, = 0, 1, 2, 3 correspond to the four colors. If regions r
and s have a boundary in common, their colors must be different. Hence
for each such pair .

(66) t, —t, # 0
This may be written in either-or form:
(67) eithert, — t, >1lort, —t, =1

which we may rewrite as
(68) tr - ts = 1 461'3
t, — tr = —3 + 4615

(6,5 =0, 1)
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CHAPTER 27

STIGLER’S NUTRITION MODEL:
AN EXAMPLE OF FORMULATION AND
SOLUTION

One of the first applications of the simplex algorithm was to the deter-
mination of an adequate diet that was of least cost.l In the fall of 1947,
J. Laderman of the Mathematical Tables Project of the National Bureau of
Standards undertook, as a test of the newly proposed simplex method, the
first large-scale computation in this field. It was a system with nine equations
in seventy-seven unknowns. Using hand-operated desk calculators, approxi-
mately 120 man-days were required to obtain a solution.

The particular problem solved was one which had been studied earlier
by G. J. Stigler [1945-1}, who had proposed a solution based on the substitu-
tion of certain foods by others which gave more nutrition per dollar. He then
examined a “handful” of the possible 510 ways to combine the selected
foods. He did not claim the solution to be the cheapest but gave good
reasons for believing that the annual cost could not be reduced by more
than a few dollars. Indeed, we shall see that Stigler’s solution, when con-
verted from a cost-per-day to a cost-per-year, was only 24 cents higher
than the true minimum for the year, which was $39.69 (10.9 cents per day).

27-1. PROBLEMS IN FORMULATING A MODEL

Before launching into the mathematical characteristics of the nutrition
problem, it is worthwhile to see just how to develop a “mathematical
model.” It will be seen to be far from a precise operation, and it is only
natural to question the validity of refined techniques for solving what is
clearly an approximate model. This situation is typical almost everywhere
programming techniques are applied. One should remember, however, that
one reason why only the approximate models exist today has been the
historic inability of the investigator to solve any large-scale complex model.
As the tools for handling these systems increase, so does the desire of the
investigator increase to refine his models to take advantage of these new
techniques. The next few years will probably see the end of this vicious

! J. Cornfield of the U.S. Government formulated such a mathematical problem as
early as 1940.
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circle of the past, in which poor model building justified rapid rough
“solutions” and, conversely, the non-existence of methods of accurate
solution justified poor model building. It is likely that both model building and
solution techniques will begin to reinforce each other in a positive manner.

Stigler’s paper [1945-1] provides a very frank discussion of the back-

ground of the nutrition model; the greater part of what follows is based
upon this source and follows it very closely. In the years since his paper
was published, many improvements in the model have been made. However,
it is interesting to study some of the typical situations that confront a
model builder in the early stages. Stigler began with some findings of
nutrition studies:

(1) After certain minimum values of the nutrients are secured, additional
quantities yield decreasing (and, in some cases, eventually negative)
returns to health.

(2) The optimum quantity of any nutrient depends on the quantities of
the other nutrients available.

Diminishing returns are illustrated by the fact that the amount of calcium
in the body increases much more slowly than the input of calcium, and that
increases of longevity are not proportional to calcium inputs. It appears
possible in some cases to substitute one type of nutrition for another type.
Stigler cites an example in which it was recommended that 30 micrograms
of thiamine be substituted for 100 calories derived from sources other than
fats. Another example cited is that a loss of riboflavin accompanies a
deficiency of thiamine.

Stigler then turned to another question: How much of various nutrients
are required? How do the requirements differ from one individual to
another? In resolving this difficulty, he noted that the optimum quantity
of calories is known fairly accurately, but that the requirements of other
nutrients are known only roughly or not at all. Many minima (to whickr 50
per cent is usually added as a safety factor) are found by determining the
lowest level of input compatible with a stable rate of loss of the nutrient
through excreta. The interrelationships among various nutrients are even
more obscure, and they are virtually ignored in dietary recommendations.
Even the statement of what substances are necessary for health is very
complex. Thus, in addition to caleium, the body requires about 13 minerals
(some in minute quantities), many kinds of vitamins, a dozen or so types of
amino acids, and perhaps many more nutrients yet to be discovered.

The diets developed by Stigler were considerably lower in cost than
those developed by others. One of the reasons given is that the other diets
included a greater variety of foods as a kind of “insurance” against omitting
any of the unknown dietary elements. Another reason is that diet experts
do give some weight to social and institutional pressures, particularly where
they are not on firm grounds to support alternatives. On the other hand,
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27-1. PROBLEMS IN FORMULATING A MODEL

Stigler justifies his diet in this regard by citing the National Research
Council’s belief that these other minerals and vitamins are supplied in
adequate amounts automatically when a certain group of common nutrients
are obtained from natural foods. Based on considerations of this kind, the
first step in setting up a mathematical model was to accept the Council’s
statement of daily nutritional requirements (given in Table 27-1.I). Note

TABLE 27-1-1
DALY ALLOWANCES 0F NUTRIENTS FOR A MODERATELY ACTIVE Man
{Weighing 154 pounds)!

Nutrient Daily Allowance
Calories 3,000 = b, (calories)
Protein 70 = b, (grams)
Calcium .8 = b, (grams)
Iron 12 = b, (milligrams)
Vitamin A 5,000 = by (International Units)
Thiamine (B,) 1.8 = by (milligrams)
Riboflavin (B, or G) 2.7 = b, (milligrams)
Niacin (nicotinic acid) 18 = by (milligrams)
Ascorbic acid (C) 75 = b, (milligrams)

1 ’\Ia.tiona,l Research Council, ‘Recommended Dietary Allow-
ances,” Reprint and Circular Series No. 115, January, 1943.

that only nine of the more common nutrients were used, and the others were
assumed to be automatically satisfied. It should also be noted that the
requirements (discussed earlier) are rough, and, possibly with the exception
of calories, almost any number in a very broad range probably could equally
well be justified.

In considering the nutritive values of foods, again we see a similar
situation, for the nutritive values of common foods are known only approxi-
mately, and that is all that can be known about them. A large margin of
uncertainty arises on several scores. For example, the milligrams of ascorbic
acid per 100 grams of apples vary with the type of apple:

Jonathan 4.4
MecIntosh 2.0
Northern Spy 11.0
Ontario 20.8
Winesap 5.8
Winter Banana 6.6.

The ascorbic acid in milk varies with season. Conditions of storage, such as
temperature and length of time in storage, are important factors. The more
corn matures, the greater is the amount of vitamin A, but the ascorbic acid
content decreases. Long cooking decreases the nutritive value; well-done
roasts of beef have roughly 70 per cent of the thiamine, riboflavin, and
niacin of raw cuts. Not only is there a considerable variability in foods,
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which conceivably could be taken into account in programming, by intro-
ducing probabilistic considerations (as is done in Chapter 25 on uncertainty),
but there is also the fact, according to Stigler, that the nutritive values that
had been established in 1944 for many foods had been determined by obsolete
and inaccurate techniques, or may be just plain wrong for other reasons.
Ignoring these difficulties, a model was set up in which some kind of
average nutritive per unit quantity for each food as purchased was developed.
If z, units of the jt» food were purchased and each food contained, per unit
quantity, a;; units of the it nutrient, then it was assumed that the individual

would receive
n

Q%5
j=1

units of the ith nutrient, assuming there are no losses due to preparation
of the foods. There is also a tacit assumption that there is no interaction
between various foods; i.e., the total number of units of a nutrient available
in a food is unaffected by the presence of some other food in the diet.

Finally, a list of potential foods was selected for which retail prices were
reported by the Bureau of Labor Statistics. The list was not complete since
it excluded almost all fresh fruits, many cheap vegetables rich in nutrients,
and fresh fish. If these could have been included, it would seem that the
minimum cost diet could be reduced by a substantial amount. However, other
investigators have found that the optimal choice is quite insensitive to these
particular prices due to the presence of certain staples in the optimum diet.

In Table 27-1-1I, the coefficients a,; per dollar expenditure are given for
an abbreviated list of some 77 types of foods considered by Stigler. He
recommended, however, where prices are subject to change because of local
and seasonal conditions, and it is desired to compute not one but several
such problems, that the units for measuring the quantity of foods be physical
units such as weight, or possibly volume in case of liquids. If this is done,
the price data and the nutritive data can be developed independently.

Mathematical Formulation.
The nutrition model may now be set up in linear programming terms.
Let the set of possible activities (j) and activity levels z; be:
Activities Activity Level
(unit = one dollar
expended per day)

1. Buying the 18t type food (wheat flour) z,
2. Buying the 274 type food (macaroni) Z,
n. Buying the n = 77th type food (strawberry Xy
preserves)
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R TR E I O B BE Bl R B B b B e
TABLE 27.1.1T
NuTrITIVE VALUES OF ComMMoN Foops PErR DOLLAR oF EXPENDITURE
August 15, 1939
(Abbreviated List of 20 of the 77 Foods)
Nutritive Items (i)
Ascorbic
Commodity? Calories Protein Calcium Iron Vitamin A |Thiamine | Riboflavin | Niacin Acid
) (1,000) | (grams) | (grams) | (mg) | (1,000LU.)| (mg.) (mg.) (mg.) (mg.)
1. Wheat flour (enriched) 44.7 1,411 2.0 365 — 55.4 33.3 441 —
5. Corn meal 36.0 897 1.7 99 30.9 17.4 7.9 106 —
15. Evaporated milk (can) 8:4 422 15.1 9 26.0 3.0 23.5 11 60
17. Oleomargarine 20.6 17 .6 6 55.8 2 — — —
19. Cheese (Cheddar) 7.4 448 16.4 19 28.1 .8 10.3 4 —
21. Peanut butter 15.7 661. 1.0 48 — 9.6 8.1 471 —
24. Lard 41.7 — — — 2 — 5 5 —
30. Liver (beef) 2.2 333 2 139 169.2 6.4 50.8 316 525
34. Pork loin roast 4.4 249 .3 37 — 18.2 3.6 79 —
40. Salmon, pink (can) 5.8 705 6.8 45 3.5 1.0 4.9 209 —
45. Green beans 2.4 138 3.7 80 69.0 4.3 5.8 37 862
46, Cabbage 2.6 125 4.0 36 7.2 9.0 4.5 26 5,369
50. Onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1,184
51. Potatoes 14.3 336 1.8 118 6.7 294 7.1 198 2,522
52. Bpinach 1.1 106 — 138 918.4 5.7 13.8 33 2,755
53. Sweet potatoes 9.6 138 2.7 54 290.7 8.4 5.4 83 1,912
64. Peaches, dried 8.5 87 1.7 173 86.8 1.2 4.3 55 57
65. Prunes, dried 12.8 99 2.5 154 85.7 3.9 4.3 65 257
68. Lima beans, dried 17.4 1,055 3.7 459 5.1 26.9 38.2 93 —
69. Navy beans, dried 26.9 1,691 11.4 792 —_ 38.4 24.6 217 —_—

* ok

*%

*¥

*k

* ¥

*k
¥

* ¥k
* %

! Commodity numbers refer to Stigler’s original list. Starred lines refer to a reduced list explained in § 27-2.
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AN EXAMPLE OF FORMULATION AND SOLUTION

Let the set of items (i) be, in this case, the nine different types of nutrients
given in Table 27-1-1. Then the only question remaining with regard to
formulation of the mathematical model is whether we want to specify that
the requirements are met exactly or can be exceeded. In the first case we
are considering a problem of the type

n
1) Z a;x; = b; (2; =0)
i=1
and in the second case, we are considering a problem of the type
n
2) z a;%; = b; (x; = 0)
i=1
where we wish to choose z; to minimize the total cost

@ =S

j=1

It might seem that asking for exact requirements is better than allowing
the possibility of exceeding requirements, since getting more than one really
needs should be more costly. This reasoning is fallacious, however, since any
set of z; which satisfies (1) automatically satisfies (2) and hence the minimal
value of z attained in (2) is certainly no greater than that in (1). In other
words, it is always cheaper (or at least no more costly) to permit an excess over
requirements than to insist that requirements be met exactly.

Often people criticize a plan because they observe what they believe are
“wastes.” They note that not cverybody is busy all the time, or an instal-
lation or machine is idle part of the time. They believe a good plan would
find some way to put all these people and machines to work constructively.
However, one of the first things one learns in programming is that it is not
always cfficient to try to remove these “defects.”’” For example, putting idle
people to work may require that they have tools and materials at their
disposal that are badly needed elsewhere. Referring to the footnote of Table
97.2.1, it is seen for the nutrition problem that insistence on no surplus in
nutritives would increase the minimum cost per day from 10.9 cents to
13.8 cents, an increase of over 25 per cent. .

We shall formulate the nutrition problem allowing surpluses of all
nutrients. There is one risk we take in such a procedure; namely, the solution
may be a diet which contains an excess of calories or some other nutrient
known to be harmful to health.

First, augment the system by introducing glack variables z,.;, . . -
Ty, yielding
(4) Zai,-x,- — T =b; (i=12,...m)

n
i=1
n

(5) > = z (Min)

1




27-2. NUMERICAL SOLUTION OF THE NUTRITION PROBLEM

We now further augment the system by introducing artificial variables

Tnym+ls + + o Lpyom SO thatnow fori=1,2,. . ., m
n

(6) Z A5 — Znyi + Tnimesi = b;

j=1

27-2. NUMERICAL SOLUTION OF THE
NUTRITION PROBLEM

Solution by Electronic Computer.

The nutrition problem that took 120 man-days to compute in 1948
(using desk computers) can be run in a few minutes on a modern electronic
computer. The exact time depends on just how much information one wants
to print regarding the problem. In 1953, using an IBM 701 machine, the RAND
Simplex Code, and printing out each iteration, the total time was 12 minutes;
without printing, the time would have been cut to about one-fourth. If run
on a post-1960 computer, the time would be a fraction of a minute.

Since it was desired to compare the minimum cost solutions when exact
requirements must be satisfied, § 27-1-(1), and when excesses of require-
ments are permitted, § 27-1-(2), the instruction code did not allow any slack
variable to enter the basic set initially. In 12 iterations Phase I was completed
and a basic feasible solution was obtained. On the 16th iteration, Phase II
was completed and an optimal feasible solution was obtained for § 27-1-(1).
At this point, excess variables were allowed to enter the basic set and an
additional 8 iterations were required to obtain an optimal solution for
§27-1-(2). In order to see whether the number of iterations for the latter
could be reduced, a second problem was run in which the excess variables
were allowed to enter the basic set at any time. By some odd coincidence the
same set of 24 iterations took place. See Problem 15 for a possible explana-
tion. The results of these computations are summarized in Table 27-2-1 and
Fig. 27-2.1.

w z
200 | ~#——— Phase [ - Phase II 125
160 Infeasibility torm (w) Objective form (r) 20
120 | 15
80} ~ 10
a0l {s
0 2 A 1 h ] L L 1 L 0
o] 2 4 6 8 10 12 14 16 18 20 22 24

Cycie

Figure 27-2.I. Decrease in the value of the feasibility and objective forms
as a function of iteration in the nutrition problem.
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TABLE 27.2-1

CHANGES IN BAsIS ACTIVITIES: VALUES FOR w AND 2z

Infeasi- Objective
Tteration Basgic Activities bility Form 2z
Form (w) (cents)
. Ascorbic
0 { Calories Protein Calcium Iron Vitamin A |Thiamine | Riboflavin Niacin Acid i91.3 0 N
short short short short short short short short short 2
1 " " " o " - " " Cabbage | 110.3 1.4 5
2 " . . |Navybeans| . |, " - " " 69.6 2.8 N
— 3 " . " " " Flour ,, " N 38.2 4.4 =
4 " " » Salmon ” y ,, " ” 27.8 5.6 S
] 5 - " ” " ” - . Pork roast . 19.5 7.0 &
- RPN [ ORI PRSI SIPRPUSREEE PO B LA e e e e — g
a 6 " " - - " Beans " " " 11.0 14.3 S
7 » » ” " Spinach » ” » » 7.3 14.6
8 n Corn meal » » » » » » " 4.2 14.5 g
— 9 " " ” - Beef liver " " ” - 2.6 13.0 2
o 10 Lard " . . " . " " " 1.5 15.6 R
% 1 " ” Evaporated " " » " " ” 2 19.9 &
— milk B
12 » » ” " " " Lima beans ” v — 20.5 2
13 ” " » " » ” Flour » ”» — 16.9 S
14 " " " " " Spinach ” ,, " - 14.8 =
_________________________________________________________________________________________________________ -~ IS
15 ” » » Peanut " » » » ” — 14.0 z
butter o]
16 » " " . " " » Potatoes " Min z, = 13.8 .
17 ”» " » ” " » » Iron excess ” 13.5
K S
§ 18 »” Navy beans ” » " ” " " " — 13.4 o
a 19 » » " Thiamine . " » ” ” - 12.8 3
B excess 3
20 " Lima beans » " " » " . ” — 12.7 2
21 " Niacin excess| ' ' ' ' . ” . — | 12.7
22 ” » » " Protein " " » " - 11.8
excess
23 Navy beans| " v " " ” " » " - 10.9
24 " " Beef liver " " »” » " ” Min 2, = 10.9?

Mi hed : ti ig the 1 Tudd ith i
B N BN N e R oo I A T N .




27-2. NUMERICAL SOLUTION OF THE NUTRITION PROBLEM

Solution by Hand Techniques.

Stigler reduced the list of 77 foods to a list of 15 foods (starred lines in
Table 27-1-II) by dropping from the list any food which had, per dollar, no
more of each nutrient than did some other food. He effected a further
reduction to a list of 9 foods (double starred lines) by dropping any food
which had, per dollar, no more of each nutrient than did a mixture of other
foods costing a dollar. However, this method can only be used if the nutri-
tional requirements may be exceeded. Where nutritional requirements must
be met exactly, this short cut is no longer valid. In Problems 1-5, proofs of
these statements are suggested as exercises.

In the final solution for the case where excess nutrients are allowed,
nutrients protein, iron, thiamine, and niacin exceeded requirements. With
this foreknowledge, it is possible to present here a complete short cut
numerical solution of the nutrition problem. To do this, we shall follow
Stigler and use the reduced set of 9 foods in place of the 77, and use only 5
of the 9 equations of § 27-1-(2). Equations ¢ = 2, 4, 6, 8 (corresponding to the
excess slack variables for niacin, thiamine, protein, and iron) have been
ignored. The complete computations are given in Table 27-2-II.

It is natural to question any procedure which ignores certain of the
restrictions in the problem and solves a smaller problem with fewer than the
total number of restraints. In certain cases, however, this approach can be
made the basis of a very efficient algorlthm Let us suppose that k equations,
each having a slack variable, are ignored in solving a linear programming
problem. After solution, the values of the variables of the reduced system
may be substituted into these & equations and the values of the omitted
slack variables determined. If, by good luck, the values of these slack
variables are positive or zero, then it is easy to see that the solution for the
restricted system, together with the solution for the slack variables, consti-
tutes an optimal solution for the entire system.

The nutrition problem requires a slight modification in the setup if the
simplex multipliers mr; are to be interpreted as the implicit costs of a calorie,
a gram of calcium, etc. The ¢, represent costs in the model but the a,; > 0
are outputs of the ith type of nutrient in a unit quantity of the jth food. It is
inconvenient in this instance to follow our sign convention that inputs should
be positive and outputs negative. In this case, the prices m; described in
Chapters 9 and 12 will turn out to have the wrong sign.
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h
.

TAB

SIMPLEX SOLUTION TO AN ABBREVIATED

C‘
Wheat
" : Evaporated Cheddar Beef .
Item Basic Solution (Erl;‘r]::‘lle‘ & IPI(i)lk Cheese Liver Cabbage Spinac!
Varishle Value l;i (1 =1) (15) (19 30) (46) (H2)
Calories Zin 3.0 44.7 8.4 7.4 22 2.6 1
Calcium 4 2y 8 2.0 15.1 16.4 2 4.0
Vitamin A Typs 5.0 26.0 28.1 169.2 72 918.4
Riboflavin Iy 2.7 33.3 23.5 10.3 50.8 4.5 13[
Ascorbic acid Ty 75.0 60.0 525.0 (5365.0) 2755
Objective form (—2) 1.0 1.0 1.0 1.0 1.0 1.0
Infeasibility form (—w) —-86.5 —80.0 ~133.0 —62.2 —747.4 —-5387.3 —3688
*
CI
Wheat
< : Evaporated Cheddar Beef .
Item Basic Solution (Et?!‘li(::‘;ll; " Milk Cheese Liver Cabbage Spinac
Variable Value 5; (j=1) (15) 19) (30) (46) (52)
Calorics Zyy 2.9637 44.7 8.3709 7.4 1.9458 -2
Calcium Zys 7441 2.0 15.0553 16.4 -.1911 —2.0525
Vitamin A Zys 4.8094 25.9195 28.1 168.4960
Riboflavin T2 2.6371 33.3 23.4497 10.3 50.3600
Ascorbic acid. Ty .0140 .0112 0078 1.0
Objective form (—2) ~.0140 1.0 9888 1.0 9022 .
Infeasibility form (—w) —11.2444 -80.0 — 72.7955 - 82.2 —~220.6106 —923.9
® *
C‘i
Wheat
. < Evaporated Cheddar Beef .
Item Basic Solution (Eg}?cllll!; & Mi Cheese Liver Cahbage Spinac
Variable | Value b, G=1 (15) (19) (30) (46) (52)
Calories Zin 2.9649 Eowi] 8.3776 7.4072 1.9889
Caleium 233 .7551 2.0 15.1135 16.4631 .1870
Vitamin A Zge 0054 0283 .0307 1842 1.0
Riboflavin ZTyye 2.5756 33.3 23.1241 9.9470 48.2433
Ascorbic acid Tog 0112 —.0034 —.0158 0033 1.0
Objective form (—2) -.0166 1.0 9750 .9850 8125
Infeasibility form (—w) —8.2956 —80.0 —46.6151 —33.817 -50.4191
*
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27.2.

NUMERICAL SOLUTION OF THE NUTRITION PROBLEM

ORM OF STIGLER’S NUTRITION PROBLEM

- mm .

Sweet Lima Navy L
Potatoes Beans Beans Excess Variables Artificial Variables
(Dried) (Dried)
(53) (68) (69) (101) (103)  (105) (107) (109) | (111) (113) (115) (117) (119)
l 9.6 17.4 26.9 -1.0 1.0
2.7 3.7 11.4 -1.0 1.0
290.7 5.1 -1.0 1.0
I 5.4 38.2 24.8 ~1.0 1.0
1912.0 -1.0 1.0
1.0 1.0 1.0
--2220.4 —6f4.4 ~62.9 1.0 1.0 1.0 1.0 1.0
l ® [ J L ] ® (o]
l poeet }IBJel;nnaé gel:;x}; Excess Variables . Artificial Variables
(Dried) (Dried)
(53} (68) (69) (101) (103)  (105) (107) (109) | (111) (113) (115) (117) = (119)
l 8.6741 17.4 26.9 ~1.0 0005 1.0 —.0005
1.2755 3.7 11.4 -1.0 .0007 1.0 - .0007
288.1359 5.1 - -1.0 L0013 1.0 -.0013
' 3.7075 38.2 24.0 - 1.0 0008 1.0 0008
3561 —.0002 .0002
6439 1.0 1.0 .0002 --.0002
-301.8830 —64.4 —-62.9 1.0 1.0 1.0 1.0 -.0034 . 1.0034
' ® ® o] [ ] Drop
5
l Sweet Lima * Navy . I
Potatoes (%ﬁen;) (’]‘1)?-?:;) Excess Variables Artificial Variables
(53) (68) (69) (101)  (103) (105) (107) (108) [(111) (113) (115) (117) (119)
l R.747R 17.4013 26.9 10 0003 o005 1.0 0003 L0005
19221 ERARE 1.4 Lo a0z 0007 1.0 o022 <0007
3150 0056 —.0011 0011
r 1778 38.1359 24.6 0126 -1.0 .0008 -.0126 1.0 —.0008
1945 —.0029 0008 ~.0002 —.0008 .0002
4905 9973 1.0 .0005 .0002 -.0005 —-.0002
—10.8477 —59.2487 -62.9 1.0 1.0  -.0101 1.0 —.0021 1.0101 1.0021
l (o} [ ] Drop ) Drop
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AN EXAMPLE OF FORMULATION AND SOLUTION

SIMPLEX SOLUTION TO AN ABBREVIA

TAB!

Ttem Basic Solution (E‘:égﬁ o Evaporated  Cheddar  Beef  Cabbage
Variable |Valueb; G=1 (18) (19) (30) (46) (52
Calories z, .0663 1.0 1574 .1657 0445 —_I
Calcium Tus .6225 14.7388 16.1316 .0980
Vitamin A T .0054 .0283 .0307 1842 1.0
Riboflavin Zyyp .3668 16.8831 4.4289
Ascorbic acid Ty 0112 —.0034 —.0158 .0033 1.0 I
Objective form (—2) —.0829 7876 .8193 .7680
Infeasibility form (—w) —.9893 —31.6217 —20.5605 —46.8596
o * [ ] [ J l:
Cycle
Ttem Basic Solution (E‘Eji‘o;;s}.:d) Evaporated Cheddar JBeel Cabbage Spirml
Variable |Valued; | (i=1) (15) (19) (30) (46) (62
Calories z, .0660 1.0 1714 \1815 {
Calcium Zia .6217 14.7033
Vitamin A Tga 0039 —.0382 0133 1.0
Riboflavin Tso .0078 .3610 .0947 1.0 l
Ascorbic Acid Tyg 0112 —.0045 —.0161 1.0
Objective form (-2) —.0889 5103 .7466
Infeasibility form (~w) —.8217 —14.7033 —16.1224 . ]
[ ] * [ ] [ J .jl:
Cycle
Item Basic Solution v;l};‘l;'t Evaﬁomted Cé‘ﬁg:s:’ Iﬁs,f; Cabbage Spinl
(Enriched)
Variable |Valueb, GG=1 (15) (19) (30) (46) (52)
Talories | & ] wseR | 10 0241 o R :r
Calcium £ 0386 9120 1.0
Vitamin A Tye .0034 ~.0503 1.0
Riboflavin £ .0042 1.0 '
Ascorbic acid Zys 0118 .0101 1.0
Objective form (-2) —.1177 —.1706
Infeasibility form (—w)
[ J * L o ® i
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27-2.

-2-IT (contd.)

BM OF STIGLER’S NUTRITION PROBLEM

NUMERICAL SOLUTION OF THE NUTRITION PROBLEM

E -l N

P?;‘t?t.%tés (I};%;{%) (lgé:ti{flzs) Excess Variables Artificial Variables
(53) (68) (69) (101)  (103) (105) (107) (109) |(111) (113) (115) 117D (119)
I 1957 .3803 8018 | .0224 -.0224
1.5307 2.9329 10.1964 | .0447 ~1.0 —-.0022 0007 [—.0447 1.0 .0022 —.0007
.3150 .0058 —.0011 0011
I—6.3391 25.1725 4.5604 | .7450 0128 ~1.0 .0005 | —.7450 —-.0128 1.0 —.0005
.1945 —.0029 0006 -.0002 —.0008 .0002
2048 .6080 3982 | .0224 0005 0002 |—.0224 ~.0005 —.0002
I 4.8084¢ —28.1054 —14.7568 |—.7897 1.0 —.0105 1.0 —.0012 | 1.7897 1.0105 1.0012
: Drop ® Drop lo] Drop
IP(S):;% é‘ég:s g:;gs Excess Variables Artificial Variables
(Dried) (Dried)
(53) (68) (69) (101)  (103) (105) (107) (109) {(111) (113) (115 (117) (119)
l 2017 .3653 5975 | —.0231 - .0010 0231 -.0010
1.5440 2.8801 10.1869 | .0432 -~1.0 —.0023 .0021 .0007 {—.0432 1.0 .0023 —.0021 —.0007
.3400 —.0936 —.0180 | -—.0029 -.0011 0039 0029 .0011 —.0039
l —.1358 .5383 0975 0159 .0003 —.0214 —.0159 -.0003  .0214
1949 -.0048 -.0003 | -.0001 0006 0001 —.0002 .0001 - .0006  —.0001 0002
.3989 1945 .3233 .0101 0003 .0164  .0002 ;—.0101 —-.0003 —.0164 —.0002
'—1.5440 —2.8801 —10.1869 | —.0432 1.0 .0023 —.0021 —.0007 | 1.0432 9977 1.0021 1.0007
Drop [o] Drop Drop Drop
I (Feasible)
Peet (%é%%) (%e:éd);) Excess Variables Artificial Variables
(53) (68) (69) (101) (103) (105) (107) (109) |(111) (113) (115) (117! (119)
' .1863 .3365 4954 |—.0235 .0100 0009 0235 —.0100 ' .0009
0958 1786 .6318 0027 —.0620 -.0001 .0001 —.0027 .0620 .0001 —.0001
i 3387 -.0960 -.0264 -~.0030 0008 —.0011 L0039 0030 —.0008 0011 —.0039
l—.1446 5214 0377 0157 0059  .0003 —.0214 -.0157 ~.0059 -.0003 .0214
1965 —.0017 .0098 —.0010 .0006 .0001 —.0002 .0010 —~.0006 —.0001  .0002
3274 0812 -.1484 .0081 .0463 .0004 .0163 .0001 [—.0081 —.0463 —.0004 —.0163 —.0001
l 1.0000 1.0000 1.0000 1.0000 1.0000
Drop  Drop Drop Drop
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AN EXAMPLE OF FORMULATION AND SOLUTION

T. k

B =m

SIMPLEX SOLUTION TO AN ABBREVIATEI

-

Item Basic Solution (E‘r?;{rlli:);;l;\;:d) E"“ﬁ?l'i:‘md Cch;:géi‘zr ‘ Il}x(\\'Let;- Cabbage Spin
Variable | Valued; | (j=1) (15) 9 (30) (46) (58
Calories T, 0594 1.0 -.0876 t
Calcium Ty 0246 1 1.0 ~3.3203 -
Vitamin A E 0042 .1830 1.0
Ribofiavin s 0153 1.0 3.6407 I
Ascorbic acid e o117 0368 1.0 N
Objective form (—2) ~.1151 .6210
Tnfeasibility form (—w) l_
Y ° o e L |
w
Item Basic Solution (Erl;fi%z " qul\r;%r]?.ted Ca(\egéls:r IIE?;%E- Cabbage Spi l
Variable | Valued, | (j=1) (15) a9 30) (46) (5
Calories z, .0355 1.0 -.9711 3.1368 i
Calcium Tgq 0486 1.9734 —6.5523
Vitamin A Zga L0051 .0384 0356
Riboflavin Iy .0086 1.0 --.2707 {75398 ‘
Ascorbic acid Fis 0112 ~.0187 owss 10
Objective form (~2) —.1090 2467 —.1982
Infeasibility form (—w) l
® (o) * [
II'
w
Ttem Basic Solution & gi:f‘s:i o Evaporated  Cheddar Beel Cabbage ° Spinach
Variable | Value 5,- (i=1) (15) (19) (30) (48) (5!
Calories ) 0205 1.0 6010 —.7841 = l =
Caleium Ty 06810 1.4434 1.5827 o
T Vitamin A Tx ooso | T T T T e T e T 1,
Riboflavin Zgo .0019 2203 —.0596 1.0 I )
Ascorbic acid Tee 0112 — 0041 ~ 0156 1.0 B
Objective form (~2) -.,1087 .0437 2349
Infeasibility form {(~—w) .:
® [ [ J
[ 564 ] l |
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27-2.

7-2-11 (contd.)

FORM OF STIGLER'S NUTRITION PROBLEM

NUMERICAL SOLUTION OF THE NUTRITION PROBLEM

Lima Navy
Potatoes (%i&i!.;\;) (%i?;?) Excess Variables Artjficial Variables
(563) (68) (69) (101) (103)  (105)  (107)  (109) (111) (113)  (115) (117) (119)
l 1989 2908 4921 —.0249  .0095 .0028 .0249 —.0085 .0028
5760 -1.5525 [B067] |—.0494 —.0815 — 0011 0712 0494 0815 .0011 —.0712
3122 -.0005 -.0195 |-—.0001 .0019 —.0011 0001 -.0019 .0011
r— .5286 1.8983 1372 0571 0214 .0010 —.0779 ~.0571 —.0214 —.0010 .0779
2018 —.0209 0084 |—.0006 —.0012 .0005 .0009 —.0002| .00086 .0012 ~.0005 -—.0009 0002
2376 3849 —.1250 0179 .0500 .0006 .0030  .0001 |—.0179 ~.0500 —.0008 —.0030 — .0001
I 1.0000 1.0000 1.0000 1.0000 1.0000
* Drop Drop Drop Drop
I
——Sweet Lima Navy . CAni ,o e ‘ ‘71
Potatoes Beans Beans Excess Variables Artificial Variables
(Dried) (Dried)
I (53) (68) (69) (101)  (103) (105) (107)  (109) (111)  (313) (115) (117) (119)
—.3604 1.7985 L0231 0887 .0010 -.0663 0231 -.0887 —.0010 .0663
1.1366 —3.0838 1.0 —.0974 —.1609 —.0022 .1405 .0001 0974 .1609 .0022 —.1405 -.0001
3343 —.0601 —.0020 -.0012 -.0011  .0028 0020 .0012 0011 —.0028
I —.6825 2.3186 0704 .0435 0013 ~.0972 —.0704 —.0435 —.0013  .0972
1922 0049 L0002 L0001 0006 —.0003 —.0002|—.0002 —.0001 - .0008 L0003 0002
3787 0019 0057 0298 .0003 0206 0001 | —.0057 —.0298 -.0003 —.0208 —.0001
I 1.0000 1.0000 1.0000 1.0000 1.0000
® Drop Drop Drop - Drop
I 8 (Optimal)
?iweet Lima 7 —Nuvy . L T
Potatoes Beans Beans Excess Variables Artificial Variables
(Dried) (Dried)
I (58) (68) (69) (101) (103) (105) (107)  (109) (111) (113) (115) 117 (119
(1112 1964 —.0256 .0588 .0001  .0008 0256 —.0586 —.0001 —.0008
1516 2827 1.0 0042 —.0982 ~.0002 .0002 .0001l{—.0042 .0982 .0002 — .0002 —.0001
3427 -.0885 —.0029 -.0018 ~-.0011 .0039 ©.0029  .0018  .0011 —.0039
l —.1503 5107 0156 .0096  .0003 —.0214 —.0155 —.0096 -—.0003 .0214
.1950 -.0045 —.0001 0006 .0001 —.0002| .0001 ~.0006 —.0001 .0002
3499 1031 0088 .0817 0004 .01864  .0001| —.0088 —.0317 —.0004 —.0164 —.0001
l 1.0000 1.0000 1.0000 1.0000 1.0000
[ J Drop Drop Drop Drop
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10. Prove for the general linear programming system § 27-1-(2) with a general ‘

AN EXAMPLE OF FORMULATION AND SOLUTION

27-3. PROBLEMS

. Solve the nutrition problem using the revised simplex algorithm.
. What are the implicit prices of the nutrients? Comment on the sign of

the 7,.

. What must the price of evaporated milk drop to before it will affect the

solution ? What food will drop out of the basis?

. Assuming all other food costs stable, what must be the relationship

between the cost of evaporated milk and the cost of the food being dropped
out of the basic set for one or the other to be in the solution.

. Prove that in a nutrition-type problem where all requirements may be

exceeded, that the quantity of any food, s, in an optimal solution can be
replaced by purchase of an equal number of dollars of another food j,
provided a;; > a;, for all 3.

. Prove, more generally, that the purchase of any food, s, in an optimal

solution can be replaced, per dollar of expenditure, by the purchase of

A, dollars of food 1, 4, dollars of food 2, . . ., 4, dollars of food r, provided
Ay + A+ . . .+ Aa,>a; (=1,2,...,m)
h +2d +...4+4 =1
;A>0,4,>0,..,4>0
. Prove for a general linear programming problem:
Zaﬁszb,. (;=0;:=1,2...,m)
Z ¢;x; = z (Min) |
that if, by relabeling, for k =1,2,. . ,randt=1,2,. . .,m
My + Ay + . .+ A > ay (A =0)

Ay + Ay + ..+ e, <o,

then an optimal feasible solution exists with z, = 0.

. Prove that in a nutrition problem where requirements may be exceeded,

at least one requirement must be satisfied exactly in an optimal solution.

. Prove, as a Corollary to Problem 8, that no 2, > 0 can occur in an optimal

solution if there exists a j satisfying a;; > a,, for all ¢ or, more generally,
asetj=1,2,.. . r(byrelabeling) satisfying the relations of Problem 6
with strict inequality.

linear objective that strict inequalities cannot hold for all { in an optimal
feasible solution when Min z = 0. Show, by a counter-example, that this
theorem need not be true if Min z = 0.

11. Construct an example to show that, if requirements are to be met

exactly, then it is possible that there exists an optimal solution with
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z, > 0 in spite of the existence of a j satisfying conditions of Problems
5 or 6 above.

. In solving the nutrition problem, suppose a guess is made as to which

slack variables are positive. Suppose the corresponding equations are
omitted and an optimal solution is obtained for the resulting system.
Suppose finally that substitutions of this optimal solution into the
omitted equations yield positive values for their slack variables. Show,
by eliminating the basic variables of the restricted system from the
omitted equations, that (a) the entire system is reduced to canonical
form, (b) the proposed solution to the entire system is a basie solution,
and (e) it is an optimal solution.

13. Suppose in Problem 12 that, upon substitution into the omitted equa-

14.

15.

tions, one of the corresponding slack variables is negative. Show that
one way to eliminate infeasibility is to introduce an artificial variable
whose coefficients are the negative of the slack variable, and then
proceed to minimize this variable. Generalize this procedure.

Show that, by increasing sufficiently the quantity of evaporated milk
(j = 15), an immediate feasible solution can be obtained for the abbre-
viated nutrition problems of § 27-2 (see Table 27-2-II).

Show by altering the units of a variable that the rule to choose
Max ¢; > 0 will choose any j such that ¢; > 0. Illustrate in Table 27-2-11
how a change in the units of some variable would have altered the
course of calculation. Use this to explain why the introduction of slack
variables from the start of the computations could give the same
sequence of iterations as their introduction after a minimum was reached
without allowing slacks.

REFERENCES
Fisher and Schruben, 1953-1 Stigler, 1945-1
Newman, 1955-1 Swanson, 1955-2
Smith, V. E., 1959-1 Waugh, 1951-1
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CHAPTER 28

THE ALLOCATION OF AIRCRAFT TO
ROUTES UNDER UNCERTAIN DEMAND

28-1. STATEMENT AND FORMULATION

The purpose of this chapter is to illustrate an application of linear
programming to the problem of allocating aireraft to routes to maximize
expected profits when there is uncertain customer demand. The computa-
tional procedure is similar to the fixed demand case with only slightly more
computational effort required. After solution of a numerical case we shall
compare the allocations with those obtained under the common practice of
assuming a fixed demand equal to the expected value. The material for
this chapter has been taken, with only minor changes, from the joint
papers by Alan Ferguson and the author [Ferguson and Dantzig, 1954-1,
1956-17.

Many business, economic, and military problems have the following
characteristics in common: a limited quantity of capital equipment or final
product must be allocated among a number of final-use activities, where the
level of demand for each of these activities, and hence the payoff, is un-
certain; further, once the allocation is made, it is not economically feasible
to reallocate because of geographical separation of the activities, or because
of differences in form of the final products, or because of a minimum lead
time between the decision and its implementation. Examples of such
problems are (1) scheduling transport vehicles over a number of routes to
meet a demand in some future period and (2) allocating quantities of a
commodity at discrete time intervals among several storage or distribution
points while the future demand for the commodity is unknown. It is assumed,
however, that demand can be forecast or estimated as a distributior of values,
each with a specified probability of being the actual value.

The general area where the techniques of this chapter apply may be
schematized broadly as problems where

(a) alternative sets of activity levels can be chosen consistent with
given resources;

(b) each set of chosen activity levels provides the facilities or stocks to
meet an unknown demand whose distribution is assumed known;

(c) profits depend on the costs of the facilities, stocks, and on the
revenues from the demand,
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28-1. STATEMENT AND FORMULATION

and where the general objective is to determine that set of activity levels
that maximizes profits.

Chapter 25, which is based on the paper entitled ‘“Linear Programming
under Uncertainty”’ [Dantzig, 1955-1], forms the theoretical basis for the
present chapter. Here we shall illustrate the procedural steps on an example
[Ferguson and Dantzig, 1956-1] which, in fact, originally inspired the
theoretical work in this area. Thus, little in the way of rigorous theory will be
attempted, although each step will be justified intuitively.

The method is explained by the use of a model for routing aircraft.
Several types of aircraft are allocated over a number of routes; the monthly
demand for service over each route is assumed to be known only as a distri-
bution of probable values. The aircraft are so allocated as to minimize the
sum of the cost of performing the transportation, plus the expected value
of the revenue lost through the faiture to serve all the traffic that actually
developed. '

For purposes of month-to-month scheduling, an air-transport operator
would probably be more willing to make an estimate of the range and general
distribution of future travel (or shipment) over his toutes than to commit
himself to a single expected value. Indeed, he might feel that the optimal
assignment should be insensitive to a wide range of demand distribution,
and that an assignment based on expected values (as if these were known
fixed demands) would be misleading. It is suggested that the reader make
sensitivity tests by modifying the demand distributions given in the illus-
trative example to develop this point. Sensitivity analysis is discussed in
§12-4. :

Passenger demand, of course, occurs on a day-by-day or, in fact, on a
flight-by-flight basis. The assumed number of passengers per type aircraft
per given type flight may be thought of as an ideal number which can be
increased slightly by decreasing the amount of air freight and by “smoothing”
the demand by encouraging the customers to take open reservations on
alternative flights as opposed to less certain reservations on the desired
flight. In spite of these possible adjustments, traveler preferences and the
inevitable last-minute cancellations do cause loss of seat-carrying capacity.
However, the best way to reflect these effects of the daily variations in
demand is beyond the scope of this chapter. For our purpose here, either
the aircraft passenger capability or the demand may be thought of as
adjusted downward to reflect the loss due to daily variations of demand.
Qur concern will be in over-all monthly variability.

The method employed is simple, and the example used can be solved by
hand in an hour or two. Larger problems can be solved with computing
machines.

After we formulate the problem, we will (a) briefly indicate the nature
of the solution based on fized demand [Ferguson and Dantzig, 1954-1],
(b) show the method of solving the problem using stochastic values for
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ALLOCATION OF AIRCRAFT UNDER UNCERTAIN DEMAND

demand, and (¢) compare the two solutions. Note that the example has been
so constructed that the fixed demand is the same as the expected value of
the uncertain demand.

A Fixed-demand Example.

The fixed-demand example, used to illustrate the method, assumes a
fleet of four types of aircraft, as shown in Table 28-1.-1. These aircraft have

TABLE 28-1-1
AssUMED AIRCRAFT FLEET

L Number

Type Description Available
A Postwar 4-engine 10
B Postwar 2-engine 19
C Prewar 2-engine 25
D Prewar 4-engine 15

differences in speeds, ranges, payload capacities, and cost characteristics.
The assumed routes and expected traffic loads (the distribution of demand
will be discussed later) are shown in Table 28-1-11.

TABLE 28-1.II
Tra¥Fic Loap BY ROUTE

: Expected Price

Route Rgut@; Number of One-way

Miles Passengers®* - Ticket ($)
(1) N.Y. to L.A. (l-stop) | 2,475 25,000 130
(2) N.Y. to L.A.  (2-stop) 2,475. 12,000 130
(3) N.Y. to Dallas (0-stop) 1,381 18,000 70
(4) N.Y. to Dallas (1l-stop) 1,439 9,000 70
(5) N.Y. to Boston (0-stop) 185 60,000 10

! Official Airline Guide, July, 1954, p. 276. The New York-Los Angeles
routes are via Chicago and via Chicago-Denver; the stop en route be-
tween New York and Dallas is at Memphis. ‘

2 This is the expected number of full one-way fares per month to be
carried on each route. If a passenger gets off en route and is replaced by
another passenger, it is counted as one full fare.

Sinee this chapter proposes to illustrate the applicability of a method of
solving problems in which several realistic elements are considered, it is
assumed that not all aircraft can carry their full loads on all routes and that
the obtainable utilization varies from route to route. Specifically, Type B
is assumed to be able to operate at only 75 per cent payload on Route 3,
and Type D at 80 per cent on Route 1; Type C cannot fly either Route 1
or Route 3, and Type B cannot fly Route 1. Utilization is defined as the
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28.1. STATEMENT AND FORMULATION

average number of hours of useful work performed per month by each
aircraft assigned to a particular route. Utilization of 300 hours per month
is assumed on Routes 1 and 2; 285 on Routes 3 and 4; and 240 on Route 5.

The assumed dollar costs per 100 passenger-miles are shown in Table
28-1-II1. These do not include any capital costs such as those of the aircraft

TABLE 28-1-1I1
Dorrar Costs

Route
Type of (1) N.Y. (2) N.Y. (3) N.Y. (4) N.Y. (5) N.Y.
Aircraft to L.A. to L.A. to Dallas to Dallas to Boston
1-stop ($) 2.stop ($) 0-stop (8) 1-stop ($) 0-stop ($)
Dollar Costs Per 100 Passenger-miles
1—A 0.45 0.57 0.45 0.47 0.64
2—B — 0.64 0.83 0.63 0.88
3—C — 0.92 — 0.93 1.13
4+—D 0.74 0.61 0.59 0.62 0.81
Dollar Costs Per Passenger Turned Away?
5—E 130 130 70 70 10
(13) (13) (N (7) (1)

! Figures shown in parentheses are thousands of dollars lost per 100 passengers
turned away. (Throughout this discussion, passengers are measured in units of
hundreds.)

and ground facilities; they represent variable costs such as the cost of gaso-
line, salaries of the crew, and costs of servicing the aircraft.

There is, however, a second kind of ““cost.” It is the loss of revenue when
not enough aircraft are assigned to the route to meet the passenger demand.
We shall assume that this loss of revenue is the same as the price of a one-way
ticket shown in the E row of Table 28-1-III.

Based on the speeds, ranges, payload capacities, and turn-around times,
passenger-carrying capabilities were determined. The resultant potential
number p; (in hundreds) of passengers that can be flown per month per
aircraft of type i on route j is shown in Table 28-1-IV, as the upper right
figure in each box. By multiplying these numbers by the corresponding
costs per 100 passenger-miles given in Table 28-1-III and by the number of
miles given in Table 28.1.II, the monthly cost per aircraft can also be
obtained. This is given in the lower left figure c;; in each box; explicitly, ¢;;
is the cost in thousands of dollars per month per aircraft of type 4 assigned
to the route j. The revenue losses ¢y, in thousands of dollars per 100
passengers not carried, are given in the E row of Table 28-1-IV; finally, we
define p;; = 1.* The staggered layout of the table was chosen so as to

* This will make it easier to state the passenger-balance or ‘“‘column’ equations (2).
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ALLOCATION OF “AIRCRAFT UNDER UNCERTAIN DEMAND

TABLE 28-1-1V

PAssENCGER-CARRYING CAPABILITIES AND COSTS

Route
T ¢ (1) N.Y. (2) N.Y. (3) N.Y. (4) N.Y. (5) N.Y.
A‘ype ‘;t to L.A. to L.A. to Dallas to Dallas to Boston
rera l-stop 2-stop 0-stop 1-stop 0-stop
Poer Aireraft Por Month
P =16 Pz = 15 Pia = 28 P =23 Pis = 81
1—A
¢y = 18 cyp = 21 cy3 = 18 ¢, = 16 cys = 10
Paz = 10 Pas = 14 Paq = 15 Pos =57
2—B *
€y = 15 Cag = 16 Cyy = 14 Cys =9
P32 =5 Pag =T Pas = 29
3—C * *
C3p = 10 Cae = 9 cys = 6
Pa =9 P = 11 Pas = 22 Pa = 17 Pys = 55
4—D
cqy = 17 Cgp = 16 cy3 = 17 Cyy = 15 Ces = 10
Per 100 Passengers Not Carried (Losses)
Pa = I Psz =1 Psas = 1 Ps =1 Pss = 1
5—E
cs; = 13 Cgp = 13 Cy3 =T sy =1 cys = 1

identify the corresponding data found in Table 28-2.II; the latter is the
work sheet upon which the entire problem is solved.

The basic problem is that of determining the number of aircraft of cach
type to assign to each route consistent with aircraft availabilities, and of
determining how much revenue will be lost due to failure of allocated aircraft
to meet passenger demand on various routes. Since many alternative alloca-
tions are possible, our specific objective will be to find that allocation that
minimizes total costs, where costs are defined as operating costs plus lost
revenues based on the cost factors given in Table 28-1-1IIL

This may be formulated mathematically as a linear programming
problem. Let z;; denote the unknown quantity of the ¢t type aircraft
assigned to j® route, where1 =1,2,. . ., m —landj=1,2,. . ., n— L
If z,, denotes the surplus or unallocated aircraft, then (1) states that the
sum of allocated and unallocated aircraft of each type accounts for the total
available aircraft a;. If z,,; denotes the number of passengers in hundreds
turned away, then equation (2) states that the sum of passenger carrying
capability of each type aircraft allocated to the jth route, p;z,; plus the
unsatisfied demand accounts for the total demand, d;. Relation (3) states
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28-1. STATEMENT AND FORMULATION

that all unknown quantities z;; must be either positive or zero. Finally, if z
is total cost, it is the sum of all the individual operating costs of each
allocation, ¢;z;;, plus the revenues lost by unsatisfied demands c,,;%,; (see
equation (4)).

Fixed-demand Model

Find numbers z,;, and the minimum value of z such that for 1 =1, 2,

comi=1,2,.. ., n:
(1) Row Sums: T+ T+ ..+ Ty, =a; (3#Em)
(2) Col. Sums: P1i%; + DoafZoi + « + - + Pui®ms = d;
(3) z; =0

n

(4) ' i Z City = 2
i=1j=1

The optimal assignment of aircraft to routes based on fixed demand is
a weighted distribution problem. The numerical solution shown in Table
28-2-1I was obtained using the methods of Chapter 21. The values assigned
to the unknowns z;; appear boldfaced in the upper left of each box unless
z; = 0 in which case it is omitted; the entire layout takes the form:

Zi;
Dy

Cis

The sums by rows of z;; entries in Table 28-2-II equated to availabilities
yield equations (1). The sums by columns of x;; weighted by corresponding
values of p;; equated to demands yield equations (2); the z,; weighted by
corresponding ¢,; and summed over the entire table yields (4). As noted
earlier, Table 28-2.II is actually the work sheet upon which the entire
problem is solved. Later we shall discuss a revision of this work sheet for
solving problems with variable demand. All figures in the table, except for
the upper left entries, a:; and values of the so-called “implicit prices™ u; and
v; shown in the margins, are constants which do not change during the
course of computation. The values of the variables z,;, «,, and v;, however,
will change during the course of successive iterations of the simplex method
as adapted for this problem. For this reason it is customary to cover the
work sheet with clear acetate and to enter the variable information with a
grease pencil which can be easily erased; alternatively, a blackboard or
semi-transparent tissue paper overlays can be used. The detailed rules for
obtaining the optimal solution shown are given in Chapter 21 and will not
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be repeated here. Instead a more general set of rules for the uncertain
demand case will be given which, of course, could be used for the expected
demand case.

In Table 28-1-V we have a convenient summary serving to identify and
define the numerical data entered in Table 28-2-II and to give the test for
optimality.

TABLE 28-1.V
SuMMARY OF NOTATION AND RULES FOR FIXED-DEMAND CASE
(as displayed in Table 28.2-1I})

Indices: i=1,2,... m—1 refers to type of aircraft to which
passengers are assigned
t = m if passengers are unassigned
7j=12,...,n —1 refers to type of route to which an
aircraft is assigned
J = n if aircraft is unassigned (surplus)

Constants: a; = number of available aircraft of type ¢
d; = expected passenger demand in 100’s per month.on
route 7

p;; = passenger-carrying capability in 100’s per month per
aircraft of type ¢ assigned to route j (p,; = 1 by
definition) .

¢;; == costs in 1000’s of dollars per month per aircraft of
type ¢ assigned to route j (c,; is cost per 100
passengers turned away)

x;; Entries: z;; = number of aircraft of type t¢ assigned to route j
(Z,.; is 100’s of passengers turned away)
Omitted z,; Entries: x,; = 0 if upper left entry in box is missing

Implicit Prices: u; and v; are determined such that «; + p,v; = ¢;; for (3,7)
boxes corresponding to z,; > 0, i.e., non-omitted
z,; entries (4,, = v, = 0 by definition)

Test for Optimality: Solution is optimal if, for all (1, 7), the relation u; + p;v; < ¢
holds

Extension of the Example to Uncertain Demand.

To introduce the element of uncertain demand, we assume not a known
fixed demand on each route but a known frequency distribution of demand.
The assumed frequency distributions are shown in Table 28-1-V]. Thus
on Route 2 (N.Y. to L.A., 2-stop) either 5,000 or 15,000 passengers will
want transportation during the month, with probabilities 30 or 70 per cent
respectively. The assumed traffic distributions are, of course, hypothetical
to illustrate our method. The demand distributions on the five routes vary
over wide ranges and have different characteristics; Route 1 is flat, Route
2 is U-shaped, Routes 3, 4, and 5 are unimodular but have differing degrees
of concentration about the mode. Route 4 has a distribution with a very
long tail that may reflect a realistic traffic situation.
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To illustrate the essential character of the linear programming problem
for the case of uncertain demand, let us focus our attention on a single
route—say, Route 1-—with probability distribution of demand as given in
Table 28-1-VI. Let us suppose that aircraft assigned to Route 1 are capable

TABLE 28-1-VI
AsSUMED DISTRIBUTION OF PASSENGER DEMAND
(A; = Probability of Demand d,;)

R Passenger A&[;gx. Probability z.rg:;}::;;};

oute Demand . of Passenger .
(in hundreds) (in Demand or Exceeding

hundreds) Demand

200 = d,, 0.2 = 4, 1.0 =9yy,

220 = d,,; 0.05 = Ay 0.8 =yy

(1 250 = dy,; 250 0.35 = Ay 0.75 = y4;

- 270 = d,, 0.2 =1, | 04 =y,

300 = d;, 0.2 = Ay 0.2 =y5

S 50 = dyy P 0.3 = 4, LO = e

2 150 = dyy 120 0.7 = Ay | 07 = ym

140 = dj, 0.1 =4y | 1.0 =y

160 = dyy 0.2 = 1y 0.9 = yq

(3) 180 = dy4 180 0.4 = Ay 0.7 =y

200 =d,4 0.2 = 44 0.3 =y,

220 = dg; |- 0.1 =25 | 01 =ypgq

10 =d,, 0.2 = A, 1.0 =y,

50 = d,, 0.2 = Ay 0.8 =y,

(4) 80 = dj, 90 0.3 = A5 0.6 =y,

100 = d, 0.2 = A4 0.3 = y,4

340 = d,, 0.1 =1y | 01 =g

580 = d,; 0.1 = A 1.0 = 45

(5) 600 = d,, 600 0.8 = Ay 0.9 =y,

620 = dyg 0.1 = A4 0.1 = y3

of taking 100Y, passengers where Y is to be determined. Up to 200 units
(in hundreds of passengers) of this capability are certain to be used, and
revenues from this source (negative costs) will be 13 = k, units (in thousands
of dollars) per unit of capability. If 100Y; > 200, up to an-additional 20
units of this capability will be used with probability y, = 0.8. Indeed, 80
per cent of the time the demand will be 220 units or greater, while 20 per
cent of the time it will be 200 units; hence, the expected revenue per unit
from this increment of capability is 0.8 X 13 = 10.4, or 10.4 = k,y,, units.
On the third increment of 30 units (22,001 to 25,000 seats), the expected
revenue is 0.75 X 13 = 9.8 or k,y,, units per unit of capability since there
is a 25 per cent chance that none of these units of capability will be used
and 75 per cent that all will be used. For the fourth increment of 20 units
(25,001 to 27,000 seats) of capability, the expected revenue is 0.4 X 13 =
5.2 or k,y,; units per unit of capability, while for the fifth increment of 30
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units (27,001 to 30,000 seats) it is 0.2 X 13 = 2.6 or k;y;, units per unit.
For the sixth increment, which is the number of units assigned above the
30,000 seat mark, the expected revenue is 0.0 X 13 = 0 per unit, since it
is certain that none of these units of capability can be used. It is clear that
no assignments above 30,000 scats are worthwhile, and hence the last
increment can be omitted. The index A = 1, 2, 3, 4, 5 will be used to denote
the 18t 2nd - 5th iperement of demand. v

The number of assigned units in each increment, however, can be viewed
as an unknown that depends on the fotal (passenger-carrying) capability
assigned to route j = 1. Thus, if the total assigned is ¥, = 210 units of
capability, then the part of this total belonging to the first increment,
denoted by y,;, is y;, = 200 and the part belonging to the second increment,
denoted by y,;, is y,; = 10. The amounts in the higher increments are
Yne = 0 for ¢ = 3, 4, 5. To review, the passenger-carrying capability Y is
determined by the number of aircraft assigned to route j, so that

(8) Y; = p1@y; + Pose; + Pass; + Pasai
On the other hand, Y itself breaks down into five increments
(6) Y=y + ¥os + ¥s + Yai + ¥ss
for routes j = 1, 3, 4, and correspondingly fewer for j = 2, 5. Regardless
of the total Y, the amount y,; belonging to each increment is bounded by
the total size b,, of that increment; the latter, however, is simply the change
in demand level, so that
(7 0<y,; <dy = by;
0<yy < dy — dy; = by;
0 < yy < dg; — dyy = by;
0= yy; Zodyy — dy; = by,
0<ys; < ds; — dy; = by
Letting
(8) An; = probability of demand d,;,
the total expected revenue from route j is, therefore,
9 ki + vaes + - - -+ Vsifss)

where k; is revenue (in thousands) per 100 passengers carried on route j and,
as seen in Table 28-1.VI, the probability, y,,, of exceeding or equaling
demand d,; is related to 4,;, the probability of demand d,;, by

(10) V=yy=4y+ A + Ay + 445 + 455
Vo = Aos + Agj + Ay + 4s;
Va5 = Aa; + Agj + Ag;
Vas = Aaj + As;
Vsi = Asi
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The numerical values of A,; and y,; are given in Table 28-1-VI. Applying
(9), the total expected revenues for Route 1 are

13(1.0yyy + 8yy + T5ys + 4ya + -2¥5)

The most important fact to note about this linear form is the decrease
in the successive values of the coefficients v,;. Moreover, this will always be
the case whatever the distribution of demand, since the probability of
equaling or exceeding a given demand level d,; decreases with increasing
values of demand.

1Suppose now that ¥, ¥, . . ., are treated as unknown variables in a
linear programming problem subject only to (6) and (7) where the objective
is to maximize revenues. Let us suppose further that Y, is fixed. It is clear,
since the coefficient of y,, is largest in the maximizing form (9), y,; will be
chosen first and made as large as possible consistent with (6) and (7); for
the chosen value y,,, the next increment y,, will be chosen as large as
possible consistent with (6) and (7), etc.; as a result, when the mazimum 18
reached, the values of the variables y,q, ¥s, - - ., are precisely the incremental
vabues associated with Y, which we discussed earlier, (6). Even if passenger
capability Y, is not fixed, as in the case about to be considered, it should
be noted that whatever the value of Y,, the values of y,;, ¥, . . ., Which
minimize an over-all cost form such as in (14) below, must maximize (9) for
j =1 and hence the incremental values of Y, will be generated by
Y Yoo - - - -

The linear programming problem in the case of uncertain demand is

shown by (11), (12), (13), and (14).

Uncertain Demand Model

Find numbers z;; and y,; and the minimum value of z such that for
t=1,2,.. . .m;j=12 ... ,nh=1,2,.. .7
(11) Row Sums: Ty + Zp+ . o Ty =0y ‘ (¢ 5= m)
(12) Column Pr%y; + Poio; + -« Paia; =Yyt Yo+ - T Yr

Sums: (7 £ mn)
(13) z; =0, 0 < yns < by
(14) Expected =z = Z Z CiiTsj liRo - Z k; Z '}’M’yh{|

Costs: i=1j=1 j=1 k=1

Thus expected costs are defined as the total outlays (first term) plus the
expected loss of revenue due to shortage of seats (last two terms), where R,
a constant, is the expected revenue if sufficient seats were supplied for all
customers.
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For the problem at hand, the bounds, b,;, and the expected revenues,
k;y,;, per unit for the “incremental variables” y,; can be computed from
probability distributions Table 28-1-VI via (7) and (10).

The numerical values of the constants for the stochastic case are tabulated
in Table 28-1-VII.

TABLE 28-1.VII

INcrEMENTAL Bounbs, b,;, aNp Exprcrep ReveNurs, by,
Per UNIT OF PaSSENGER CARRYING CAPACITY ASSIGNED

Incre- Route 1 Route 2 Route 3 Route 4 Route 5
ment

h bn kyym Ors L bll’w ksyaa dae k¥ne bas kgyas

1 200 k =13 | 50 ky,=13 |140| ky=7 | 10| k, =7 [580| k, =

[
—

2 20 .8k, = 10.4{100|.7k, = 9.1| 20|.9%, = 6.3| 40| .8k, = 5.6 20|.9k, =
3 30 .75k, = 9.8 - 20| .7k, = 4.9| 30| .6k, = 4.2| 20|.1k, =
4 20 |.4k, = 5.2 * 20 .3k, = 2.1| 20| .8k, = 2.1 x*
5 30|.2k, = 2.6 *» 20| .1k, = .7| 240| .1k, = .7 **

** Only two increments for Route 2 and three increments for Route 5 are needed to describe
distribution of demand.

Rules for Computation.

The work sheet for determining the optimal assignment under uncertain
demand is shown in Table 28-2-III.
The entries in the z,; boxes and y,; boxes take the form:

! i
|
!

To form the new row equations (11), the z,; entries are summed to yield the
a; values given in the aircraft-available column. To form the column equa-
tions (12), the z,; entries are multiplied by p,;, the y,; by —1, and summed
down to yield zero.

Step 1. To initiate the computation any set of nonnegative values may
be assigned to the unknown z,; and y,;, provided they satisfy the equations
and thereby constitute a feasible solution.

Step 2. Put a box around any (m + n — 2) of z,; and y,, entries where
m -+ n is the number of row plus column equations. These boxed entries
can be arbitrarily selected except that they must have the property that if
the fixed values assigned to the other non-boxed variables and the constant
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terms were arbitrarily changed to other values, then the boxed variables would
be determined uniquely in terms of the latter. Such a boxed set of variables
constitutes, of course, a basic set of variables ; the array of coefficients associated
with this set in the equations (11) and (12) forms a basis (Chapter 8).

Note: One simple way of selecting a basic set is shown in Table 28-2-1V.
One z;; entry is arbitrarily selected and boxed in each row corresponding
to a row equation (it is suggested that entries be boxed that appear to have
a chance of having a positive value in an optimum solution). Next, each ¥,;,
inturn, h=1,2,. . ., in a column is assigned its upper bound value b,; until
for some % = A, the column ‘“‘net” goes negative, in which case a.value
Yn; < by; for b = h, is assigned so that the net is zero; the (, ;) entry is then
boxed.

Step 3. For (i, j) and (k, j) combinations corresponding to basic entries,
compute implicit prices u; and v, associated with equations by determining
values of u; and v; satisfying the equations

(15) U; + DY = €45 (for z;; basic)
(16) 0+ (—1w; = —k;y); ~ (for v,; basic)
There are always m + n — 2 equations (15) and (16) inm + n — 2 unknowns .
4; and v; that can be shown easily to have a unique solution (see § 21-1).
They can be solved by inspection, for it can be shown that the system is
either completely triangular or, at worst, contains subsystems, some
triangular and some triangular if one unknown is specified.?

Step 4. Compute for all (¢, j) and (k, j)
(17) Cii = €y — (u; + D)
(18) ' G = +(—kyyas) — (0 - v;)
It has been shown in § 5-2 that, if the x,; or y,; value associated with some
non-basic entry is changed to

(19) A z;+6 or y,;+0 (6 >0)

the other non-basic variables remaining fixed, and the basic variables
adjusted, then the expected costs z will change to 2z’ where

(20) 2 =2z2406 or 2 =2z4 06

Assuming, for generality, that z,; may also be a bounded variable, it pays to
increase z,; or y,; if ¢; or &; < 0, if either is at its upper bound, in which
case no increase is allowed ; also it pays to decrease z;; or y,, if ¢; or &, > 0,
unless z;; = 0 or y,; = 0, in which case no decrease is allowed.

? This is the analogue for the weighted distribution problem (11), (12), (13), (14) of the

well-known theorem for the standard transportation problem that all bases are triangular.
Its proof is similar. See Chapters 14 and 21.
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Test for Optirhality.

According to the theory of the simplex method with bounded variables
(see Chapter 18), if the non-basic variables satisfy the following conditions:

(a) they are all at either their upper or lower bounds,

(b) their corresponding ¢,; and ¢,; = 0, if they are at their lower bound,
and

(¢) their corresponding ¢;; and é,; << 0 if they are at their upper bound,

then the solution is optimal and the algorithm terminates. Otherwise there
are ¢;; or &, for which (b) or (¢) does not hold. In .which case an increase
or decrease (depending on whether the sign is negative or positive) in the
corresponding variable is allowed; we will call these (i, j) or (%, j) combina-
tions out-of-kilter; let the largest &; or &, among them in absolute value be
denoted by ¢, or ¢,

Step 5. Leaving all non-basic entries fixed except for the value of the
variable corresponding to the (r, s) determined in Step 4, modify the value
of ,, (O ¥,,), if not at its upper bound, to

(21 2, + 0 (or y,, + 0) if &, < O (or &, < 0)
or, if not at its lower bound, to
(22) Ty — 0 (OF g — 6) if &, > 0 (01 &y > 0)

where § > 0 is unknown for the moment, and recompute the values of the
basic variables as linear functions of §. Choose the value of § = 6* at the
largest value possible consistent with keeping all basic variables (whose
values now depend on 0) between their upper and lower bounds; in the next
cycle correct the values of the basic variables on the assumption 6 = 6*.

Also, if at the value § = 6* one (or more) of the basic variables attains
its upper or lower bound, in the next cycle drop any one of these variables
(never drop more than one) from the basic set and box the variable z,,
instead. Should it happen that z,, or y,, attains its upper or lower bound
at O = 0*, the set of basic variables is the same as before; their values,
however, are changed to allow z,, or y,, to be fixed at its new bound.

Start the next cycle of the iterative procedure by returning to Step 3.

28-2. NUMERICAL SOLUTION OF THE ROUTING PROBLEM

For our starting solution in Table 28-2-IV, cycle o, we used for values of
x;; the best solution assuming fixed demands equal to the expected values of
the distribution® shown in Table 28-2-II. These z,; will meet the expected

3 In the humorous parody by Paul Gunther [1955-1] entitled ‘“Use of Linear Pro-
gramming in Capital Budgeting,” Journal of the Operations Research Society of America,
May, 1955, it will be recalled that Mrs. Efficiency wondered why Mr. O. R. did not start
out with a good guess. In this chapter you will note that we followed Mrs. Efficiency’s
suggestion and have started by guessing at the final solution rather than going through
the customary use of artificial variables and a Phase I of the simplex process.
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demands so that Y; = d;, except for Route 5 where there is a deficit of 100
and Y, = 500 (see § 28-1-(5)). These Y, are broken down into the incremental
values shown below the double line in Table 28-2-1IV, cycle 0.

Next, one of the variables in each row is boxed. The selected variables
are Zyy, Tgs, L5, La3; each appears likely to be in an optimal solution; however,
Z,3 has been boxed rather than z,,, which may be a better choice. Next, the
last positive entry in each column is boxed, i.e., the variables ¥3;, Y29, Ya3,
Yas> Y15- In all there are m 4+ n — 2 = 9 boxed variables. The implicit values,
u; and v;, shown in the table are determlned by solving the nine equations:

(1) U+ Pnu¥ =Cn (P = 165 ¢y = 18)
Ug + Pag¥s = Cpp (Paz = 10; ¢33 = 15)
Ug + PasVs = Cas (Pas = 29; 655 =  6)
Uy + Pagls - = Ca3 (Paz = 225 ¢43 = 17)
0+ (=1, = —kyyy (kyys, = 9.8)
0+ (—1)vy = —kyys (kyyse = 9.1)
0+ (—1)vy = —ksyss (k3yss = 4.9)
0+ (—1)vy = —kyqa (kgyas = 2.1)
0+ (—1)vs = —ksy15 (ksy1s = 1.0)

This permits the computation of ¢;; and &, (see §28-1-(17), (18)). As a check,
&; = 0 and ¢, = 0 for (3, j) and (A, j) corresponding to basic variables. The
&;; or &, of largest absolute value for those (4, §) or (&, j) that are out-of-kilter
is .
Gy = 14 — [—76 + 15(2.1)] = +58.5
Hence a decrease in the variable x,, with adjustments of the basic variables
will result in a decrease in the expected costs by an amount of 58.5 units
per unit decrease in z,,. If z,, = 6 is changed to 2,, = 6 — 6§, then, in order
to satisfy the column 4 equation, the basic variable y,, = 10 must be
modified to y,, = 10 — 156 (all other variables in column 4 are fixed).
Also, to satisfy the row equation 2, z,, = 8 must be modified to
Ty = 8 + 8 this in turn causes y,, = 70 to be changed to ¥y, = 70 + 106
in order to satisfy column equation 2. The largest value of 0 is 6% = 12
at which value y,, = 0.

The numerical values of the variables appearing in Table 28-2-1V, cycle
1, are obtained from those of Table 28-2.1V, cycle 0, by setting 6 = 0* = }§.
The variable z,, becomes a new basic variable in place of y,, which hits its
lower bound, zero. Computing the new set of implicit prices the largest ¢,;
in absolute value which can increase or decrease according to sign of ¢;; is
Gy = —23.4. Changing z,, to 5 — 0 requires that the variables 3, Y92, Y33
be modiﬁed as shown, Table 28-2-IV, cycle 1. The maximum value of § is
6 = 6* = 4% at which value y,; = 0. The new solution in which z,; replaces
Y33 &S & basic variable is given in Table 28-2-1V, cycle 2. In Table 28-2-1V,
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cycle 2, the decrease in non-boxed variable z,; causes changes in the variables
Ty3, Tag, Tag, Ya1» Yoy The largest value of 6 = %, at which value y,, hits its
upper bound byy = 100.

In the passage from Table 28-2-IV, cycle 3, to Table 28-2-1V, cycle 4,
we have become a little fancy and have taken a ‘“double” step. The maxi-
mum increase is § = §§ at which point y,; hits its upper bound b,; = 580.
It is easy to see that if next the incremental variable y,s is increased, &,
associated with z;, should be changed to &g — 29(y;5 — Yas5)ks = +4.5 —
29(1.0 — .9) = +1.6; therefore, it is economical to increase y,, as well as
¥15. However, it can be shown that signs of &;, would become negative if
the next increment, y,;, were considered. The maximum value of
6 = 6* = 182,

It will be noted that in the passage from cycle 4 to cycle 5 of Table
28-2-1V, the variable y,, is again brought into solution after having been
dropped earlier. The maximum value of § is % at which value y,; reaches
its upper bound, so that the solution, Table 28-2-1V, cycle 5, has the same
set of basic variables and hence the same implicit values as Table 28-2-1V,
cycle 4. Moreover, the solution is optimal since all non-basic variables are
either at their upper or lower bounds; those at upper bounds have corre-
sponding ¢;; < 0 and those at lower bounds have ¢;; > 0.

In comparing this solution (Table 28-2-1V, cycle 5) with the optimal
solution for the fixed-demand case (Table 28-2-II), it is interesting to note
that the chief difference appears to be a general tendency to shift the total
seats made available on a route to the mode of the distribution rather than
to the mean of the distribution for those distributions with sharp peaks.
The total seats made available to routes with flat distributions of demand
appear to be at highest level attainable with the residual passenger-carrying
potential.

TABLE 28.-2-1
ComPARATIVE CosTs OF VARIOUS SOLUTIONS
Expected Net
Revenues | Expected .
Operating | Expected
for Lost
(Refer to Costs Cost
Seats Revenues!
Table Supplied @) (3) {Thousands)
28-2.1V) (1) (2) + (3)
Cycle 0 —6,534 766 200 1,666
Cyele 1 —6,574 726 901 1,627
Cycle 2 —6,607 693 901 1,594
Cycle 3 —6,638 662 899 1,561
Cycle 4 —6,641 659 883 1,542
Cycle 5 —6,659 641 883 1,524

! Data in column (2) are obtained by subtracting the expected
revenues for seats supplied, column (1), from R, = 7,300, the
expected revenues if an unlimited number of seats were supplied.
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To compute the expected costs of the various solutions the first step (see
§ 28-1-(14)), is to determine what the expected revenues R, would be if
sufficient séating capacity were furnished at all times to supply all passengers
that show up. Referring to Table 28-1-11, it is easy to see that B, = 13(250
+ 13(120) + 13(120) + 7(180) + 7(90) -+ 1(600) = 7,300 or $7,300,000.

It is seen that the solution presented in Table 28-2-II (the same as the
starting solution, Table 28-2-IV, cycle 0, which assumes demands to be
exactly equal to the expected values of demand) has a net expected cost of
$1,666,000. (It is interesting to note that if the demands were not variable,
but were fixed and equal to expected demands, the costs would only be
$1,000,000 (see Table 28-2-1I). The 67 per cent increase in net cost for the
variable demand ~ase is due to 13,400 additional passengers (on the average)
being turned away because of the distributions of demand assumed.*

TABLE 28.2.I1
OPTIMAL ASSIGNMENT FOR Fixep DEMAND
Operating Costs and Lost Revenues = $1,000,000

** Box not used; aircraft cannot fly range.
¢ For concluding remarks, turn to page 591.
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Route
(1) (2) (3) (4) (5) (6) :
Typeof|) Ny, | NY. | NY. | NY. | NY. A‘“‘?{“ﬁ
rer to to to to to Surplus |[*V* 801 Tmplicit
L.A. L.A. Dallas Dallas | Boston Aircraft Prices
l.stop | 2-stop 0-stop 1-stop 0-stop Uy
10 10 = q,
(1) A 16 15 28 23 81 0
18 21 18 18 10 0 —171
8 6 19 = a,
(2)B ** 10 14 15 57 0
15 16 14 9 0 —51
7.8 17.2 25 = a,
(3)C ** 5 ** 7 29 0
10 9 6 0 —23
10 15 = a,
4)D 9 11 22 17 55 0
17 16 17 15 10 0 —89
100 L]
(5) E 1 1 1 "1 1 0
Deficit 13 13 7 7 1 0 0
Demand
d;, - 250 120 180 90 600 bl
Implicit
Prices 11.8 6.6 4.8 4.33 1 0
v;

*** Row or column has no equation.
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ALLOCATION OF AIRCRAFT UNDER UNCERTAIN DEMAND

TABLE 28-2-II1

Route
(1) (2) (3) (4) (5) (6) .
ypeofl Ny, | Ny, | NY. | Ny | WY Mireraft
rrera to to to to to Surplus vanable Implicit
L.A. L.A. Dallas Dallas Boston | Aircraft Prices
1-stop 2.stop 0-stop 1.stop 0-stop Uy
Ty T2 13 20 Zys Ty 10
(1) A Py = 16 15 28 23 81 0
¢, = 18 21 18 16 10 0 %, I
Taa Lag Loy Tas Tag 19
(2) B *x 10 14 15 57 O
15 16 14 9 0 u,
T3z Taq T3s T3 25
3)C b 5 > 7 29 0
10 9 8 0 Uy
Ty Tyo Tyq3 Lyyq Zss Zge 15
(4) D 9 11 22 17 55 0
17 16 17 15 10 0 Uy
Incre- iy, < 2001y, <50 [y < 140 gy, < 10 |35 < 580 wa
ment —1 — -1 =1 - %
(1 —13 —13 -7 -7 -1 0
Y < 20 | vy < 100 |15 < 20 |y, <40 |yps < 20 i
(2) -1 -1 - ~1 -1 »
—10.4 —9.1 —6.3 —5.6 —.9 0
Yy < 30 Y3z <20 | ysy <30 |5 < 20 wa
(3) —1 (a4 -1 ~1 —~1 T
—9.8 —-4.9 —4.2 -.1 0
Ya < 20 Yez S 20 |y, <920 e
4) -1 - —1 -1 % =%
-—5.2 —2.1 —2.1 0
Ysr < 30 Yea < 20 [y, < 240 b
(5) —1 ok 1 -1 ok L1
—2.6 -7 —.7 0
Net 0 0 0 0 0 hie
Implieit
Prices vy vy vy v, v 0
v;

** Box not used because aircraft type cannot fly required range, or fewer increments are
needed to describe the distribution of demand on the route.

*** Corresponding row or column has no equation.
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28-2. NUMERICAL SOLUTION OF THE ROUTING PROBLEM

TABLE 28-2-IV

Cycle 0

WORK SHEET FOR DETERMINING OPTIMAL AsSIGNMENT UNDER UNCERTAIN DEMAND
6yy = +58.4, 8% = 12, Expected Cost = $1,666,000

Route
(1) (2) (3) (4) (5) (6) Aireraft
Type ol NY. N.Y. N.Y. N.Y. N.Y. Available
frera to to to to to Surplus Implicit
L.A. L.A. Dallas Dallas Boston Alireraft Prices
1-stop 2.stop 0-stop 1-stop 0-stop U
10
(1) A 16 15 28 23 81 0
18 21 18 16 10 0 —~139
8+ 6 5 6 - 6* 19
(2) B ** 10 14 15 57 0
15 16 14 9 0 —76
7.8 17.2 25
3 C o 5 * 7 29 0
10 9 6 0 —23
10 5 15
4) D 9 11 22 17 55 0
17 16 17 15 10 0 —91
Incre- ||200 50 140 16 500 b
ment -1 -1 -1 -1 -1 >
(1) —-13 —13 -7 -1 -1 0
20 70 4- 106} 20 40 ik
(2) —1 -1 —1 —1 -1 **
—10.4 —9.1 —6.3 —5.6 -.9 0
30 30 ok
(3) - ** -1 —1 —1 >k
—9.8 —~4.9 —4.2 —.1 0
10 — 150 i
(4) -1 o -1 1 *x ¥
—5.2 —2.1 —2.1 ' 0
KEE
(5) -1 *% -1 -1 T *x
—2.6 -7 —.7 0
Net 0 0 0 0 0 ahx
Implicit
Prices 9.8 9.1 4.9 2.1 1 0
Vs
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ALLOCATION OF AIRCRAFT UNDER UNCERTAIN DEMAND

TABLE 28-2.IV
Cycle 1

WOoRK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND
Cys = +23.4, 6* = 22, Expected Cost = $1,627,000

Route
Type of (1) (2) (3) (4) (5) (6) Aireraft
Alroraft N.Y. N.Y. N.Y. N.Y. N.Y. Availabl
to to to to to Surplus [[*V3"82%€ 1mplici
L.A. L.A. Dallas Dallas Boston | Aircraft Prices
1-stop 2.stop 0-stop 1-stop 0-stop %
10
() A 16 15 28 23 81 0
18 21 18 16 10 0 —139
8.7+ 6] 15—06* 5.3 19
(2)B b 10 14 15 57 0
15 16 14 ! 9 0 —76
25
3)C o 5 A 7 29 0
10 9 6 - 0 —23
10 (5] 15
4)D 9 11 22 17 55 0
17 16 17 15 10 0 —91
Incre- ({200 50 140 10 A
ment -1 -1 -1 -1 =1 Ll
8] —13 —13 -7 -7 -1
20 77 + 106),20 40 s
(2) -1 —1 -1 ~1 -1 - )
—10.4 —9.1 —6.3 —~5.6 -9 0
30 e
(3) -1 > —1 —1 —1 =
—9.8 —4.9 —4.2 -.1 0
*k K
4) -1 *n -1 -1 *k (23
; —5.2 —-2.1 —2.1 0
, ok
(5) _l * _1 _1 % xR
—2.6 —.7 -7 0
Net 0 0 0 0 0 e
Implicit
Prices 9.8 9.1 4.9 6 1 0
vy l
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28.2. NUMERICAL SOLUTION OF THE ROUTING PROBLEM

TABLE 28.2.1V
Cycle 2
WoRrk SHEET FOR DETERMINING OPTIMAL AssiGNMENT UNDER. UNCERTAIN DEMAND
&4 = +56.8, * = &, Expected Cost = $1,594,000

Route
(1) (2) (3) (4) (5) (6) :
Trpeofll Ny, | Ny, | N¥. | NY. | NY Airoraft
lrera. to to to to to Surplus |[*V218%€ Implicit
L.A. L.A. Dallas Dallas Boston |Aircraft Prices
1-stop 2-stop 0-stop 1-stop 0-stop U
1 10
(1) A 16 15 28 23 81 0
18 21 18 16 10 0 —139
10.1+1.68] [3.6 + 1.66]/{5.3] 19
(2)B > 10 14 15 57 0
15 16 14 9 0 - 76
7.8 17.2 25
3)C ** 5 ** 7 29 0
10 9 6 0 —23
10 — 6* 540 15
(4) D 9 11 22 17 55 0
17 16 17 15 - 10 0 —128
Incre- || 200 50 140 10 {5007 b
ment -1 -1 -1 -1 —1 b
(1) —13 ~13 -7 —q -1 0
20 91 + 166] 20 40 b
(2) -1 —1 -1 -1 -1 *x
—10.4 —9.1 —6.3 —5.6 -—.9 0
30 — 96 30 b
(3) -1 = -1 —1 -1 **
-9.8 —4.9 —4.2 —.1 : 0
£ 2 T
(4) —1 b e | -1 n %
—5.2 —-2.1 -2.1 0
. 2t 3
5) | -1 . -1 -1 *k *%
—2.6 -7 -7 0
Net 0 0 0 0 0 s
Implicit
Prices 9.8 9.1 6.6 6 1 0
Y;
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- WoRKk SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND

ALLOCATION OF AIRCRAFT UNDER UNCERTAIN DEMAND

TABLE 28.2.1V

C

ycle 3

Cyy = +5.5, 0* = 122 Expected Cost = $1,561,000

Route
. (1) (2) (3) (4) - (5) (6) .
ypeof) NY. | NY. | NY. | Ny, | NY iroraft
Alrera to to to to to Surplus [[*V21"82€ 1mplicit
L.A. L.A. Dallas Dallas Boston  {Aircraft Prices
1-stop 2.stop 0Q-stop 1-stop 0-stop ",
10
(1) A 16 15 28 23 81 0
18 21 18 16 10 0 —139
i1 + .50) 2.7 —.56] |[5.3] 19
(2) B *x 10 14 15 57 0
15 16 14 9 0 —40
7.8 — 0* 17.2 4+ 0 25
(3) C = 5 e 7 29 0
10 9 6 0 —23
9.4 — 3@! 5.6 + .30 15
4)D 9 11 22 17 55 0
17 16 17 15 10 0 —-71
Incre- |j 200 50 140 10 500 4- 299! i
ment -1 —1 —1 —1 —1 LaJ
I ~13 ~13 —7 —1 -1 0
20 100 20 40 %
(2) -1 —1 —1 —1 —~1 *x
—10.4 —9.1 —6.3 —5.6 —.9 0
25 —2.70, 30 s
(3) -1 ** . -1 —1 —~1 s
—9.8 —4.9 —4.2 —.1 0
wRK
4) —~1 *x -1 —1 *x %
—5.2 —2.1 ~2.1 0 .
* kK
(5) _l * & ___l ____1 ok *%
—26 - -7 0 l
Net 0 0 0 0 0 b
Implicit
Prices 9.8 5.5 4 3.6 1 0
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28-2. NUMERICAL SOLUTION OF THE ROUTING PROBLEM

TABLE 28-2-IV

[ 589]

Cycle 4
WoORK SHEET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND
& = —.9, 0* = 1§, Expected Cost = $1,542,000
Route
(1) (2) (3) (4) (5) (6) ;
Typeof]l Ny, | N¥. | NY. | NY. | NY. | Adrorafs
tre to to to to to Surplus Tmplicit
LA. L.A. Dallas Dallas Boston | Aircraft Prices
1-stop 2-stop 0-stop 1.stop 0-stop Uy
— | S
(1) A 16 15 28 23 81 0
18 21 18 16 10 0 —139
19
2)B * 10 14 15 57 0
15 16 4 9 0 —40
20.7 25
(3)C ** 5 > ki 29 0
10 9 6 0 —18
6.7+ 0 15
4)D 9 11 22 17 55 0
17 16 17 15 10 0 =71
Incre- [{200 50 140 10 580 ks
ment -1 -1 -1 -1 -1 **
)] —13 -13 -7 -7 -1 0
20 100 20 40 20 b
(2) -1 -1 ~1 ~1 -1 x*
—10.4 —~9.1 —6.3 —~5.6 -9 0
+220* |30
(3) -1 - -1 -1 -1 -
—9.8 —4.9 —4.2 -.1 0
L 1]
(4) _.1 *x% — 1 —_ 1 i *%
—5.2 -2.1 —-2.1 0
*kx
(5) -1 o ~1 -1 % **
—2.6 -7 -7 0
Net 0 0 0 0 0 i
Implicit
Prices 9.8 5.5 4 3.6 .8 0
s




WoRrk SHEFET FOR DETERMINING OPTIMAL ASSIGNMENT UNDER UNCERTAIN DEMAND
Minimum Expected Cost $1,524,000

ALLOCATION OF AIRCRAFT UNDER UNCERTAIN DEMAND

TABLE 28-2.IV
Cycle 5 (Optimal)

Route
(1) (2) (3) (4) (5) (6) .
Aypeoll NY. | NY. | NY. | NY. | NY.  Aireralt
ire to to to to to Surplus ||*V# 80%€  Implicit
L.A. L.A. Dallas Dallas Boston |Aircraft Prices
1-stop 2-stop 0-stop 1-stop 0-stop u;
10
(LA 16 15 28 23 81 0
18 21 18 16 10 0 -—139
12.8 (9] 5.3 19
(2) B ** 10 14 15 57 0
15 16 14 9 1] —40
25
3)C ** 5 ** 7 29 0
10 9 6 0 -18
15
4) D 9 11 22 17 55 0
17 16 17 15 10 0 -171
Incre- |{|200 50 140 10 580 b
ment -1 —1 -1 -1 -1 =
(1) —13 —13 —7 —7 -1 0
20 100 20 40 20 b
(2) -1 -1 -1 —1 —1 b
—10.4 —-9.1 —6.3 —5.6 —.9 0
20 30 A o
(3) —1 b -1 -1 -1 o
—9.8 —4.9 —4.2 —.1 0
L2 3
(4) -1 % -1 —1 % *%
—5.2 —2.1 —2.1 0
2]
(5) —~1 *x —1 -1 xk *x
—2.6 —.7 —.7 0
Net 0 4] 0 0 0
Implicit
Prices 9.8 5.5 4 3.6 .8 0
o I
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REFERENCES

The successive improvements in the solution, Table 28-2.1V, cycles 0-5,
reduced the net expected costs from $1,666,000 to $1,524,000 for the optimal
solution.

Thus, the best solution obtained by pretending that demands are fixed
at their expected values has a 9 per cent higher expected cost than that for
the best solution obtained by using the assumed distributions of demand.
It is also seen that very little additional computational effort was requlred
to take account of this uncertainty of demand.

REFERENCES
Dantzig, 1955-1 Gunther, 1955-1
Ferguson and Dantzig, 1954-1, 1956-1 Manne, 1956-.2

Zimmern, 1957-1
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SUBJECT

Activity, 2, 6, 433
definition of, 32
level of, 2, 32
permanently feasible, 499
variable coefficients of, 433
with one control parameter, 440-444
with several control parameters,
444-445
Activity analysis, 6, 19
(See also Linear programming assump-
tions)
Allocation of aircraft to routes, 568-591
fixed-demand case in the problem of,
570-574
formulation of the problerh of, 568-578
uncertain-demand case in the problem
of, 574577
numerical solution of, 580-590
Allocation with surplus and deficit,
322-329
example of, with slack, 326-329
as a transportation problem, 323
Alternative
k-fold, 538-540
theorem of, for a matrix, 21, 139
(See also Dichotomies)
Ambitious industrialist example, 260-262
Arc of a graph, 352
slack, 421
Assignment problem, 247, 310, 316-322,
515, 517
definition of, 316
degeneracy in, 318-319
equivalence of transportation problem
and, 319-321
reduction of, to a linear program, 318n
typical uses of the, 321-322
(See also Allocation of aircraft to
routes; Distribution problems)
Automation, 1
relation of, to mathematical pro-
gramming, 10-11
Average
weighted, 47

Basic solution, 22
definition of, 81
degenerate, 81, 99
feasible, optimal, 95
to the transportation problem, 302-
303, 386-387
to the transshipment problem, 346,
386-387

INDEX

in using the upper-bounding tech-
nique, 372
initial feasible, to the capacitated trans-
portation problem, 37 8-379
to the weighted transportation prob-
lem, 415-417
(See also Feasible solutions)
Basis
complementary, in quadratic program-
ming, 493
complementary primal and dual, 241-
242
inverse of, 198, 21C
product form of, 200
of a linear program, 81
number of, 235
relationship between trec and, 356
triangular, 303, 325, 340
of a vector space, 181
(See also Matrix; Systems of linear
equations; Vector)
Blending problem examples,
63-64, 160-161
application of the simplex method to,
110
gasoline, 443-444
Block-pivoting, 201-202

42-50,

Cannery example, 2-3, 35-42
(See also Transportation problem)
Canonical form (see Systems of linear
equations)
Capacitated system, 370
Caterer problem, 366
Center of gravity, 47, 92, 161
Chain-decomposition theorem, 342, 388
Chain in a graph, 353
Changes in constraint constants, 269
Changes in cost coefficients
for basic activities, 270
for nonbasic activities, 267
Changes in input-output coefficients
for basic activities, 271-272
for nonbasic activities, 267-268
Chemical equilibrium problem,
482
Cireling, 25, 100n, 210, 228, 231
examples of, using simplex algorithm,
228-230
in transportation problems, 307-308
(See also Degeneracy)
Coefficients
input-output, 35

481-
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Combination
linear, 21
of equations, 70
of vectors, 179
weighted, 151
{(See also Extreme points)
Combinatorial problems, 317, 514
examples of, 515
Complementary primal and dual bases,
241-242
Complementary slackness
application to matrix games of, 287
in primal and dual systems, 135
Tucker’s theorem on, 139
Composite algorithm, 241
Computational techniques, 25-26
Computer
code, 13, 25, 200, 216, 231
used for solution of Stigler’s nutrition
problem, 557558
Concave function, 471
global minimum for, 543-545
Cone, 168
Conservative player (see Player)
Convex function, 153-154
definition of, 153, 189
Convex hull, 161
Convex polyhedron, 152, 171
edge of, 152, 155, 160
Convex programming, 9, 471-498
convergence of iterative procedure in,
474-478
general theory of, 471-478
Kuhn-Tucker conditions for, 471-472
Kuhn-Tucker problem of, 439-440,
471
reduced to generalized program,
439-440
nondegeneracy assumption in, 472-473
separable convex objective function
in, 482-490
(See also Chemical equilibrium prob-
lem; Kubhn-Tucker conditions;
Quadratic programming)
Convex regions, 147-156, 166-169
Convex sets, 148
closed, 148
intersection of, 148-149
polyhedral, represented in terms of
their vertices, 437-438, 449
unbounded polyhedral, 453
Cost, 34, 61
expected, 500
(See also Objective function)
Cost factors
relative, 95
Cut, 393-397
definition of, 393

oquality of maximum flow value and
minimum value, 394
value of, 393
Cutting plane, 519-520
(See also Discrete programming;
Integer forms)
Cycling (see Circling)

Decomposition principle, 27, 433n, 448—
470
animated, 455-461
iterative process in, 452
master program for, 450
restricted, 452
unbounded subprogram for, 453—454
(See also Generalized program of Wolfe)
Degeneracy, 25, 100, 121, 222, 228,
231-237
in the assignment problem, 318-319
in the primal or the dual, 246
in the transportation problem, 307-308
(See also Circling; Lexicographic rule;
Random choice rule)
Degenerate solutions (see Basic solution)
Detached coefficient form of a linear
program, 71
Dichotomies, 537-538
Discrete problems, 9
~ (See also Nonlinear programming)
Discrete programming, 514-550
iterative procedure for, 530-532
problems solvable by, 535-550
Distribution problems, 316-334, 368-369
with predetermined values, 330-332
and primal-dual method, 247
weighted, 22, 413432
example of, 573-574
graph structure of bases to, 420-424
initial basic solution to, 415417
near triangularity of bases to, 419-
420
standard form of, 413
subclass of, with triangular optimum
bases, 424-431
(See also Assignment problem)
Double deseription method, 25
Dual linear program, 49-50, 62, 123127
the ambitious industrialist example
and, 260
complementary primal and dual bases,
and the, 241
feasibility of the, 128
method of Lagrange multipliers, and
the, 144
of a mixed program, 125-127
of a standard program, 62, 127
Tucker diagram for, 124, 138, 241-242
Dual simplex method, 241, 243-244
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Dual system, 21
Duality, 23~24
basic theorem on, 134-140
Duality theorem, 23, 120, 125
matrix games and, 287
proof of, 128-135
weak form of, 130
(See also Complementary slackness;
Simplex method)
Dynamic programming, 9-10, 510
approach of, to knapsack problem, 519
principle of optimality in, 10

Economic models
relation of, to linear programming,
16-20, 254
Elementary operations, 73-75
(See also Pivot operations; Systems
of linear equations)
Elimination method for solving in-
equality systems, 8485, 93, 254
Equation
material balance, 35
vector, 179-180
(See also Linear equations)
Equivalent systems (see Systems  of
linear equations)
Expected value, 500
Extreme points
definition of, 154
fractional, 517
linear combination of, 172
(See also Convex sets)
Extreme solution, 22
(See also Extreme points)

Farkas' lemma, 21, 123, 137, 145
Feasible program, 34
Feasible solutions, 155
convex sets of, 152-155
(See also Extreme points)
definition of, 61
for the dual and the primal, 128
initial basic, 22, 95, 101
(See also Phase I of the simplex
method)
(See also Basic solution)
Finiteness
of algorithm solving discrete pro-
grams, 532-535
of algorithm solving generalized pro-
grarms, 438
of quadratic algorithm, 496
of simplex algorithm, 100, 120,
122-123, 235
Firm, 19
Fixed-charge problem, 545

Flow
chain, 388
equations of conservation of, 385-386
exogeneous, 32, 35
(See also Network)
Flow capacity, 385
Four-color problem
two formulations of the, 548-550
Fourier-Motzkin elimination method (see
Elimination method for solving in-
equality systems)

Game
linear program and, 277-298
matrix, constructive solution to a,
291-297
definition of, 277278
- equivalent linear program to a,
287-288
solution of a, 287
value of a, 285, 287
Morra, 279
strictly determined, 281
symmetric matrix, definition of, 288
reduction of a linear program to a,
290-291
reduction of a matrix game to a,
288-290
theory of, 20, 24
two-person zero-sum, 9
(See also Minimax theorem; Player)
Generalized program of Wolfe, 433—440
definition of, 434
equivalent formulation of a, 438439
master program for a, 435
restrictod master program for a, 437—
438
seen as a linear program, 434-435
special cases of a, 440—445
subprogram of a, 437-438
used for solving the - Kuhn-Tucker
problem, 472473
Gradient, 159, 171
Graph
linear, 23, 352
(See also Network)

Half-space, 151
Hirsch’s conjecture, 160, 168
Homogeneous systems (see Systems of
linear equations)
Hungarian method, 247, 404
(See also Assignment problem)
Hyperplane, 151

Inequality (see Linear inequalities)
Infeasibility form, 102, 235
Infeasibility theorem, 129, 137
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Integer forms

generation of, for the integer case,

523-527
for the mixed-integer case, 527-529

Gomory’s method of, 521-535

(See also Discrete programming)
Integer programming, 27

(See also Discrete programming)
Inventory control, 8

example of, 503-507

(See also Scheduling)
Item, 32, 60
Iterations

number of, 99n, 160, 247, 368

Knapsack problem, 517-520
Kuhn-Tucker conditions, 471472
(See also Convex programming)

Lagrange multipliers, 140-144, 210,
471

definition of, 141
Latin-square problem
orthogonal, 547-548
Leontief system, 209
Lexicographic ordering, 231n, 294-295
(See also Perturbed problem; Vector)
Lexicographic rule
proof of, 234237
in the simplex method using multi-
pliers, 221-222
Line segment, 149
Linear equations, 2
inconsistent, 71, 101
material balance, 33, 35
redundant, dependent, 71, 101
vacuous, 71
(See also Systems of linear equations)
Linear inequalities, 2
systems of, 20-21, 81-89, 91-92
(See also Convex regions; Linoar
equations)
Linear programming
application of, to games, 277-298
assumptions in, 6-7, 32
central mathematical problem of, 35
definition of, 60-62
history of, 20-27
concept of, 1
economic models in, 16-20
equivalence of matrix games and,
286~291
examples of, problems, 2-6
generalized (see Generalized program
of Wolfe)
geometry of, 147-172
(See also Convex regions)
graphical methods in, 34

inequality form of a, problem, 85-89,
93
method of Lagrange multipliers in,
143-144
methods other than simplex method
in, 25, 119
origins of, 12
parametric, 241
algorithm for, 245-247
problem, as a center of gravity
problem, 161, 171
with upper-bounded variables, 368—
384
(See also Program; Simplex method)
Linear programming model, 6, 20
formulation of a, 32-68, 551-556
Loop in a graph, 353

Manager of the machine tool plant
(example of the), 254-260
Markov system, 209
Marriage game, 321, 332, 517
Mathematical programming
definition of, 2
relation of, to automation, 10-11
(See also Programming problems)
Matrix
definition of, 183
doubly stochastic, 317
elementary, 198
of & game, 277-278
(See also Game)
identity, 193
input-output, 18
inverse of a, 189194
permutation, 317-318
singular, 189
skew-symmetric, 288
technological, 27
theorem of alternative for a, 21, 139
of a transportation problem, 301
transpose of a, 183, 193
(See also Vector)
Matrix algebra, 187-189
Matrix operations, 183-187
Minimax theorem, 21, 24
proof of the, using the duality theorern,
287
using the simplex algorithm, 291-
297
Model
building, 6
economic, 16
Leontief, 17, 19
linear programming, 6-7
building a, 34-35
formulation of a, 3268
tableau form of a, 41
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mathematical, 2
definition of, 34
multistage, 9
nutrition (see Nutrition model)
problems arising in formulating a,
551-557
Walrasian, 17
Multiplex method, 25
Multipliers, 70
(See also Lagrange multipliers; Sim-
plex multipliers)
Multistage models, 9
(See also Model; Scheduling, of
activities through time)
Multistage programs
decomposition principle applied to,
466469
with general linear structure, 509-510
two-stage case of, 507-509

Network, 27, 299
capacitated, 23
connected, 346
cut in a (see Cut)
definition of, 352
maximal flow problem in a, 385-403
Ford-Fulkerson algorithm for, 405
411
Ford-Fulkerson theory for, 385~
397
tree method for the, 398—403
planar, 393
shortest route in a (see Shortest-route
problem)
(See also Transportation problem;
Transshipment problem),
Network flow problem, 27
Node, 352
Nonlinear programming, 8
{(See also Convex programming; Dis-
crete programming) :
Nutrition model, 114, 117-118
applicable to the housewife’s prob-
lem, 3
of Stigler, 551567
of Thrall, 64
Nutrition pill manufacturer (example of
the), 262-264

Objective function

homogeneous, of first degree, 479480

linear, 32, 61
definition of, 61

nonlinear, and discrete programming,
540-542

parametric, 241

separable convex, 482-490

unbounded, 120, 129

On-the-job training example, 4-6, 57-59,
67
(See also Scheduling, of activities
through time)

Parametric linear programming (see
Linear programming)
Payoff, 278
expected, 282
Permutation, 316
Perturbed problem, 231, 234-237
for phase II, 235-237
transportation, 307
{See also Lexicographic ordering ; Lexi-
cographic rule)
Phase I of the simplex method, 94,
101-104
alternative criterion for, 252-253
characteristics of the, 101-102
Phase II of the simplex method, 94,
103
perturbed problem for, 235
Pivot, 76
Pivot operations
properties of, 173
Pivot theory, 173-176
Pivotal subsystem, 174
Pivoting, 7980, 173-176, 201-202
(See also Block-pivoting)
Planning
central, without complete information
at the center, 462-465
organization of, 22
Player
column, 278
problem of the, 286
conservative, 284
row, 278
problem of the, 286
Point, 149
Polyhedron (see Convex polyhedron)
Prices, 22, 210
implicit (see Simplex multipliers}
mechanism of, in the simplex method,
254-276
sign convention on, 264-265
(See also Simplex multipliers)
Pricing-out
definition of, 276
Primal-dual correspondence, 242
Primal-dual method, 241, 247-252
for transportation problems, 404412
Primal system, 21, 49, 124
initial restricted, 250
restricted, 247
Product-mix problem, 50, 64-65, 160~
161, 163-164
Production problems, 22
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Program
classification, 7-10
convex, 433447, 471-498
definition of, 2
feasible, 34
infinite, 23
large-scale, 25, 433n
(See also Decomposition principle)
mathematical, 2, 10
multistage (see Multistage programs)
relation to automation, 10-11
with variable coefficients, 433—447
(See also Generalized program of
Wolfe)
(See also Linear programming)
Programming problems, 1-2
classification of, 7-9
deterministic, 7
linear, 32-34, 60
{(See also Convex regions; Simplex
method)
probabilistic, 8-9
(See also Programming under un-
certainty)
(See also Linear programming; Mathe-
matical programming)
Programming under uncertainty, 27,
499-513
minimization, of expected costs, 500~
501
of variance of costs, 501-503
(See also Allocation of aircraft to
routes; Scheduling)
Projection method, 25

Quadratic form
convexity of a, 491
positive definite, 491
positive semi-definite, 491
Quadratic programming, 27, 490—496
algorithm for, 496
applications of, 490

complementary property of bases in, -

493
optimality conditions in, 492
problem, 491

Random choice rule, 99-100, 123, 221,
231
proof of, 123
(See also Circling)
Rank
of a matrix, 188-189
of a system, 176-177
of a vector space, 181-182
Ray, 168
Relaxation method, 25

Saddle-point, 281, 283
Scheduling
of activities through time, 5
to meet an uncertain demand, 503-507
to meet variable costs, 499-503
Scheduling problems
and discrete programming, 514
examples of, 515
Senasitivity analysis, 265-275
importance of, 266-267
Separable convex objoctive functions,
482490
Shortest-route problem, 335, 361-366,
515, 517 .
direct solution of, 363366
iterative solution of, 361-363
(See also Transshipment problem)
Simplex, 180, 163
definition of, 164
Simplex algorithm, 1, 94-100, 111-114,
234
finiteness of, 100, 120-123, 235
inductive proof of, 120-123
in matrix form, 195-202
variants, 240-253
(See also Simplex method)
Simplex method, 15, 21, 24-25, 94-119
applied to proof of duality theorem,
129-135
applied in upper-bounding technique,
372-375
and the decomposition principle, 451
dual, 241, 243-244
finiteness under perturbation of, 228-
239
flow diagram for, 104
geometrical interpretation of, 156—160
the method of Lagrange multipliers
and the, 144
price mechanism of, 254-276
revised (see Simplex method using
multipliers) .
simplex interpretation of, 160-166
solving the transportation problem by,
301-308
solving the transshipment problem by,
346-350
(See also Phase I of the simplex
method; Phase II of the simplex
method; Simplex algorithm)
Simplex method using multipliers, 106n,
210-227
computational advantages of, 210
computational remarks about, 215-217
using upper-bounding technique, 375~
376
Simplex multipliers, 197, 210, 212, 215,
236
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definitions, 220, 433
interpretation of, as prices, 254
use of, for the allocation problem, 325
for the transportation problem, 305
for the transshipment problem, 342
for the weighted distribution prob-
lem, 417418
(See also Prices)
Space (see Vector space)
Standard form of a linear program, 60,
86-88
Stochastic programming (see Program-
ming under uncertainty)
Strategy
mixed, definition of, 284
optimum mixed, 285
pure, definition of, 278
(See also Game)
Systems of linear equations, 2, 20, 69-93
canonical, 75~-81, 89-91, 94, 174, 190,
217
definition of, 73
equivalent, 174—176
dependent, 71
diagonal, 77
equivelent, 73, 174
homogeneous, 22, 189
definition of, 136
Gordan’s theorem for, 136
Stiemke’s theorem for, 138

feasible solutions to the (see Basic
solution)

historical summary of the, 299--300

integrality of basic variables in the,
305

least-cost rule for the, 309, 330

predetermined values in the, 330

primal-dual method for, 404—412

solution of, by the simplex method,
301-308

solving a bounded-variable, 377380

triangularity of bases in the, 303

(See also Assignment problem; Net-
work flow problem; Transshipment
problem)

Transposition theorem, 21, 138-139
Transshipment problem, 22, 335-351

direct shipment procedure for, 338
equivalence of the, and the trans.
portation problem, 342-345
feasible solutions to (see Basic solution)
formulation of, 335-336
graph associated with a, 355
network representation of the, 337
solution of the, using the associated
graph, 357-361
using the simplex method, 346-350
standard form of the, 340-341
triangularity of bases for the, 340
(See also Shortest-route problem)

unbounded convex sets and, 453- Traveling-salesman problem, 520
454 different formulations for the, 545-547
independent, 71 Tree, 353
rank of a, 176-177 (See also Basis)
reduced, 79 . Triangular model, 16, 26
redundancy tracing theorem for, 175 Trivial solution, 136

solvability of, 80

(See also Systems of linear equations)

square, 75-77 ' Tucker diagram, 124-125, 138, 241

triangular, 77
trivial solution of, 136

(See also Dual linear program)

(See also Linear equations) Uncertainty, 8, 499-513

System of linear inequalities (see Sys-
tems of linear equations)

(See ‘also Programming under un-
certainty)

Upper-bounding technique, 368-384

Tableau économique, 13, 16, 18

(See also Matrix, input-output) Variables

Transportation problem, 18, 25, 27, 63,

101, 299-315

array, 301

with bounded partial sums of vari-
ables, 382-383

cannery example of, 2-3, 35

capacitated, 377-382
oquivalonco of the, and the trans-

portation problem, 380382

computational algorithm for, 308-313

definition of, 299-300

degeneracy in the, 307-308
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artificial, 94, 102-103, 130, 218, 235
in the dual simplex method, 243-244
(See also Phase I of the simplex

method)

basic, 73

discrete, 514550

fractional, 521

mothod of leading variables, 241

slack, 60

transshipment, 340

with upper bounds, 368-384
(See also Upper-bounding technique)
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Vector Vector space, 180-181
definition of, 177 X Vertex, 21
lexico-positive, 238, 294 solution, 22
linearly independent, 179, 189 (See also Extreme points)
operations, 177-178
product of a matrix by a, 184 Warehouse problem, 55, 67, 412
representation in terms of the basis of (See also Multistage models)
a, 181 Weight, 70, 210
unit, 179 (See also Multipliers; Prices)
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