RAND

CORPORATION

Linear Programming and Extensions

George B. Dantzig

R-366-PR
August 1963

This file is part 2 of 3.
Part 2 contains Chapters 9-20

The other parts of this report can be found at:
http://www.rand.org/pubs/reports/R366.html



http://www.rand.org/
http://www.rand.org/pubs/reports/R366.html

CHAPTER 9

THE SIMPLEX METHOD USING
MULTIPLIERS

While each iteration of the simplex method requires that a whole new
tableau be computed and recorded, it may be observed that only the
modified cost row and the column corresponding to the variable entering
the basic set play any role in the decision process. The idea behind the
“Simplex Method Using Multipliers” is to use a set of numbers called simplex
multipliers (prices) and the inverse of the basis to generate directly from the
original equations just the information required for these decisions. This
method is also referred to in the literature as the revised simplex method
[Dantzig and Orchard-Hays, 1953-1].

The modified cost equation, obtained by eliminating the basic variables
from the cost form, can be obtained directly from the original system by
multiplying the original equations by weights, summing, and then sub-
tracting from the objective equation. It is these weights that are called
simplex multipliers and, in a somewhat broader context (see Chapter 12)
are called “prices.” From a theoretical point of view they are most important
as they are related to the variables of the dual system and they play a role
analogous to Lagrange multipliers in the calculus (Chapter 6). They are
most valuable, as we shall see in Chapter 12, for determining the bottlenecks
in a program, the payoff from increasing availabilities of certain stocks, the
effect of an increase in capacity, or the value of a proposed new progess.

The computational advantages of this approach are:

(a) Less data is recorded from one iteration to the next, which permits
more significant figures to be carried or a larger problem to be solved
within the limited memory capacity of an electronic computer.

(b) Where the original data has a high percentage of zero coefficients (90
percent or higher is quite common), there are less multiplications
(see the computational remarks at the end of this section).

(¢) A simple device exists that avoids degeneracy and hence the possi-
bility of “circling” in the simplex algorithm (see Lexicographic Rule
at the end of § 9-3). (Because the inverse of the basis is part of the
full tableau, this device is equally applicable to the original procedure
as well.)

The simplex method using multipliers is based on theory already covered
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9-1. AN ILLUSTRATION USING MULTIPLIERS

in § 8-5. Accordingly, our purpose will be to bring out its operational fentures.
Beeause some readers might find that the matrix notation of § 8-5 obscures
the computational aspects, we have tended to avoid its use here.

9-1. AN ILLUSTRATION USING MULTIPLIERS

To illustrate the technique, consider problem (1)

Cycle 0
1) z, T, Ty %, Ty X z, X3 Ty %, —z| Constants
1 1 1 1
1 1 1 1

-0 D W

1 1 1
1 \ 1 / 1
-8 -9 —7\—6 -8 -9 / 1 —90

Basis B Initial”
Cycle-k Basis

which is in canonical form relative to the variables (x;, 25, Zg, Z10. —2)-
After several iterations of the simplex algorithm, this can be written in
equivalent canonical form (2) relative to, say, the variables (z;, z,, z3, Z;, —2)-

Cyecle k&

2 Basic .

( ) Variables | ©1 %t %z % T &g z, xg Zy Ty, —2 | Constants
z, 1 1 -1 -1 1 1 1
z, 1 1 1 1
zg 1 11 1 -1 -1 2
z, 1j—1 1 1 / —1 1
—z 34745 / 1 41 —~53

® ® @ O * . In\{erse-of the Basis [f,;]
Multipliers = = (—7, —5, —1, —4)

The basis B for cycle k, see (3), is the square array of coefficients associated
with the basic variables in the original system (1) where, for this discussion,
we exclude z and the z-equation.

The first column of B corresponds to that basic variable in (2) with unit
coefficient in the first row, . . . the k't column of B corresponds to the one
with unit coefficient in the &t row, etc. (In other words the columns of B
must be ordered to correspond to whatever basic variables are listed in the
first column of (2); see § 4-2.) For the case at hand (see § 8-4-(11) for definition
of inverse),
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PTHE SIMPLEX METHOD USING MULTIPLIERS

1 0 1 0 _ 0 -1 1 1
o 1 0 1| L, ., |0 0 -0 1
0 1 0 0 0 1 0 -1

The inverse of the basis, denoted B~*or[8;;], is the square array of coefficients
in (2) (excluding the z-equation) associated with the variables (x-, g, 25, 210)
where the latter form the initial set of basic variables in (1). To prove this
assertion, let us note, according to (§ 8-4-(20)), that the inverse of the basis
can be used to compute the coefficients d,; in any column of (2) from the corre-
sponding column j of the original system (1) by the formulas

(4) dy; = By + Biatte + Prata; + Praly;
Gy; = PBnuly; + Pasle; + Bustlss + Pasys
Gg; = Bty + Basle; + Ptz + Pasas
dy; = Buty + Pute; + Busts; + Pautes

Since column (@, @y, gy, ag> = <1, 0, 0, 0D, substitution into (4) yields
(Gygs Gag> Gagy Ggz> = {Pu1» Bors Pars Bar) 1.€., the column of coefficients of z, in
(2) is the same as the first column of B-1. In general, if z; is any variable in
(1) whose coefficients form a unit vector with unity in the itk equation, then
by substitution in (4), the corresponding column of coefficients in (2) is the
same as the ith column of B-!. Hence, the inverse of the basis for cycle k
is the set of coefficients in the tableau of cycle k of the variables which were
basic in cycle 0.

The simplex multipliers or prices are defined as numbers m, my, 73, s
such that the weighted sum formed by multiplying the first equation of (1)
by m,, the second by =,, etc., and adding, will, when subtracted from the
z-equation, eliminate the basic variables and yield the modified z-equation
of (2). In particular it is obvious, since the only non-zero cocfficient of z;
in (1) is unity (from the first equation), that the resulting coefficient of z, in
the z-equation of (2) is —m,. Similarly, the coefficients of zg, 24, ;0 in (2)
must be —m,, —m;, —m,. Thus m = —7, my = —5, my= —1, 7y = —4.
The fact that these values are correct can be directly verified by multiplying
them by the corresponding equations of (1), summing, and subtracting from
the z-equation to reproduce the z-equation of (2). Thus the simplexr multi-
pliers my, my, m,, my can be used to compute the relative cost factor ¢; in (2) from
the corresponding column of the original system by the formula (see § 8-5-(16)}):

(5) & = ¢; — (m@y; + moly; + Mty + Thy)

In our discussion so far we have excluded —z from the set of basic
variables and the z-equation from the basis and its inverse. If, alternatively,
we include them, the basis B* associated with the basic variables z,, x,, 25, z,
and —z for some cycle k is composed of the coefficients of these variables
in the original system (1).
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9-1. AN ILLUSTRATION USING MULTIPLIERS

1 0 1 o0}0 0—-1 1 110
0 1 0 1]0 0 0 0 1|0
1 0 0 1]0 1 1 -1-1]60
* *1-1 —
® B*=| 5 1 0 o | o}’ (5=} 0 1 0-11}0
—8 —9 —7 —6 1 7 5 1 4 1

The inverse of B* then will be the coefficients of the initial basic
variables z,, %4, g, %;5, and —2z in the canonical form for cycle k. According
to § 8-4-(20), if the elements that appear in the kth row of [B*]~! are used
to multiply respectively the five equations of (1), their sum also will repro-
duce the ktt equation of (2). From this point of view, the equations of (4)
should result from using the first m rows of [B*]-}, and (5) should result
from using the last row of [B*]-1. This is true because B* differs from B
in (8) by the border column of zeros, the border row of costs, and +1 in
the lower right hand corner; similarly [B*]-' differs from B-! by the
border column of zeros, the border row of the negative prices, and -1 in
the lower right hand corner.

In the simplex method using multipliers, only certain key columns of the
simplex tableau for cycle k are assumed known at the start of the cycle,
namely:

(a) The inverse of the basis B* for cycle k, which numerically is the
same as the columns of cycle k corresponding to the basic variables
of cycle 0.

(b) The basic feasible solution for cycle k, which is expressed as the
constant values 5, —Z, and the basic variables to which they
correspond, the values of all other variables being zero. All other
data required to carry out steps of the standard simplex process are
compuled directly from the initial tableau as needed.

To illustrate, the unshaded part of (7) shows the recorded part of the
tableau at the start of cycle k.
Start of Cycle &

Basic
(7) Variables

EA -1 1 1
z, 1
2y 1 1 -1 -1
Z, 1 -1

<« Inverse, [B*]"! —

Z, Ty Ty T, =~z |Constants

— LD e

The next step is to compute the relative cost factors &;, which are the values
appearing in the bottom row of (2), from the data appearing in the tableau
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THE SIMPLEX METHOD USING MULTIPLIERS

of cycle 0 and the known multipliers (m, = —7, wy = —5, m = —1,
my = —4). From (5) we have, for example,

(8) & =c¢, —may — Ml — My — Thy = ,
' -84+7-145-04+1-1+4-0=0
Cg = Cg — Mg — Tallog — T3l3¢ — TyQyg =

—94+7-04+5-14+1-04+4-0=<—4

As a check, the values of ¢ for basic variables computed in this manner
should be zero, while for those j corresponding to the basic variables of
cycle 0, the values of & should equal the negative of the price, —,, corre-
sponding to the itk basic variable. If the computed ¢;’s are entered in the
tableau and the value of s determined such that & = Min ¢;, indicated by
a % entered below column s = 6, we are in the situation shown in (9).

Step I of Cycle k&

(9) Va}i‘i‘a.sll:ﬁes T, Xy Ty Ty Ty g T; Ty Xy %, —2 {Constants
2, 7 -1 1 1 1
EN 1 1
EN / 1 1 -1 -1 2
z 1 -1 1
- Z
-z 0o 0 0 o0 3 —4 7 5 1 4 1 —53
e & o o *

We now know that z, is the candidate for the new basic variable. To
determine which basic variable to drop, the value of g, for each ¢ is computed
and entered into column 6 using the coefficients a4, @z, 34, @4 2ppearing
in column 6 of the original tableau for cycle 0 and the it row of the inverse
of the basis. According to (4),

(10) @y5 = P11816 + PraGee -+ Bralae + 131.4‘146
=0-0—~1-14+1-04+1-0=—1
Gos = Pnntas + Pasos + Bosas + Paalles ,
=0:-04+0-14+0:-04+1-0=0
e = Pa101s + Bazdas + Sastas + Baats
=1-04+1-1-1-0-1-0=1

Gyg = Par@re + Bualas + Pustas + Buttes
=0-0+1-14+0-0—-1-0=1

If the computed d;q are entered in the tableau and the value of r determined, I
such that 5,/d,, = Min b,/d;, for d;, > 0, we are then in the situation shown
in (11), where r = 4, so that &,, = d,; becomes the pivot position. l

[214]



9.1. AN ILLUSTRATION USING MULTIPLIERS

Step 1I of Cycle k

Basic
(11) Variables | 1 T3 T3 Ty Ty Ty Ty Ty Ty Ty —Z Constants
2, 2 1 1 1 1
T, 1 1
2 11 1-1-1 2
T, 1 1 -1 1
—z —41i 7 5§ 1 4 1 —53
e & o o *

The next step of the standard simplex method would be to replace z,
by z, as a basic variable by reducing (2) to canonical form by pivoting
on d,;. We do the same in (11), except that here we are restricted to the
completed columns, namely those corresponding to the pivot, the inverse of
the basis B*, and the constants. After elimination of g in (11) using &, as
pivot, the situation is as shown in (12). Omitting the computed relative costs
of the last cycle and the coefficients of x5, we are ready to start cycle k£ + 1.

Start of Cycle & 4 1

Basic
(12) Variables | %2 3 %3 T Ty Ty Ty Ty Ty Ty —Z Constants

2, // 7 Srait, all /// % 1
z, entries in the / 1
= B
1

x3 shaded portion
/ -1

U
=~ O wyr o 1] -e

o o o / ./ New Inverse of the Basis
New Multipliers # = (—7, —9, —1, 0)

N

Computational Remarks.

In the standard simplex method, each cycle requires the recording of at
least (m + 1)(n + 1) entries (or more if there are artificial variables). Here,
however, by use of cumulative multiplications,! the amount of recorded
information is reduced to (m + 1)(m + 2) entries, actually (m - 1) if we
ignore the (—z) column. k

To illustrate, the values of {—m,, —m,, —m, —m, 1} can be placed
vertically on a strip of paper and moved alongside the j*® column as in
(13a). It is now convenient to compute ¢; by multiplying the corresponding
entries and forming the cumulative sum.

DermviTion: The operation (13a) of multiplying the simplex multipliers

1 Desk calculators and electronic computers have special double-length registers
that permit convenient forming of the cumulative products

ayhy, ayby + agh,, (ayby + ashy) + aghs, . . .
to double the number of places of a typical memory register of the machines.
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PUE SIMPLEX METHOD USING MULTIPLIERS
of the banin by the vector of cocflicients of &, to determine its coeflicient in
the modified objective form is called pricing out* the jt activity in terms of
the basic set of activities.

(13a) . (13b)
-7 | @y Qg Qg Q3g Oys
—Tg | Qy;
73 | A3; Bri Bxe Bra B
Ty | A4y
1 |¢

Similarly, the values of a,q, @.4, @46, @46 appearing in column s = 6 can

be placed horizontally on a piece of paper and moved alongside the k& row

- of the inverse of the basis B. It is now convenient to compute d,; by multi-

plying the corresponding entries and forming their cumulative sum as in
(13b).

DErinrTioN: The operation of multiplication of the rows of the inverse
of the basis by the vector of coefficients of z; is called representing the jtb
activity in terms of the basic set of activities. (See § 8-2-(21) and following
discussion.)

Less machine memory is needed using the multiplier method for recording
because the original coefficients are often given in fixed decimal of three to
five places. This is considerably less than that required for 4,;, when the
standard simplex method is used, for this avoids round-off error difficulties
in the passage from iteration to iteration. Moreover, using the multiplier
method, it is convenient to cumulate the full products without round-off
in the machine for both the pricing and representation operations and then
to round the resulting sum. This results usually in considerably less round-off
error than with the standard method which must round each product before
recording.

In order to reduce recording still further, most electronic computer
instruction codes compute successive &; values by (13a), but keep a record
only of the value and location of the smallest ¢; attained up to that point
in the calculations.

Starting with an m X n system in a féasible canonical form, the total
number of multiplications required per iteration is
(14) #n —m)m + 1) + tm(m + 1) + (m + 1) = in(m + 1) + (m + 1)?
where the fraction of non-zero coefficients in the original tableau and in the
column entering in the basis are assumed on the average to be both equal
to t. The threc terms on the left are the number of multiplications (or

2The reason for this term is that the simplex multipliers can be interpreted as
prices (see Chapter 12); multiplying these prices by the input-output coefficients of an
activity and summing evaluates or ‘“‘prices out’ the activity in terms of the substitute

processes, the basic activities. The sum when compared with the direct cost ¢; tells us
whether or not it pays to consider introducing a non-basic activity j into the basic set.
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9.2, THE GENERAL METHOD USING MULTIPLIERS

divisions) used (a) in “pricing out,” (b) in representing the new column,
and (c) in pivoting. On the other hand the standard simplex procedure
requires

(15) {(n —m) + 1}m + 1) = (n — 2m){(m + 1) + (m + 1)
operations on each cycle. Therefore, if the fraction of non-zeros,

(18) t<l—2mfn

the simplex method using multipliers will require less effort. For example,
if n > 3m, the fraction of non-zero coefficients required is ¢ < }. Fig. 9-1-I

100
90}
80
70 +

Use standord method

60 |-
50
40 -
30+

Use multiplier method

Percent nonzeros

20
(12 of

o 1 L 1
2 3 4 S (3 4 8 9 10

in A
Rohom

A J

Figure 9-1-I. Condition for choosing the multiplier method over the standard
method (starting in canonical form with no artificial variables).

can be used to decide whether to use the standard simplex or the multiplier
method.

9-2. THE GENERAL METHOD USING MULTIPLIERS

Consider the system of equations in canonical form for Phase I of the
simplex method as in § 5-2-(7), except that we use here m, n for M, N.

Cycle 0
1) Admissible Variables Artificial Variables
A%y + Ge%y + - - o+ C1aTa + Tnny =b,
%y + Gax®2 + . o ot G2nTs + Tpia = b,
A%y + Gma®2 + + « o+ CnTa + ZTasm =bn
€%y + %yt . . .+ CaZy —z =0
dz, + oy + - - -+ daty —w = —W
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THE SIMPLEX METHOD USING MULTIPLIERS

where by, b,, . . ., b,, are made nonnegative by changing, if necessary, the
signs of all terms in the original equations prior o augmentation with

artificial variables, and where
m m

(2) d; = “Za’ii; w!):th’

i=1 i=1
Thus, the sum of the first m equations when added to the w-form, implies
@) Tnip + Tngzt o o o+ Tpym —w =0

The problem is to find w, z, and nonnegative z; satisfying (1), such
that w = 0 and 2z is a minimum. Tableau (4) is the canonical form with
basic variables Tjs Tjyy v o Ty 5, —2, —W for the regular simplex method
for some cycle k. The basic feasible solution is obtained by setting

5, = bu o o % = by 2= % w = By; and z; = 0 otherwise.

" At the start of any cyecle, using the multiplier method, the only recorded
information from the tableau of the regular simplex method consists of the
coefficients of the artificial variables, the constant terms, and the names of
their corresponding basic variables. During the cycle, part of the missing
data in the simplex tableau is generated as required; these are the values
of ;ord; forj =1,2,. . ., n and the values in column j = s. The purpose
of this section is to review, in general, how parts of the simplex tableau for
cycle k can be generated directly from cycle 0 using the inverse of the basis.
In the next section, we shall make use of this to give the computational
rules of the simplex method using multipliers.

Tableau of Regular Simplex Method—Cyecle k

.. . 1 i .
.- I| Admissible Variables « Artificial Variables
4) Basic '
( . T —z —uw|{ Constants
Variables .
z, ... X, ...a:,,:x,,+1...:t,,+m
zy Gy -4 anl ... Gl Grasr - - - Grnim b,
zl, Gpy o o - drs| - . - &m dr.n-n oo Craem br
zi,,‘ [ S &'nu v oo Omal monire » ¢ Omonam Bm
-2z &G .46 F.. . é, Casr o+« » Cnem 1 —Z,
—w |d, .. fd ... d | der - durm 1| —a,
B-1 = [d;,, — 7 = [Cas1r + + o5 Cnim]

— = [d,H.p « o dn-}-m]

Since the first m equations of (1) are in canonical form with respect to
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9.2. THE GENERAL METHOD USING MULTIPLIERS

Tni1) Tmas - - - Tnum ond the equivalent system (4) is in canonical form
with respect to z,, z;, . . ., %; , it follows from (9) and (10) of § 8-4:

(a) if the basis, B, is the set of coefficients z;, 2;,, . . . ;| in (1), then
its inverse, B-1, is the set of coefficients ..y, Tni) - - +» Tnim D (4),

excluding the z- and w-equations. Moreover, since the entire system (1) is in

canonical form with respect t0 Z, 1, Zni2s - - - Fnim» —2% —w and the entire
system (4) is in canonical form with respect to z;, z;,, . . .. %; , —%, —W, it
also follows that:
. . . . ’ .
(b) if the basis, B*, is the set of coefficients z;, 2;, . . ., %; , —2, —wn
(1), then its inverse, [ B*]-, is the set of coefficients Z,,1, ZTpyzs - -

Zpyms —2%, —w in (4).

According to § 8-4-(20), an element in a given row and column of (4)
can be generated from (1) by forming the scalar product of the corresponding
row in the inverse and the corresponding column of (1). Thus &,; can be
generated for, say, j = s by forming the scalar product of the 't row of the
inverse B by the jtb column of (1) excluding the z- and w-equations, i..,

(3) Ay = Budr; + Bl + - - - + PimOms

where we have designated the elements of B-! by f,; and have shown by
{a) and (b) above

(8) Bix = Ginsr (t,k=1,2,.. . m)

Similarly, ¢; or d; can be generated by the scalar product of the z- or w-
row of the inverse [B*]-! with the jt» column of (1) including the z- and
w-rows. Upon rearrangement of terms

7 & = ¢; — (m@y; + Moy + « -+ Tnmg)
(8) d" = dj - (o‘lal,- -+ Oollo; + « . + O'ma:m,')
where we have designated by —(my, my, . . ., ) and —(0y, 0Oz, - - -, Om),

the coefficients of the artificial: variables in the z- and w-equations of (4);
thus

(9) T = -En+k’ Cp — —d1l+k (IC = 1, 2, [ m)

Finally, the constants b,, Z,, %, can be generated by forming the scalar
product of the corresponding row of the inverse with the constant column
of (1):

(10) b; = Buby + Bibs + - . - + Bimbm
Zg= mby + mhby+ . . .+ Tbm
'lz’o = Ulbl + azbz + e + O'mbm + wO

[219]



THE SIMPLEX METHOD USING MULTIPLIERS

Since the pivoting process of the multiplication method generates new
vaines for the basic variables, formulas (10) are not used, except for check
purposes.

DEeFiNiTION: Multipliers o = (my, 7y, . . ., 7,) are called “simplex
multipliers™ relative to the z-equation, if multiplying the first equation of (1)
by m,, the second equation by ,, . . ., the m!h equation by =,, and subtracting
their sum from the z-equation, eliminates the basic variables. A set of simplex
multipliers relative to the w-equation is denoted ¢ = (6,, Gy, . . ., Oy).

THEOREM 1: The simplex multipliers are unique, and are egqual to the
coefficients of the artificial variables of the z- and w-equation of the canonical
Jorm (4).

Proor: Using the particular values of m, = —&y,y, 0 = —d, . for
(k=1,. . ., m), the coefficients ¢; and d; of z;, as given by the right-hand
side of (7) and (8), vanish for columns j corresponding to basic variables.
Hence these values satisfy the definition of simplex multipliers.

To show uniqueness, suppose for convenience that z,, z,, . . ., z, are
the basic variables; then 7; must be chosen so that

(11) Ty F Tly o Tl = G
TMlyg + Tolge + . « +« + Tylma = Co
Ty + Tolloy, + . Tl = Cp

This system of m equations in m unknowns should be contrasted with the
system of m equations in m unknowns that the basic variables must satisfy

(12) T8y F Tolyy + - - Tl = by
T8y + Tollgy + . . . F Tploym = by

0y + Lol + -+ T TBum = bm

System (11) interchanges rows and columns in (12) and replaces the constants
by cost coefficients of the basic variables. The coefficients of z; in (12) form
the basis B (in this case) and hence the coefficients of #; in (11) form the
transpose of the basis. By § 8-4, Theorem 7, the inverse of the transpose of

the basis exists and is the transpose of B-1. This implies that 7y, my, . . ., 7y
can be expressed uniquely in terms of ¢,, ¢,, . . ., ¢, by
(13) m o= fuc+ Pucet . .+ Bmlm

Ty = P126y + PBaaCa+ - - -+ BmaCm

................................

Tn = PBimC€1 + BomCa + -« -+ BumCm

“-H

where 2, Z,, . . ., Ty, are basic variables or, more generally, if z, , .
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9.3. COMPUTATIONAL RULES USING MULTIPLIERS

are the basic variables, by replacing ¢; above by the cost coefficient of the it
basic variable ¢; = y, (see § 8-5-(17)).

9-3. COMPUTATIONAL RULES USING MULTIPLIERS

Preliminary Remarks.

Write out the system of equations in canonical form for Phase I of the
simplex method, as described in §9-2-(1). The full system is written in
detached coefficient form in Table 9-3-Ia at the end of this section.

The tableau of the simplex method using multipliers, Table 9-3-IIb, changes
from cycle to cycle. [The entries for the starting cycle 0 are shown in Table
9.3-I1a.] Its entries, excluding the last column, are the coefficients of the
artificial variables 2,,,, %42, - - -» Znym» Of —2, and —w, and the constant
terms of the tableau of the regular simplex method for that cycle. It may
also be interpreted as composed of the “Inverse of the Basis,” [8;], two
rows for the negative of the “simplex multipliers,” =; and o;, a column
for the values of the basic variables in the basic solution, and a column for
a variable z,. At the start of a cycle, all entries in the tableau except the last
column “z;’ are known.

During some cycle, say cycle ¢, the values of the relative cost factors d;
for Phase I or ¢ for Phase II are computed and entered in Table 9-3-Ib.
Except at the end of Phase I or Phase I, this is followed by the computation
of each d,, which are entered in the last column of Table 9-3-IIb. At the
end of the cycle the entries of this tablcau are used to compute the corre-
sponding starting tableau of the next cyele; cycle ¢ + 1. Table 9-3-IIc shows
how the starting tableau of cycle ¢ 4+ 1 is related to the ending tableau of
cycle t.

Computationalv Rules.

These apply to all cycles but differ slightly depending on whether the
computations are in Phase I or in Phase II. They are the same as the
standard method given in § 5-2 with the following modifications:

Step Ia: Use values of o, (if Phase I) or =, (if Phase II) from Table
9.3.1Ib to compute relative cost factors d; (Phase I) or ¢; (Phase II) for
j=1,2,...,%; ..., n+4 mby (7), (8), (9) and record in Table 9-3-Ib in
the row corresponding to the cycle. ‘

Step Ib: Same as Step I of Standard Method.

Step IIa: Compute for i = 1,2, . . ., m, the coefficients d;, of z, in the
canonical form by (5) and (6) and record in the last column of tableau,
Table 9-3-IIb. '

Step IIb: Same as Step II of Standard Method. Instead of the random
rule for resolving ties, one may use as an alternative, the lexicographic rule
given below Step III.
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THE SIMPLEX METHOD USING MULTIPLIBRS

Step III: Same as Step IIT of the Standard Method, except: Pivot
using pivot element in 4,, in Table 9-3-IIb (instead of Table 5-2-II) and
record entries in Table 9-3-IIc. Leave column “z,” blank. Leave the list of
basic variables in the left column the same as Table 9-3-IIb except change
Jr to the value of s determined in Step 1. Return to Step Ia to instiate cycle

t+ 1.

Lexicographic Rule for Resolving Degeneracy.

If two or more indices r,, 7,, . . . are tiéd for the minimum, form the
ratios of the corresponding entries in the first column of the inverse to
@y s Gr g - - -, Pespectively:

ﬂrl.lla'.rls
Br,.l/dr,s

and take the index of the row with the minimizing ratio for r. If there still
remain ties, repeat for those indices that are still tied using instead the
ratio of the corresponding entries in the second column of the inverse to their
respective &, .. In this manner, ratios are formed from successive columns of
the inverse until all ties are resolved uniquely (this always occurs on or
before the last column is reached). A proof that the simplex algorithm always
terminates in a finite number of steps using this rule will be the subject of
the next chapter. (The proof that the random rule terminates in a finite
number of steps with probability one was given at the end of §6-1.)

TABLE 9-3-Ia
SivrLEx METHOD Usmng MULTIPLIERS

Detached Coefficients, Original System

Admissible Variables Artificial Variables
Equation —z —w]||Constants
1 Ty Ty .o Ty eu . Tyl Tags Tpez v o o Tpam
1 Gy Ga - . Gy 0. G, 1 b
2 Gsp Gag o s gz o o o Qg 71 by
m [ T Y . 1 b
zform fle; ¢ ... ¢ ... €, 0 0 ... 0 1 0
wform|jd, d, ...d; ...d, 0 0 ... 0 1| =37
dy= —>0 ay; 5, 20,.. ,5,20
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COMPUTATIONAL RULES USING MULTIPLIERS

TABLE 9-3-Ib
Relative Cost Factors d; or &
Variable 7
1, 2, ... n, n+1l n 4+ m
Cycle
0 dy dy ... d,, 0 0
1
Phase I | - g, if in Phase 1
Using { or } from Table 9-3-IIb, same cyecle,
. m; if in Phase II
k
k
E+1 d; = dy —[a1,0y + G50, + . . . + Gp;On]
Phase II compute or
G; = ¢; — [Gyymy + Qgyma + .+ -« + CpyTm)
record d; or ¢; on row corresponding to cycle and choose
. d, = Min d; (Phase I)
pivot column s such that { & = Min ¢, (Phase II)}
TABLE 9-3-I1a
SimprLEx MeTHOD Usine MULTIPLIERS
Tableau Start of Cycle 0
{Columns of Canonical Form)
Basic . z
. ; R
Variables Zont L Zoim —z  —w Val;:rti):bB]:sm (see
. note)
+~————— Inverse of Basis
zn+l 1 bl
Tyrr 1 br
Zpem 1 bm
—z 0 0 1 0
—w 0 0 1 - Z;_" b,

Note: The z, column is blank at start of cyele 0.
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TABLE 9-3-ITb

SimrLEX Mernoo Using MULTIPLIERS

Tableau End of Some Cycle ¢

. (Columns of Canonical Form) Value of
Bg.sw Bagic T
Variables Ton Tom —z —w| Variable (gee note)
(Bie] = [8y,nse] Compute
«——— Inverse of Basis

sy Bu Bim b, z;’l fria: = 8y,

z;, ﬂfl ﬂrm : Er Z;_n ﬁrxau = a‘r:

Tim ﬁml AB"IM ‘ Em z;n ﬁmeau = Qs
(_""k = c‘ﬂ*k)

—z —my .. — T i 1 —Zy | Cs— Z;n Tl =C,
(-0 = dn+k) f

—w -0 — G s 1 ~B, ||d,— DT o, =4,

Note: Last column is blank at start of cycle; see Table 9-3-Ib for choice of s; see
Step LIb for r; Table 9-3-1lc is obtained by pivoting on d,, and omitting entries in last

column. The bold-faced &,s indicates position of pivot. _

TABLE 9-3-Ilc

Tableau Start of Cycle ¢ + 1

i Bu — dufh Bim — G187 b, — 51:5: (see note above)
. . ! .
1

Ts A Bm ; b*
zlm ﬂml - lzmlﬁ; L ﬁmm - dmsﬁ:mg Bm - (2,,“5:
—z —ry =G .. —m,— BN 1 —Z, — &h*
—w || oy —dfh ... —om —df% 1 | —@, — d;b*

ﬁfl = ﬂri/dn (f=12,...,m); 5: = Br/&n
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ExampLe: To illustrate the computational procedures of the simplex
method using multipliers, let us return again to the example of §5-2, Table
5-2.V. In tableau form, the problem is given by Table 9-3-ITIa.

TABLE 9-3-11Ia
Detached Coefficients of Original System

T, xy Tz Xy Zs E R —z  ~w | Constants
L5 —4 138 -2 1 1 20
R T 1 8
N . - - e e
b1 6 -7 1 5 ] 0
] —6 5 —18 3 -2 1 —28
TABLE 9-3-IIIb
Relative Cost Factors
Cycle
(1) (2) (3) (4) (5) (6) (7)
0 —8 3 —18 3 -2 0 0
* ® (o]
d 1 12/13 —7/13 0 3/13 —8/13  18/13 0
i ® * (o]
2 0 0 0 0 0 1 1 End of
o [ J Phase I
2 12 —1 0 2 0
- * [ o
‘13 7217 0 0 11/7 8(7 Drop End of
[ J [ J Thase IT
TABLE 9-3-1V
Cycle 0
Basi Columns of Canonical Form
asic
Variables Zg x, —z —~w | Constants||z, = 23
T, 1 20 13
z, 1 8 5
-2z 1 0 -7
— 1 —28 —18
Cyecle 1 (z, = x5)
Zzy 1/13 20/13 1/13
Z, —5/13 1 4/13 8/13
—z 7/13 0 1 140/13 72/13
—w 18/13 0 1 —4/13 —8/13
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TABLE 9-3.IV (continued)

Cycle 2 (z, = %)
x 18 —1/8 3/2 —3/8 | End of Phase I,
s —5/8 - 13/8 1/2 8| 4 >0,w=0
. Drop z, and z, since
-z +4 -9 1 8 -1
(dgr dy) = (1,1) > 0;
v ! 1 1 0 0 ) érop wW-TOW
Cycle 3
3 -1 47 12/7
Ty -5/7 13/7 47 End of Phase II,
- & > 0.
—~z 23/7 —50/7 1 60/7
—w (w-row dropped)
9-4. PROBLEMS
1. Solve by the simplex method using multipliers :
3z, — 3z, + 425 + 22, — 5 + 7 =0
2+ Tyt w2yt 32, + 75 +x, =2
22, 4 3wy + 225 — x4 + %4 =z

(2

Zg + Ty =W

and minimize z, where z; > 0 and w = 0.

. Solve, using the simplex method using multipliers:

z + 2z, — x4 >3 (x =0)
2x1-|~x2' + 2z, — 22, < 1
+ 2y — 7, >0
-2, + 3z < 2
—%, — Ty — X + ;= Minz

. Discuss the relationships between the regular simplex method and the

revised simplex method.

. Set up the dual of the problem of finding z,; that minimizes z;, + z, =z

subject to
z +22,>3
Xy — 2wy > —4
z, + T2, < 6
where z, > 0, and z, is unrestricted in sign. Determine the simplex

multipliers of the optimum solution of the primal, and verify that it
satisfies the dual and gives the same value for the objective form.

. Solve the Blending Problem II, § 3-4, by the revised simplex method.
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6. Solve Waugh’s problem using simplex multipliers. (See Problem 28,
Chapter 5.)

7. Prove that

C1y; + Collgj + + + -+ Cllpm; = T84 + Tl + o o o A Tl
where y, m,, . . ., 7, are simplex multipliers associated with the basic
set of variables z, z,, . . ., z,,. See Chapter 12 for an economic interpre-
tation of this relation.

8. Prove that if P, replaces P, the rtt column in a basis, and if #* is the
new vector of simplex multipliers, then

=m + kp,, k = ¢,/a,,
where §, is the row of B~ correspording to P; .

9. In §8-5, the product form of the inverse was developed. Review this
discussion and rework the exercises. Discuss how you would compute the
simplex prices, 7*, if the inverse of the basis in product form were given.

REFERENCES

Dantzig and Orchard-Hays, 1953-1 Gass, 1958-1

Dantzig, Orden, and Wolfe, 1954-1 Hadley, 1961-2

Garvin, 1960-1 Orchard-Hays, 1955-1, 1956-1

Orden, 1952-1, 1955-1
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CHAPTER 10

FINITENESS OF THE SIMPLEX METHOD
UNDER PERTURBATION

10-1. THE POSSIBILITY OF CIRCLING IN THE
SIMPLEX ALGORITHM

We have seen that if degeneracy does occur, then it is possible to have
a sequence of iterations with no decrease in the value of z. Under such
circumstances, may it not happen that a basic set will be repeated, thereby
initiating an endless circle of such repetitions? If so, can we devise an
efficient procedure to prevent such a circling possibility ? In the early days
of linear programming this was an unsolved problem.

In 1951, A. J. Hoffman constructed an example, shown in Table 10-1-1,
involving three equations and eleven variables. He showed that if one
resolved the ambiguity of choice regarding which variable to drop from the
basic set by selecting the first among them, then the tableau at cycle 9 would
by the same as at cycle 0. It follows in this case that the same basic set
would be repeated every nine iterations and the simplex method would
never terminate. This phenomenon is usually referred to as cycling in the
simplex algorithm. We prefer, however, the term “circling,” because we use
the term “cycle’”” for a single iteration of the simplex algorithm.

Later, E. M. L. Beale [1955-1] constructed a second example, a version
of which is shown in Table 10-1.I, that is remarkable for its simplicity. It
also has three equations but only seven variables. Using the same rule for
resolving a tie, the tableau at cycle 6 is the same at cycle 0. It is conjectured
that this is the simplest example; to be precise, it is believed that no other
example of circling can be constructed involving fewer variables regardless
of the number of equations.

Since circling in the simplex algorithm is only possible under degeneracy,
it is pertinent to ask how degeneracy can oceur, how frequently it is en-
countered in practice and how often it implies circling. Degenerate solutions
are possible only when the constants, b;, of the original right-hand side bear
a special relation to the coefficients of the basic variables. This is clear since
the process of reduction to one of the finite set of canonical forms depends
only on the coefficients and not on the right-hand side; the final values, b,
are weighted sums of the original b,’s where the weights depend only on the
coefficients. If all the b,’s were selected at random, it would be something of a
miracle if one or more of the constants b; of the canonical system should vanish.
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TABLE 10-1-1I
A. J. HorFMAN'S EXAMPLE OF CIRCLING IN THE SIMPLEX ALGORITHM
[6 =2#/5, w > (1 — cos 0)/(1 — 2 cos 0)]

(Cycle 0)
z, Ty zy EN g T4 Zy EN x4 Iyo 5 Constant
1 1
1 | cos @ , —~wcos 0 cos 20 - 2w cos? @ cos 20 2w cos® 8 cos 8 wcos 6 0
1 sin 0 tan 8/w ros 8 tan 6 sin 26/u cos 20 —2 sin? 8/w cos 26 —tan 6 sin 6/w cos 6 0
—(1 — cos B)/cos 8 + +2w +4 8in? 6 —2w cos 20 + 4 sin? 8 w(l — 2cos8) | z(Min)
[ ] o [ J *
(Cycle 1)
1 1
sec 8 1 —w 4cos?6 -3 —2wcos 0] 4cos?d — 3 2w cos 8 1 w 0
~tan® 0w 1 [ seco ] tan® 6/ 1 25in 6 tan 0w | 4cos*0 — 3| —2sin 6 tan 8/w| 4costs — 3 0
(1 — cos 6)/cos? 9 w(2cos B — 1)jcos 8] —2sin6tan 6 2w cos 8 | (cos 0 — 1)/cos § 3w 2gin6tand | —w(dcos?d — 3 z
[ ] o} o *
(Cycle 2)
1 1
cos 0 wcos 8 1 I cos 8 ’ ~w cos 6 cos 20 —2w cos® 0 cos 26 2w cos® 8 "o
—tan 0 sin 8jw cos 8 1 sin 8 tan 6/w ¢os 0 tan 6 sin 26/w cos 26 -2 3in? 8w cos 26 0
4 8in® 0 w(l — 2 cos 9) —{(1 - cos 8)/cos @ +w 2w 4sin'é —2w cos 20 z
[ ] (o] [ ] *

Notice that columns (2, 3, 4, .
The {J indicates the position of

. ., 11) of cycle 0 are the same as columns (4, 5, 6., . ., 11; 2, 3) respectively of cycle 2; hence, 8 more iterations will repeat cycle 0.

f the pivot.



FINITENESS OF SIMPLEX METHOD UNDER PERTURBATION l
TABLE 10-1-II
BeEALE’'S ExAMPLE OF CIRCLING IN THE SIMPLEX ALGORITHM '
z, T, Ly z, €xy x, z, —z | Constant
{Cycle 0) I
1/4 —60 —-1/25 9 1 0
1/2 —~90 —1/50 3 1 0
1 1 1 '
—3/4 150  —1/50 6 1 0 ’
* ® ® ®
(Cycle 1) '
H —240  —4/25 36 4 0
30 3/50 —15 —2 1 0
1 1 1
—-30 —7/50 33 3 1 0 '
® * ® ®
(Cycle 2) l
1 8/25  —84 —12 8 0
1 1/500 —1/2  —1j15  1/30 0
1 1 1
—2/25 18 1 1 0 1 0 '
® ® * o
(Cycle 3)
25/8 1 —525/2 —75/2 25 0 l
—1/160 1 1/40  1/120 —1/60 0
—25/8 525/2  75/2 —25 1 1 (
1/4 -3 -2 3 1 0 '
® ® * ®
(Cycle ¢)
—125/2 10,500 1 50  —150 0 '
—1/4 40 1 1/3 —2/3 0
125/2 —10,500 —50 150 1 1
—-1/2 120 -1 1 1 0
[ J o * o
(Cycle 5)
—5/4 210 1/50 I —~3 0 .
1/6  —30 —1/150 ] 1/3 0
1 1 1
—-7/4 330 1/50 -2 1 0
L %* L J
Note: Cycle 6 must be the same as Cycle 0, as it has the same basic variables in the
same order.
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Nevertheless, it is common experience, based on the solutions of thousands
of practical linear programming problems by the simplex method, that
nearly every problem at some stage of the process is degenerate. It might
be thought that, since degencracy happens all the time, there would be many
observed cases of circling. However, to date, there has not been one single
case of circling, except in the specially constructed examples of Hoffman
and Beale. Apparently, circling is a very rare phenomenon in practice. For
this reason, most instruction codes for electronic computers use no special
device for perturbing the problem to avoid degeneracy and the possibility
of circling. The cells of the computer’s high-speed memory, when not entirely
reserved for the data of a large problem, are occupied by subroutines
designed to increase accuracy by means of arithmetical checks and multiple
precision arithmetic.

From a mathematical point of view, the phenomenon of circling is an
interesting one. Long bhefore Hoffman discovered his example, simple
devices were proposed to avoid degeneracy. The main problem was to devise
a way of avoiding degeneracy that involved as little extra work as possible.
The first proposal along these lines was presented by the author in the fall
of 1950 in his Linear Programming Course at the Graduate School of the
U.S. Department of Agriculture. Students were assigned exercises involving
the proofs of the method along the lines given in this section [Edmondson,
1951-1; Dantzig, 1951-2]. Later A. Orden, P. Wolfe, and the author published
a proof of this method based on the concept of lexicographic ordering of
vectors [Dantzig, Orden, and Wolfe, 1954-1]. A. Charnes [1952-1] indepen-
dently developed a technique of perturbation that is described in one of the
problems at the end of the chapter.

As an alternative to the random choice rule established in § 6-1, we shall
show in the next section that it is possible to perturb slightly the constant
terms in such a way that

(a) the basic feastble solutions become nondegenerate, and
(b) moreover, the corresponding basic solutions for the unperturbed problem
will remain feasible.

In effect, the perturbation simply guides the proper choice of variables to
drop from the basic set in case of ties.

10-2. PERTURBING CONSTANTS TO AVOID DEGENERACY!

Let us begin with Phase T of the simplex method and assume, as in
§ 9-2, that all b; > 0 and that a set of variables has been augmented by the

! The method given in this section is based on perturbing the constant terms. In
[Dantzig, Orden, and Wolfe, 1954-1] an alternative proof, based on lexzicographic ordering,
closely parallels the one given here. For further discussion, see Problems 11, 12, and 13
at the end of this chapter and § 13-4.
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artificial variables Z,,, Zn.g, - - > Tnim» SO that the basic problem of Phase I
is to find z; > 0 and Min w, such that

n

(1) za,.,.x,. bape=by (b;=0;i=12,...m)
j=1
m
Z Tppg = W
i=1
Let the initial basic set of variables be %,,, a4 - + -» Znim- 1f ONE or more

of the constants, b, equal zero, the corresponding solution will be degenerate.
We shall avoid this by considering the perturbed problem :

n

(2) Za,-jx,-+x,,+,.=b,-+£‘ (b;=>0;e>04;=12,...m)
j=1
D s = w (Min)
=1

Tt is obvious that the initial basic solution is nondegenerate, because for
all ¢

(3) Zpyy=b; + >0 b;>0;e>0)

and that, by setting & = 0, the basic solution is feasible for the unperturbed
problem.

On subsequent iterations, the values of basic variables will become
general polynomial expressions in e. Indeed, suppose for cycle ¢ that
(%, %, - - -, 2; )is some basic set of variables, then by § 8-4-(21), the values
of the basic variables which we denote by b,(¢) are

4) bi(e) = Z Buulby + &) G=12,...m)

k=1
= Bi + Bue + Big?+ .. .+ Bime™

where [8,;] is the inverse of the basis and b; are the values of ; for &£ = 0.

ExErcisE: Show for each 4 there exists a f;; # 0.

ExXERCISE: Show that it is not possible for two rows of the inverse of
a matrix to be proportional.

In (4) it is no longer possible to guarantee that the values of the basie
variables will remain positive for all positive ¢ and nonnegative for & = 0.
However, we shall prove the following:

LeEMMa 1:  Given a polynomial

(8) fle) =ag+ a;e + . . . + Gpe™
then f(e) > 0 for all 0 < & < some hy, if and only if it has a non-zero term
and the first such has a positive coefficient.
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Proor: Let the first term of f(¢) with non-zero coefficient (called the
leading term) be k; then by assumption

(6) Gy=0,=...=0a,,=0 and a,>0
Let,forj=%k+1,...m,

(7) M = Max (0, Max — a;)
3

Then for0 < e < land p > 1,

a;e? > —Me? > —Me j=k+1,...,m)
and, therefore,
(8) fle) = Mag + are + . - - + Ape™ "]
> Ma, — Me — Me — . . . — Me]
> ea;, — M(m — k)]
If we let
9 ho = Min{1, a,/M(m — k)]

where hy =1 if M = 0 or M = k, then it follows from (8) that fley>0
for all ¢ in the interval 0 < & < k.
EXERCISE: Prove the “only if” part of Lemma 1; see Problem 4.
LeEMMma 2:  Given two polynomials f(e) and g(€), where

m - m
(10) fle) = Z a;f,  gle) = Z b,et
im0 i=0
such that ’
(11) a;=0b; fort=1,2,...,k—1
ar < by

a;, b, arbitraryfori ==k

then for some hy > 0, f(e) < g(e) for all 0 < & < k.

Proor: This will follow from Lemma 1, since conditions (11) are a
restatement of conditions (8) for g(e) — f(¢). Hence, there must exist an
hy, such that

m
(12) g(e) —fle) = Z (b, —a)es>0 forall0<e<h
i=0
TeEOREM 1: For cycle t, each polynomial expression in & in (4) has at
least one nmom-zero term; if the first such is positive for every i, then there is
some range of values 0 < ¢ < h,, such that for any fixed & in the range, the
values of all basic variables are positive.
The first part of the theorem holds because not all g;; = 0 for fixed 1.
The second part follows from Lemma 1 and the fact that, if there are different
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ranges of values for ¢ within which the values of the various basic variables
stay positive as a function of &, then the smallest of these ranges will do
for all z; .

For our purposes, it is only important for cycle ¢ that a range of values
0 < & < h, exists for which all basic variables remain positive as a function
of . An explicit value for h, is not needed, so that, in computing work, k, 18
never evaluated.

THEOREM 2: There exists a common range of values 0 < & < h¥ such
that for any finite number of iterations of the simplex method as applied to any
perturbed problem within the range, the values of all basic variables remain
positive and the choice of the variable entering and leaving the basic set 13 unique
and independent of the particular value of ¢ in the range.

Proor: For some cycle ¢ let us apply the simplex algorithm to improve
“a basic solution for a perturbed problem (1), in which we assume for
inductive purposes, that b(¢) will be positive for some range 0 < ¢ < h,
(hence, its leading term has a positive coefficient). Clearly the assumption is
true for cycle 0 by (3). The choice of the new variable z, entering the basic
set depends only on the coefficients of the variables in the basic set and is
independent of b, and &. On the other hand, the choice of the rtb basic variable
to be dropped is dependent on b; and . However, we shall now show that for
the class of perturbed problems whose ¢ is within a sufficiently small range,
the same variable z, will be dropped from the basic set. In fact, by § 5-1-(21),
the maximum value z¥* of the variable z, entering the basic set and the choice
of the rth basic variable to drop is determined through the relations

bie) o _
— = Min {(61 + Bune + B+ . . -+ 'B,-ms"")/a,-x}

s ;>0

(13) 2*=

where z¥ is positive for any ¢ in some range 0 < ¢ < h; by the assumption
that b,(¢) > 0 in this range.

The Lexicographic Rule.

Applying Lemma 2, the minimum of the several polynomial expressions
(for sufficiently small range of values for ¢) is found by first comparing their
constant terms, i.e., by choosing r, such that

b b,

(14) ‘.L = Min — (Gps > 0; @3 > 0)
Qs Qs

If, however, there are several ¢ = r,, r,, . . . satisfying (14), then for these 1,

choose ¢ = r, such that

(15) I?—'1=Min&E fori =17y, 7 ...
Ars Ais

That is to say, the coefficients of the ! power terms of these various poly-
nomials are compared for those ¢ that are tied in (15). If again r is not
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unique, then for those remaining ¢ which arc again tied for the minimum,
the corresponding coefficients of £%; ¢%; and as many powers as necessary
are compared in turn until a unique r is determined. This will always oceur
on or before comparison of the cocflicients of & beeause, if two (or more)
polynomial expressions had equal coefticients for all powers, it would mean
that two (or more) rows of the inverse of the basis were constant multiples of each
other, which is not possible; sece earlier exercise and Problem 2. By this
means a unique 7 can be chosen corresponding to the unique smallest ratio
{13) where the same choice of » can be made for all ¢ > 0 in some range.
This also means that the values of all the basic variables for the next
iteration, as given by the polynomial expressions in ¢, must remain positive
(zero excluded) in some range 0 < ¢ < &,,,, thereby completing the induc-
tion. Theorem 2 follows, if we let A be the smallest 4, for all 0 << p < ¢.

TuEOREM 3: The simplex algorithm as applied to the perturbed problem
terminates in a finite number of iterations.

Proor: For any fixed number of iterations, N, the values of the basic
variables are all positive for any fixed ¢ in some range 0 < & < h%. It
follows that there is a positive (zero excluded) decrease in the value of the
objective form. Therefore, no basic set of variables could be the same as one
obtained in earlier iterations. Since there are only a finite number of basic
sets of variables, not larger than the number of combinations of »n things

n!

taken m at a time, (:) it is not possible that N > ( )

. 7
T (n — m)tm! m
It is easy to see also

TarorEM 4: The minimal basic feasible solution of the perturbed problem
will yield the corresponding solution for the unperturbed problem by setting

e =01in (4).

Phase I-—Phase II Considerations.

The perturbed problem for Phase II must be suitably chosen so as to be
a natural extension of Phase I. At the same time, the setup must be such
that any artificial variables remaining in the basis must have zero values
in basic solutions in subsequé'ht iterations, when ¢ = 0. Let d,- > 0 be the
relative coefficients of the infeasibility form at the end of Phase I; then the

perturbed problem for Phase II forz =1, 2, . . ., m becomes
(16) - Z ;% + 8%, =b, + ¢
j=1
’ n
Z dz; +(~w)= +
i=1
n .
“ z €x; = z (Min)
j=1
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where for ¢ 1, 2, .. ., om0, 1 or O according to whether or not x,
is in the basic set at the end of Phase I. It will be noted that, if B is the
hasis associnted with the first m cquations, and we now inclnde the -
equation of (16) and {w) a8 n basie varinble, the extended basig and it

inverse for the first (m | 1) equations beeome, respectively,

-1
(17) [f ?j! and [f ?—}

The values of the basic variables for the initial solution for Phase IT are now
«

(18) z; =b; + fue t B+ . A+ fime™ + 0 gmtl > 0

(—w) = ™+l

where the leading terms are positive by Theorem 2.

During Phase II all variables z; >0, z,,; >0, and (—w) = 0 are
treated as admissible variables and z is minimized. This, of course, follows
precisely the procedure of Phase I. It remains only to show that if ¢ is set
equal to zero, the value of any artificial basic variable is zero in any feasible
solution. Let o, be the simplex multipliers associated with the final basis

of Phase I; then, recalling that d; = —3,; a,;,
m m

(19) d; =d; — Z @;;0; = = Z a;{o; + 1)
i=1 i=1

Hence, if the ¢th eqllation of (16) is multiplied by (o; + 1) and their sum
fori=1,2, ... mis added to the w-equation of (16), one obtains, using
(19) and the fact that o, = —d,.;

m

(20) i Tt i (0; + 1)b Z(ai+1)sf+em+1

i=1 i=1

Now the constant term in the polynomial in ¢ of the right member of (20) vanishes
and the leading term is positive.

Proor: Equation (20) must hold for every solution of Phase II; in
particular, it must hold for the values given to the artificial variables in the
initial solution for Phase II given by (18); but these have the property that
their constant terms are all zero and their leading terms are positive. Hence,
substituting their polynomial expressions on the left in (20), and noting
8, >0, the same property must hold for the polynomial expressions on the
right. Conversely, if the expression on the right has a zero constant term,
then so do z,,; and (—w) in any subsequent solution, because their leading
terms are maintained positive. Tt follows that x,, = 0, if # = 0.

THEOREM 5: If a minimal feasible solution x; = x¥, z = z* exists, then

[236]



10-3. PROBLEMS

at the end of Phase 11, a system of multipliers w; = m* is obtained with the
properties that

m
(21) EJ?‘=cj—Zw;raij20 G=12...n)
im1

GF>0=>2F=0,2>0=¢F=0

Note: The symbol = means “implies.”

Proor: The simplex multipliers ; obtained at the end of Phase II for
the extended problem satisfy the above conditions, providing a multiplier &
is included for the w-equation of (16). However, dropping the artificial
variables and the perturbation, the w-equation, Zdx;, can be formed from
the first m cquations, using the multipliers o, obtained at the end of Phase
I; noting (1Y), the required multipliers are

(22) w} =m; — ko; + 1)

10-3. PROBLEMS

1. Prove the exercise in § 10-2 that at least one element of each row and each
column of the inverse of a basis is non-zero.

. Prove the exercise in § 10-2 that it is impossible for the elements in a row
of the inverse of a basis to be proportional to the elements of another
row. (By use of the transpose, prove that the same is true for columns.)

3. Prove that if §,(¢) > 0 for 0 < & < h, then there exists an ' < h, such

that b,(¢) is positive for 0 < & < k', where b,(e) = b, + 5, B¢’ and
Bt =[8,]

4. Ifa, <0and gy =40, =...=a,, = 0, prove there exists an & > 0,

such that

(]

fle) =ag+ a6 + ape? + . . . + a,e™

is negative for all 0 < & < h.

5. Prove that if all basic variables for perturbed solutions for each cycle ¢
remain positive in a range 0 < ¢ < k,, then there exists a common
range for all cycles up to ¢ within which all basic variables for the first ¢
iterations remain positive. :

6. Solve Hoffman’s example using a perturbation method. (See §10-1,
Table 10-1-1.)

7. Solve Beale’s example using a perturbation method. (See § 10-1, Table
10-1-11.) '

8. (a) Is it possible to construct a class of perturbed problems which are

infeasible, but the corresponding class of unperturbed problems are
feasible ?
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(b) Can the class of perturbed problems be feasible, but the unperturbed

problem infeasible ?

(¢) Can the class of perturbed problems have a finite lower bound for z,

but not the unperturbed?

(d) Can the class of perturbed problems have a lower bound of —c0 for z,

but not the unperturbed ?

9. (Charnes.) Develop an alternative perturbation procedure based on

replacing b; by b(e) =b; + S, ¢/ fori=1,2, ... m. Express the

2

selection rules in terms of the full tableau of the regular simplex method.
10.

(Unsolved.) Tt is conjectured that Beale’s example has the least number

of variables of any for which circling can occur in the simplex algorithm.

Is this true ? If not, construct an example with the least.

Problems Based on the Lexicographic Method. [Dantzig, Orden, and

11.

Wolfe, 1954-1]

An m-component vector A is said to be lexico-positive, denoted 4 > 0
(see § 13-3), if at least one component is non-zero and the first such is
positive. The term “‘lexico’ is short for “lexicographically.” A vector 4 is
said to be “lexico-greater”” than B, written A> B, if A—B>0.
The smallest of several vectors will be denoted Lexico-Min. Prove that
this lexicographic ordering of vectors is transitive, in other words

A>Band B>C=A4>C

Instead of perturbing constants, suppose the constants, b;, in § 9-2-(1),
are replaced by vectors
b =[b, 1,0, .. .,0] (b; = 0)
by =1[by0,1,...,0]

b = [by, 0,0,. . ., 1]

"m?r

where the superscript v denotes “‘vector.”

(a) Show, analogous to § 9-2-(4), that the values of the basic variables
on some subsequent iteration are replaced by

6;, = [Bi: ﬁilv ,Bi?.' L] ﬂim] (1/ = l’ 2. m)
2V = [Z, Ty Ty -« o Tl

(b) Show, analogous to § 9-2-(10), that the variable chosen to be dropped
is selected so that

b?/d,, = Lexico-Min {b7/d;;} > 0 (@ > 0)
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where 5?/d,, is a vector formed by dividing the components of 5? by
the scalar d,,.
Prove b? > 0 for all iterations and 2 > 22 >23. . ..
13. Define a partial order relation between n-component vectors as follows:
Ifx=1(§, ... &) and y = (5, L ), then x >y and y < z
if& >n,fore=1,.. ,n
Letting z, Y, Ty, Yy, @, denote n-component vectors, prove:
Ifx >yand y >z, then x > z;
If 2, >y, and 2, > y,, then z, + 2, > ) + ¥a;
If £ >y, then Ax > Ay, where 1 >0 is a scalar and Az < 1y, if
A0,
If x >y and @ > 0, then a™x > aTy, where aT is the transpose of a.
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CHAPTER 11

VARIANTS OF THE SIMPLEX
ALGORITHM

Introduction.

By a variant of the simplex method (in this chapter) is meant an algorithm
consisting of a sequence of pivot steps in the primal system, but using
alternative rules for the selection of the pivot. Historically these variants
were developed to take advantage of a situation where an infeasible basic
solution of the primal ix available. Often in applications, for example,
there occurs a set of problems differing from one another only in their
constant terms and cost factors. In such cases, it is convenient to omit
Phase I and to use the optimal basis of one problem as the initial basis
for the next.

Several methods have been proposed for varying the simplex algorithm
s0 as to reduce the number of iterations. This is especially needed for problems
involving many equations in order to reduce the cost of computation. It is
also needed for problems involving a large number of variables n, for the
number of iterations appears to grow proportionally to n.

As an alternative to using the selection rule &, == Min &; one could seleet
j s such that introdueing o, into the basic set gives the largest deercase in
the value of z in the next basic solution. This rule is obviously not practical
when using the simplex method with multipliers; see Chapter 9. Even using
the standard canonical form, considerably more computations would be
required per iteration. It is possible, however, to develop a modification of the
canonical form in which the coefficient of the ith basic variable is allowed to be
different from unity in the 5th equation but b, = 1. In this form the selection
of s by the steepest descent criterion would require little effort: moreover
(by means of a special-device), no more effort than that for the standard
simplex algorithm would be required to maintain the tableau in proper form
from cycle to cycle.

Starting in 1960-1961, a number of investigations have been systematic-
ally gathering empirical data on the comparative efficiency of various
proposals such as the above. Harold Kuhn of Princeton and Philip Wolfe of
RAND have been particularly active. Based on their preliminary findings,
criteria independent of the units of the activities or of the items appear to be
well worth the additional effort.

An important sub-case occurs when a new problem differs from the

[ 240 ]




11-1. COMPLEMENTARY PRIMAL AND DUAL BASES

original in the constant terms alone. The optimal basis of the first problem
will still “‘price out’ optimal for the second (i.e., &; > 0), but the associated
solution may not be feasible. Note, however, that optimality implies that
the associated solution of the dual is feasible. For this situation, C. Lemke
[1954-1] developed the Dual-Simplex algorithm as a variant of the standard
primal simplex; see §11-2. Computationally similar variants, the ‘“Method
of Leading Variables,” by E. M. L. Beale [1954-1] and “PLP (Parametric
Linear Programming),” by W. Orchard-Hays [1956-1], [Orchard-Hays,
Cutler, and Judd, 1956-1] were developed. These are subsumed in the
Primal- Dual method of §11-4 developed first by Ford and Fulkerson for
transportation problems (see Chapter 20), and later extended to the general
linear program [Dantzig, Ford, and Fulkerson, 1956-1]. These alterations of
the algorithm apply when the old basis still prices out optimally in the new
system, and thus constitutes a feasible starting solution for the new dual.
In contrast Gass and Saaty [1955-1], in their paper on the parametric
objective, studied the case of fixed constant terms and varying cost
coefficients.

However, when the problems differ by more than just the constant
terms, the old basis may not price out optimal in the new problem, and other
methods must be sought. When neither the basic solution nor the dual
solution generated by its simplex multipliers remains feasible, the corre-
sponding algorithm is called composite {Orchard-Hays, 1954-1 and 1956-1].
The Self- Dual algorithm of § 11-3 is an example of this.

11-1. COMPLEMENTARY PRIMAL AND DUAL BASES

Lemke [1954-1] discovered a certain complementarity between bases of

‘the primal and dual systems that made it possible to interpret the simplex

algorithm as applied to the dual as a sequence of basis changes in the primal;
in this case, however, the associated basic solutions of the primal are not
feasible, but the simplex multipliers continue to price out optimal (hence,
yield a basic feasible solution to the dual). It is well to understand this
complementarity, for it provides a means of easily dualizing a problem
without the formality of actually restating it.

It will be convenient to take z,, z,, . . ., %,, as basic variables for the
primal problem and to show that (my, 7, . . ., ) a0 (Epi1s Cmrzs - - -5 En)
constitute a basic feasible solution for the dual. This may be shown clearly
by use of a Tucker Diagram, Table 11-1.I. The smaller, bold-line square
contains the basis, B, of the primal system, while the larger, double-line
square gives the transpose of the dual basis, B. It may easily be shown
(and this is left as an exercise) that the determinant of B has the
same absolute value as that of B, so that if B-! exists, then B-! exists.
With the aid of Table 11-1-I it is easy to see the correspondences given in
Table 11-1.1I.
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TABLE 11-1-1
TUCKER DIaGRAM OF THE PRIMAL DUAL-SYSTEMS
Primal
: I
Variables | oy ry Iy : Lol oo e I | Relation | Constants
- e = ! . —
& 20 1 ! - 0
& >0 1 | - 0
I
* H
i
1
. SR SO
Ep1 20 : 1 = 0
: !
]
[}
I
]
Dual :
: .
&, >0 ! 1 > 0
2 ay; @y, By HOimat « o o v oo v e e e e e G1p = b,
Ty gy Gy L | I RIS Gap = by
Ton [ I L 1 T [ = [
Relation = == = B L e e e e e e e e e e e = <
Max »
Constants | ¢; ¢ Comp Coppl = v o nv e e Cn > Min 2z
TABLE 11-1-I1
PrimaL-DuaL CORRESPFONDENCES
Primal Dual
Basis B B
Basic Variables Ty, T, vy T Cmatr s « 2 Cns Bps Tys o+ o T
Non-Basic Variables Tonyrs -« +» T Eip Gy v v s Cm
Feasibility Condition z, =b; >0 foralli| & =0 for all j
Primal Simplex Method Dual Simplex Method
Optimality Criterion & =20 forallj| b; =0 for all ¢

Introduction Rule (selec-
tion of the new basic
variable)

if &, = Min¢; < 0, then

if b, = Min b; < 0, then choose

Rejection Rule (choico of
the varisble to be
dropped from basis)

if b,/,, = Min b;/G;, = 0
;>0
drop z, (pivot in row r)

choose =z, (pivot in &, (pivot in row r)
column s)
Representation of the
new vector in terms of
the basis ‘iln dzn e e Gy “&r.mni _dr.m-o-v .. e ——d,_,‘;

ﬂfl' ﬁr:v L] ﬂm

i 6, =Gy = Min & —Gy; =0

drop ¢, (pivo7tj in column s)

Pivot Element Grs Gy
Effect on the Objective
Function z decreases v increases
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I1-2. THE DUAL SIMPLEX METHOD

The dual simplex operates with the same tableau as the primal method.
However, the relative cost factors are nonnegative from iteration to iteration
(¢; > 0 instead of b, > 0). If it also happens that all the §, are nonnegative,
the associated solution will be optimal as well as feasible. If not, a pivot
row r is chosen where f), = Min 5,- << 0; secondly, the pivot column s, is
chosen so that &/ —d,, = Min ¢;/—d,; for d,; negative. 1f all @,; arc non-
negative, it is easy to see that the primal has no feasible solution. Thus, in
the dual simplex method, when viewed in terms of the primal variables, one
decides first which basic variable to drop and then decides which non-basic
variable to introduce.

ExaMpPLE: Suppose a system has been transformed to yield

Cycle 0
1) xy + 4z, — 5x; + Txg =8
z, — 2x, + 4z, — 22y = —2
Ty - ;g — x5 - 2pg = 2

Ty + 3wy + 225 =2 — 4
® O o ¥*

Since all ¢;, but not all constant terms, are nonnegative, drop the basic
variable, z,, corresponding to b, = Min §, = —2; and introduce z, into the
next basic set, since j = 4 is determined by the criterion, Min &;/—d,; =
&y —dyq = 3, for d,; < 0. After pivoting, the system becomes (2). Since all
b; and ¢; are nonnegative, the basic solution is now optimal.

Cycle 1
2) xz; + 2z, + 3z, + 3z =4
— 3z, 4z, — 22+ zg=1
+ 325 + x4 — x,+ =1

+ iz, 4 5x; + zg=2z—5
o [ [ J

Artificial Variables in the Dual Simplex.

Suppose, for the preceding example, that x, and z, are artificial ; we shall
proceed as before; we shall, however, disregard all artificial variables once
they drop out of the basic set. Thus, z, will be dropped from the system in
{2). The basic solution is still not feasible because z, is artificial. Conceptually,
any artificial basic variable, z;, whose value is positive in the basic solution,
may be replaced by —z; = z;, so that the basic solution becomes ‘‘infeasible,”
allowing application of the dual simplex rules.
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It is clear that the algorithm cannot terminate as long as artificial
variables with non-zero values remain in the basic solution. It must terminate
either with a proof of the primal’s infeasibility or with a primal feasible
solution whose artificial variables are all zero or dropped.

In practice, it is probably better not to make the formal substitution,
z; = —z;, for artificial variables of positive value, but to modify the rules
of procedure to produce the same effect. Proceeding with the example,
however, dropping z, from the system and replacing z; by —x,, we have

Cycle 1 (z, dropped, z; = —;3 artificial)

(3) z + 3z + 3z = 4
+x, =2, =1
+ x, + 25— lxg = —1

5t + =2 —35
L J e] L *

Cycle 2 (Optimal)

4) z, + 3z, + 6x; =1
+ zyt T, — % =0
— X — 2yt 2g=1
Ty + 6z =2z—8
[ J [ J o

As we have pointed out, many problems have a feasible solution to the
dual readily available. For example, if the equations are weighted by the
multipliers of a previously optimized system having the same matrix of
coefficients, a;;, and if the weighted sum is subtracted from the z-equation,
the coefficients, ¢;, of the transformed z-equation are nonnegative. Upon
augmentation of the new system with artificial variables, the system is .
(a) in canonical form with respect to the artificial basis, and (b) its relative
cost factors, ¢/, are nonnegative. Hence, optimizing via the dual algorithm
provides an optimum to the primal system without the usual Phase I.

Even in cases where the minimizing form has a few negative coefficients,
it would appear expedient to replace each negative ¢; by ¢/ = 0 and then
optimize. This will provide a basic feasible solution to the original system
(not necessarily optimum) which may then be used with the true values of I
¢; to initiate the usual Phase II of the simplex process.

ExercisE: Discuss how to recover the true values of ¢; in this case.

EXERCISE: Prove that no more than k iterations are required to '
eliminate k artificial variables from a basic set while maintaining feasibility

of the dual.
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11-3. A SELF-DUAL PARAMETRIC ALGORITHM

Suppose that neither the basic solution nor its complementary dual is
feasible. It is a simple matter to increase all the negative b; and ¢; to non-
negative values by adding some constant 6 to all of them.

The modified problem is now optimal. Next we will consider ways to
maintain the feasibility of the primal and dual systems as the constants and
cost coefficients are gradually changed toward their original values. Either
the primal or the dual choice criterion will be employed, depending upon
whether the basic solutions of the dual or the primal become infeasible.

For example, in the canonical system below, the original problem is
obtained by setting 6§ = 0; the associated basic solutions are infeasible for
both the primal and dual.

(1) ; + 2z, 4 2z =10
Zy — z, + lxg = -1+
xy + x4 — 274 =—146

3z, + (—3 + Oy =z

o o o *

On the other hand, if § > 3, the associated solutions are both feasible. If
we start with 6 = 4, say, and then let 6 approach zero, the associated
solutions will remain feasible down to the critical value § = 3. Just below
6 = 3, the primal solution still remains feasible, but the dual solution
becomes infeasible since & = —3 + 6 is negative. Hence, for 6 less than 3
but “very close” to it, we use the primal simplex algorithm, introducing z;
while maintaining the feasibility of both systems. The variable to be dropped
is determined from the minimum of the ratios 5,/d;, for d;, positive. Since

51/515 =35, 52/525 =—-1+4+96

in the neighborhood of # = 3 the second ratio is minimal; thus &, is to
be dropped from the basic set in the next cycle. The new canonical system is

(2) z, — 2z, + 4z, =12 — 26 (1< <3
Zy — Zy+ 2y = —1+0
2z, + 23 — 1x, = —3 4 30

(3 — )z, + 6z, =24 (3—6)6—1)
® (o] * ®

which remains feasible in the- range, 1 << 8 <C'3. Below the critical value
6 = 1, the primal basic solution becomes infeasible. Hence, for 6 less than
1 but very close to it, we use the dual simplex algorithm to drop z; as a basic
variable and maintain the feasibility of both systems. The variable to be
introduced is given by the minimum of the ratios ¢;/ —a,; for @,; negative;
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VARIANTS OF THE SIMPLEX ALGORITHM

in this cage, the only variable with a negative coefficient is z,. Pivoting, we
obtain

@) = -+ 6z, + 4z, =0+ 100 0<0<1)
— Ty — 3 +x5=2—20
— 2z, — x4+ x4 =3 —30
(6 + 3)xy + Oz =z+ (3 —0)6 —1)+ 6(36 —3)
[ J [ ] [ ]

which is feasible for both the primal and dual systems at § = 0. Hence, the
optimal solution is obtained by setting 6 = 0.

In general, it is not necessary to add the same parameter, 6, to all of
the negative constants, b, and ¢;, as was done in (1). Several different
parameters could be added and each allowed separately to tend toward
zero. Either way, the net result is the successive application of either the
primal or dual simplex rules to change the basis.

How can one be certain that such a process will terminate in a finite
number of steps? To answer this, we prove two theorems for the case of a
single parameter, 6. First, we note that the values of a basic variable are
linear functions of 8, so that, clearly, when a variable is nonnegative for
both 6 = 6, and 6 = f,, then it is nonnegative throughout the interval
6, << 8 <C 0,; therefore

THEOREM 1: It is not possible to have the same basis feasible in the primal
and dual for two values of 0, with 0, < 0,, unless it is also feasible for all
values in the range, 0, < 6 < 8,.

Second, note that, if a change to basis B permits at some critical value
6 = 6, a positive (non-zero) decrease in 8, this B is not a repeat of an earlier
basis associated with some 6, > 6, because at the critical value of 6, where
the basis change occurred, B would give an infeasible basic solution just
above 0,. Hence, also,

TueoreM 2: If each change in basis is accompanied by a positive decrease
in 0, there can only be a finite number of iterations.

THEOREM 3: If there is only ome degeneracy in the primal and dual
solutions before and after pivoting at a critical value of 0, there will be a positive
decrease in 0. ‘

The latter theorem is due to Gass and Saaty [1955-1] for the case of
degeneracy in the dual basic solution and to Orchard-Hays [1956-1] for
degeneracy in the primal. If we prove one of them, the other will follow by
duality. Suppose that, corresponding to z, at a critical value of 8 = 6,, we
have ¢, = k(8 — 6,) = &; however, for all other non-basic z;, let ¢; be
expressed linearly in ¢ by & = a; + &f; where, by hypothesis, «; is positive
(not zero) for j # s. Also, assume that, for & = 0, the primal solution is
nondegenerate before and after z, displaces some variable, z; , in the basic
set (actually, we need only require that the basic solution of the primal
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remain feasible for some positive decrease of &). Under these conditions the
new values of the relative cost factors ¢ will be '

) &F = & — (@y/d)e = o; + [B; — Gysfdrs]e

Ej, = —(1 /‘irs)£

Since «; is positive for all non-basic z; except z,, there is a range of
values, g, < £ < 0, with g, < 0, for which ¢* remains positive. In this
range ¢ > 0, and the theorem follows.

THEOREM 4: If a feasible solution to the primal and dual systems exists
for 6 = 6, and 0 = 0, then feasible solutions exist for all 6 in the interval
0< 6< 6,

Exercise: Prove Theorem 4. This theorem also implies that the solu-
tion set generated by all vectors of constant terms, b;, and cost terms, c;,
for which both the primal and dual problems remain feasible simultaneously,
is a convex polyhedron. Prove this too.

11-4. THE PRIMAL-DUAL ALGORITHM

Experiments indicate that the ‘‘primal-dual” technique, developed by
Fulkerson and Ford (Chapter 20) is very efficient for solving distribution
problems. It is closely related to the work of H. Kuhn, who developed a
special routine for solving assignment problems called the “Hungarian
Method,” based on investigations by the Hungarian mathematician
Egervary [1931-1]; see [Kuhn, 1955-1]. Our purpose is to extend this process
to the solution of general linear programming problems. As stated here, it
is a simplex variant whose number of iterations is quite often fewer than
that required by the dual simplex [Dantzig, Ford, and Fulkerson, 1956-1].

Any feasible solution to the dual system may be used to initiate the
proposed method. Associated with the dual solution is a restricted primal
requiring optimization. When the solution of the restricted primal problem
has been accomplished, an improved solution to the dual system can be
obtained. This in turn gives rise to a new restricted primal to be optimized.
After a finite number of improvements, an optimal solution is obtained for
the original, unrestricted problem.

What markedly distinguishes the Ford-Fulkerson algorithm for distri-
bution problems from the more general case discussed here is that the
former method uses a method of optimization of the restricted primal,
which appears to be more efficient than the simplex process, whereas the
generalization uses the simplex process because it appears to be the most
efficient one available. [According to R. Gomory, the former is actually a
spiral sequence of simplex pivot steps.]

As in the preceding sections, the entire process may be considered to be
a way of starting with an infeasible basic solution and using a feasible
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solution to the dual already at hand to decrease the infeasibility form of the
primal in such a manner that, when a feasible basic solution is obtained, it
will already be optimal.

The initial canonical form for the primal-dual algorithm is the same as
for Phase I of the regular simplex method: see § 5-2-(7). Let

(1) a2, + st By Ty + Ty = bl
Ay + - o+ CpnZn + Ty = by
da, +. ..+ dz, =w — w,
Gy + . . .t Gy, =z —2

where b, are made nonnegative before insertion of artificial variables, and

(2) @=—Z%JM%=ZM

30 that the sum of the first m 4 1 equations yields

(3) Zppi F Zuya+ - . F Xy =w
As before, it is assumed that a feasible solution to the dual is available and
that, by applying the associated multipliers and summing, the c; have been
adjusted before augmentation by artificial variables, so that now
(4) ¢; >0
The problem is to find z; > 0, w = 0, and Min z satisfying (1).
Suppose that on ecycle ¢, the tableau has the format of Table 11-4-1

forj=1,2,...

3

TABLE 11-4-1
TABLEAU OF THE PRIMAL-DUAL ALGORITHM
Cycle ¢
Basis
s al
1 Ty art T T+t Lmip Tmepri Loty Constants k4 a
1 [ ‘il.,m,,, ........ dlnoq hl >0 EN ay
1
L Vo pmir - o o Bmry o e o e T v by -0 T ’?m
0 0 o v Aoy L w - iy
* * 0 0 mepsr - -+ Cpag Z 2

Artificial

é; [H]

Restrict;d primal
after relabeling and rearrangement of variables. Artificial variables not in
the basic set are dropped from the system. We remark that

(a) The associated primal solution, including artificial variables, is
feasible; b, > 0.
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(b) The multipliers, o, are simplex multipliers of the basis relative to the
infeasibility form and gencrate d.

(¢) The multipliers, =, are not the simplex multipliers of the basis.

(d) The multipliers 7 constitute a feasible solution to the dual excluding
artificial z; and hence generate ¢; > 0.

(e) The values of ¢ for artificial basic z; may have either sign and
may be omitted ; otherwise & = 0 for z; basic.

THEOREM 1: If @, = 0, then the basic solution is optimal.

When @, = 0, the artificial variables all have zero values in the basic
solution. Upon dropping them, the feasible solution has ¢ equal to zero
for z; positive, which fulfills the condition for optimality.

Step 1: Minimizing Infeasibility of the Restricted Primal. At the start
of cycle t, it is assumed that there are one or more non-basic z; whose ¢; = 0.
These z;, together with the basic variables, constitute the restricted primal
problem. Using only these variables for pivot-choice, the simplex algorithm is
applied to minimize w. Usually artificial variables are dropped from the
system when they become non-basic. During this subroutine, the values of
the multipliers, r,, are not modified. The simplex multipliers, o;, change, of
course, at each iteration until w is “minimized,” that is, until d; is nonnega-
tive for each x; of the restricted primal.

Step 2: (a) If @, = 0, terminate—the hasic solution is feasible and
minimal; (b) if @, > 0 and all d;>0(=12...n) terminate—no
primal feasible solution exists. Otherwise, take Step 3.

Step 3:  Improving the Dual Solution (Finding a New Restricted Primal).
An improved solution of the dual and a new restricted primal is found by
using new multipliers,

(5) ¥ = m; + ko, G=1,2,...m)
which generate nonnegative cost factors,

(6) & =&+ kd;

where k is a positive number defined by

(7 k= ¢,)(—dy) = Min &;/(—d;) > 0
;<0

The new restricted primal is obtained by using all the basic variables
and those non-basic variables whose cost factors, £¥, are zero. This completes
the steps of the algorithm.

It should be noted under Step 3 that at least one new variable appears
in the restricted primal, namely, z,, as determined by (7). Note also that
d, < 0, so that at least one iteration must take place before w is minimized
within the new restricted primal. Assuming nondegeneracy, each iteration
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will decrease infeasibility; hence, no basis can be repeated, and an optimal
solution will be obtained in a finite number of iterations.

It should also be noted under Step 2b, that, if the infeasibility factors,
d;, are all nonnegative, but @, is still positive, then (5) and (6) constitute a
class of feasible solutions to the dual whose objective,

(8) v = 3, + ki,

tends to -+ co with increasing k. At the same time, the nonnegativity of all
the d, and @, > 0 implies that Min w is positive, so that no feasible solutions
to the primal exist.

The Initial Restricted Primal.

At first glance it may appear that (1) is not in proper form to initiate
the algorithm if all ¢; are positive. However, if ¢; > 0forj=1,2,. . , =,
let 7 == 0 and view the basic set of artificials as the full set of variables of
the restricted primal with multipliers ¢ = (1, 1, . . ., 1). The algorithm, in
this case, is initiated with the finding of an improved dual solution by means
of Step 3.

To illustrate the procedure, we consider the problem of finding 2, > 0,

2, 20,. .., 2, >0, Min z, and artificial variables, z; = z, = x4y = w = 0,
satisfying
(9) z, + 4w, — 525 + Tz, — dxs 4+ 24 =8
— 4x, 4 42, — 43, + 425 -+ x, =2
z, — 3zg + 4z, — 2z, 4oy =2
-2, — T, + 4%y, — Tx, + 2z =w — 12
T, + 4z, + 8z, + 8z, + 23z, =z

The w-equation is generated in a manner such that the sum of the first
four equations is

(10) g+ X, + T3 =w

The first step is to determine the largest number, k, such that z + kw has
all its coefficients nonnegative. In this case, ¥ = 1 according to (7), so
that by simply adding the z and w equations, we obtain (11); for convenience;
we have dropped the letter w, since all we are really doing is adding to the
z-equation a linear combination of the original equations without the
artificial variables.

(11) 0z, + 3z, + 122, + 2, + 2525 = z — 12

The first restricted primal is obtained by choosing our variables only among
Zg, ., Ty; and z, (since the first three are already basic and since only z,
has a relative cost factor of zero in (11)); we now proceed to minimize w.
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Cycle O (First Restricted Primal: (zg, 2., 24; 2,))

(12) %) + 4z, — 5xy + Txy — 425 + 24 =38
— 4z, + dx; — 4z, + 4a, + z, =2
zy — 333 + 4z, — 2z, . + xg =2

—%, — Xy + dxy — Tz, + 225 =w —12

(o) [ J L J
Pivoting on 2; and dropping z, from further consideration (since it is
artificial), we obtain the next cycele, (13). The value of w has been minimized
on the restricted primal (zg, z,, 74; z,) since all the corresponding d; are
nonnegative. This terminates our concern with the first restricted primal.

(13) Cycle 1 irst Restricted Primal, (z,, x'7, Zg; x,), is terminated
Y Second Restricted Primal, (z;, ,, %3; Z3), is initiated

Zy + 4z, — dxy - Tz, — 4y =38
— 4, 4 4x, — 42, + 4z, + 2, =2
z, — 31y + 42, — 224 4 25 =2
+ 3z, — =, — 2z, =w — 4
* o} [ J

To determine the new restricted primal, we adjust the z-equation again by
determining the largest value of k such that z + kw, for z and w as given in
(11) and (13), has all its coefficients nonnegative. We find that k = 12 is
such a value, so that the new cost equation (upon omitting artificial variables
asg explained above) is

(14) Oz, + 392, + Ozy + , + 25 = z — 60

Since ¢ = 0 in this equation, the variables of the new restricted primal are
Zy, Ty, g; and z,. Introducing x, and dropping z, from the basic set (and
from the system because it is artificial), we have (15). We have now minimized
w for the restricted primal, (z;, 2,, z4; 2,).

(15) Cycle 2 Second Restricted Primal, (z,, z,, %g; 2,), is terminated
Y Third Restricted Primal, (z,, 3, 24; %4, %), is initiated

Ty — X, + 2z, + x5 = 10}
— Xyt 23— 4475 ¢ =}
— 2z, + Ix, & 25 + 25 = 3%
tom, -z, —w—3
[ ] L 4 * [e]

Once more we are ready to adjust the z-equation, so as to determine a new
restricted primal, this time by determining the largest value of k such that
z -+ kw, for z and w as given in (14) and (15), has nonnegative coefficients.
This value turns out to be k = 1, giving (upon dropping of artificial variables)

(16) Oz, + 41z, + 0x; + Ozy + Oz = z — 63}
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The corresponding restricted primal is (z,, Z3, Zg; %4, %5), since both z, and
z; have zero cost factors. Incidentally, we see that, except for x, all the
original variables have been brought back into the problem.

To minimize w for the new restricted primal, we now introduce z, into
the basic set, obtaining the system

Cycle 3 (Optimal)

17) z, + 3z, — x5 = 3%
— 3z, + 3 + 2z, =4
— 2z, + x4+ xy =33

0z, + 0z, + 0z, + Oz, + Oz; = w — O
® o ®

whose associated solution, (3%, 0, 4, 3}, 0), and w = 0 is feasible for the
original unrestricted problem. Since the coefficients of the z-equation have
been kept nonnegative throughout our procedure, this solution is evidently
minimal.

Note in (15) that if z; had been introduced instead of z,, it would have
taken two iterations to minimize w, since z, would have dropped out instead
of xzg.

The minimum value of z, 63}, is obtained from (16).

11-5. AN ALTERNATIVE CRITERION FOR PHASE I

This criterion, first suggested informally by H. Markowitz, has many
points in common with the primal-dual algorithm [Dantzig, Ford, and
Fulkerson, 1956-1] treated in the last section and with the dual algorithm
[Lemke, 1954-1].

Like the standard simplex, this method uses basic feasible solutions but
changes the criterion for choice of new basic variables in Phase I. The
standard criterion selects z, in such a way that w, which measures primal
infeasibility, decreases at the maximum rate when 2z, is increased. Since this
criterion is not influenced by the objective form, z, the feasible solution
provided by Phase I may be quite different from the one required to minimize
z. To correct this, it is proposed that x; be chosen in such a way that there is a
mazimum decrease (least increase) of the objective form per wnit decrease of

the infeasibility form.
For some iteration, let the canonical tableau be the same as . The
variables x,, Z,, . . ., T, some of which will be artificial, are a.ssumed by

rearrangement and rela.belmg to constitute the basic set. The standard
criterion for Phase I chooses s in such a way that

(1) d, = Mind, <0
Instead, the present proposal is to choose j = s such that
(2) &/(—d,) = Min ;/(—d;) (d, < 0)
d;<0
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with no other change in the algorithm. In the event that several j minimize
this ratio, the choice is made among those tied by the standard criterion, (1).
For Phase IT, s is chosen in the usual manner (i.e., such that ¢, = Min ¢; < 0).
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11-6. PROBLEMS

. Review the following results from § 6-3:

(a) Show that if a linear programming problem has a finite lower bound
for some given set of constant terms, then it has a finite lower bound
for any set of constant terms, providing a feasible solution exists.

(b) Suppose that a linear programming problem is augmented with
artificial variables whose sum is bounded by a constant (not neces-
sarily zero). If z is minimized, allowing the artificial variables to enter
the basic set with nonnegative value, prove that the minimum is
finite or infinite, depending on whether Min z of the original problem
is finite or infinite.

. Show that no basis can re-occur in the parametric linear programming

procedure. What assumption is made about degeneracy ?

Develop lexicographie (perturbation) schemes for the dual simplex; for
the self-dual parametric algorithm. What is a lexicographic scheme for
the primal-dual algorithm and the Phase I alternative of Markowitz ?

. Re-solve the blending problem illustrated in §5-2 (see Table 5-2-V),

applying the different variants discussed in this chapter.

. Show that, if no artificial variables remain in the basic set using the

primal-dual algorithm, the solution is optimal.
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CHAPTER 12

THE PRICE CONCEPT IN LINEAR
PROGRAMMING

In previous chapters we have frequently referred to the simplex multi-
pliers as “prices.” In this chapter, we shall discuss economic examples, which
not only show how this viewpoint of the multipliers arises naturally, but also
how it permits an economic interpretation of the simplex method itself.
As we have seen, these multipliers are themselves the solution to a second
linear programming problem which is called the dual of the first. The first
example shows how a price can arise in a situation where there are no
prices to begin with; the second and third examples, in § 12-2, show how the
dual system of competitive prices for new items arises “naturally” in a
situation where prices for old products and methods already exist. A fuller
treatment of the relation of linear programming to economic theory can be
found in several excellent books; see references at the end of this chapter.

12-1. THE PRICE MECHANISM OF THE SIMPLEX METHOD

The Manager of the Machine Tool Plant.!

Consider the problem .of a manager of a machine tool plant, say, in an
economy which has just been socialized. The central planners have allocated
to this manager input quantities +b;, . . ., +b; of materials which we
designate by 1, . . ., k¥ and have instructed this manager to produce output

quantities —b,,,, . . ., —b,, of the machine tools numbered & + 1 through .

m (the by, - . ., by, being outputs, are negative numbers by our conven-
tions). The planners further direct the manager that he shall use as little
labor as possible to meet his required production goals and that he must
pay the workers with labor certificates, one certificate for each hour of
labor. The central planners have declared old prices of items to be of no
use and have not provided any new prices to the manager to guide him.
The manager has at his disposal many production activities, say, n of
them, each of which he can describe by a column vector, (ay;, . - - Gms)- If
the jth process inputs a,; units of the ith item per unit level of operation, a;; is
positive. If, on the other hand, the jtt process outputs a,; units of item i
per unit level of operation, a,; is negative. The jt* process also requires c;

1 This subsection was contributed by C. Almon, Jr.
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12-1. THE PRICE MECHANISM OF THE SIMPLEX METHOD

units of labor per.unit level of Opcr.a.tion. The manager’s problem then is to

find levels of operation for all the processes, z;, . . ., Z,, which satisfy
(1) an Ty + Ty + .t AT =0y
o1 Ty + Ao + . . .+ By 2, = by

A%y + ApoZo + - - . + O = by
and minimize the total amount of labor used,
1Ty + oy + . . . + Cx, = 2z (Min)

The z’s must, of course, be nonnegative. In matrix notation 4z = b, cx = z.

The manager knows of m old reliable processes, namely 1, . . ., m, with
which he is sure he can produce the required outputs with the given inputs
though the labor requirements may be considerable. Thus, he knows he can

find nonnegative «,, . . ., ,,, such that
(2) (% + Aoy + o o o+ Qi Ty = by
Qg1 Ty + g Ty + - - - F Ggm T = by
1%y T+ Amg%p + .+ - - T AT, = O
or, in matrix notation, Bxr = b. We shall assume that B is a feasible basis
for (1).

This manager has learned, however, that his workers are prone to be
extravagant with materials, using far more inputs than are called for in (1).

. Unless he can keep this tendency in check, he knows he will fail to meet his

quotas. Formerly, he deducted the cost of the extra materials from the
workers’ wages; but now that all prices have been swept away, he lacks a
common denominator for materials and wages. Suddenly, in a moment of
genius, it occurs to him that he can make up his own prices in terms of labor
certificates, charge the operators of each process for the materials they use,
credit them for their products, and give them the difference as their pay.
Being a fair man, he wants to set prices such that the efficient workers can
take home a certificate for each hour worked. That is, he wants to set
product and raw material prices =y, . . ., 7, such that the net yield on a
unit level of each basic activity j is equal to the amount of labor ¢; which it
requires:

(3) man + Tl + - - Tl =6
T + Talley + . . . + Tplpmy = Cq
T + Tolgm + -+« + Tplym = Cp

or, using matrix notation,
nB=c¢
where 7 and ¢ are row vectors.
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THE PRICE CONCEPT IN LINEAR PROGRAMMING
The manager now proceeds to solve (2) for z by finding B! and setting
z=DB"b=05)

Turning to (3), he notes that the solution is almost at hand, for

7 = cB!

Common sense tells the manager that by using his pricing device he would
have to pay out exactly as many labor certificates as he would if he paid
the labor by the hour and all labor worked efficiently. Indeed, this is easily
proved since the total cost using his calculated prices for all activities is
mb = ¢B-1 = cx, where cz is the cost of paying wages directly.

_The manager harbors one qualm about his pricing device, however. He
remembers that there are other processes besides the m he is planning to
use and suspects that among the remainder there may be some for which
his pricing device would require him to pay '

(4) c; == Ty0y; + Tolloj + PR + TmAmi

which is greater than the direct wages c;. If such a process comes to the
attention of the workers, they will see that by using it they can, if they
work efficiently, get more than one labor certificate for one hour’s work.
The wily men will then try to substitute these processes in such a way as
not to affect the material inputs, yet achieve the same outputs. If they can
do so, they will pocket excess wages, and before long, the secret will be out
that he is paying for labor not performed. On looking over the list of processes
in (1), the manager finds several for which the inequality c;- > ¢; holds.
Denoting the excess wages of the jth process by &,

C; == 65 — (Mg 4 mallg; + . . - T Ton@mj)
the manager singles out process s, the one offering the most excess wages:
5) &, =Minég <0

Before devising repressive measures to keep the workers from using
processes that yield excess wages, the manager, & meditative sort of fellow,
pauses to reflect on the meaning of these excess wages. Having always had
a bent for mathematics, he soon discovers a relation which, mathematically,
we express by saying that the vector of coefficients a;, for any activity j in
the canonical form, can be used as weights to form a linear combination of
the original vectors of the basic activities, which has the same input and
output coefficients as that of activity j for all items, except possibly the
cost item. In particular, he finds that he can represent activity s, the one
yielding the most excess wages, as a linear combination of his “‘old reliables”
as follows:
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1 Q12 Aym Ays

Q91 Aao .| %em Qas
(6) a,, + Qg + . . . Aps =

a'ml amz Lmm Qs

where d;, are the coefficients of z, in the canonical form. In words, (6) tells
him that z, units of activity s can be simulated by a combination of
Gy %g, GgsTsr - - -» Gms¥s Units of the basic set of activities (1, 2, . . ., m).
Thus, if the workers introduce z, units of activity s, the levels of the basic
activities must be adjusted by these amounts (up or down, depending on
sign) if the material constraints and output quotas are to remain satisfied.
Now the labor cost of simulating one unit of activity s by the m old reliables
is
cldls + czdzs + M + cm‘i‘m.«

This amount is precisely what the manager would pay for the various inputs
and outputs of one unit of the real activity s if he were to use the prices k.
For, considering the vector equation (6) as m equations and multiplying the
first equation through by ,, the second by m,, etc., and summing, one
obtains immediately from (3)

(7) Cylys + Collps + « -« - F Copllyys == Ty + Tallgs + - - - + Tl

It is now readily shown that the fact that the I')roccss s yields excess wages
means to the manager that it takes less labor to operate s directly than to
simulate it with the m old activities. This is clear from (4), (5), and (7),
which yield

(8) €+ . o F Gl Cplme > G

Hence, he reasons, s must be in a sense more efficient than at least one of
these old processes. Recalling that the planners instructed him to use as
little labor as possible, the manager decides to use activity s in place of one
of the original m. He soon discovers that if he wishes to avoid the non-
sensical situation of planning to usc some activity at a negative level, the
process r to be replaced by process s must be chosen, as we have seen in
§ 5-1-(18), so that

B,/a',s = Mln Ei/dis (a-isy Ayg > O)
Because a,, > 0, it follows from (8) that
(9) {(Cldls + c ot + cr—ldr—l,s +. c'r-’-l,s‘ird—l,.«; + R
+ c'mdms - cs)/(_ -'r.s)} <&

The coefficients of ¢;, g, « - +, €4 - - -, Cp in (9) are precisely the weights
required to simulate activity r out of the activities in the new basis, as can
be seen by re-solving (6) for column r in terms of the others. But, e.g,
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€16,/ —@,, is the labor cost of the first activity in the simulation of activity r,
so that the left-hand side of (9) represents the total labor cost of simulating
a unit level of activity r by the activities in the new basis, while ¢, is of
course the labor cost of one unit of the real activity r. Hence (9) shows that
activity r is indeed less efficient in its use of labor than those in the new
basis.

In summary, the manager now knows that, if there exist processes for
which his pricing device yields more labor certificates than are actually
required, then he ean substitute one of these processes for one in the original
set and thereby bring about a more cfficient use of labor. Since the planners
instructed him to use as little labor as possible, it is clearly wise for him to
plan production using activity s instead of one of the m he had originally
intended to use, to readjust the levels of use of the remaining ones, and to
change the prices, so that none of the processes that will then be in use gives
excess wages.

Having learned this lesson, the manager proceeds again to look for
processes offering excess wages, to put into operation the worst offender, to
readjust prices, to look for excess wages, and so on until he finds a set of
prices #° under which no process offers excess wages. Fortunately for him,
it turns out (as we know) that in a finite number of steps he will find such
a set of prices.

Let us pause for a moment to consider the meaning of one of these
prices, say ;. Suppose we introduce into the manager’s (4) matrix equation
(1), a fictitious activity which consists simply of increasing his allotment of
item ¢ if b, > 0 or of decreasing his quota on ¢ if b, < 0. Such an activity
will be represented by a column which has all zeros except for a one in the
itb row. Thus the labor cost of simulating this activity with those of the
final basis is, by (4), precisely =,. Thus, =, is the labor value, the labor which
can be replaced by one additional unit of item 1.

The manager has now achieved his objective of finding a set of prices
to charge for raw materials and to pay for finished goods which will keep
his workers from wasting inputs and yet offer no possibilities for excess
wages. But he now begins to wonder if he is truly safe from the planners’
criticism for the amount of labor he uses. He begins by specifying explicitly
what he intends to do. His operating plan consists of a set of activity levels
2° = (27, 23, . . ., z3) satisfying

(10) Az =b (23> 0)

cx’ = 2°
a set of prices‘*n-" = (n%, 7% . . ., #%), and, for each activity, an excess
labor cost
m
(11) =0 — > agn 20
i=1
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with the property that,

m
(12) if g=c— >, >0, thnaf=0

i=1
We shall now prove that the manager’s operating plan has minimized his
labor costs. Writing &° = (¢ — n°4) = (¢}, &, - . ., &), we have from (10)
that
(13) £ox° = (¢® — m°A)x® = 2z — 7%

where by (10), 2° is the total labor requirement of the manager’s operating
plan. But because of (12), é&x° = 0, and therefore

(14) 20 == Wob
Now let = = (2, 25, . - ., Z,) be any other feasible operating plan, and
let z be its labor requirements; then
(15) Ax = b (z; = 0)
=z

It follows by multiplying Az = b by »* and subtracting from cx = z and
noting (14):

(16) T e—mAxr =z —7b =2 —2°
or Z gy =2—2°
j .

But the left member is the sum of nonnegative terms and therefore
z =» z*. Hence, no other feasible operating plan exists whose labor require-
ment is less than the one found by the manager.

At this point, we can imagine the manager's delight at his genius. for as
a by-product of his search for prices that will cause his workers to work efficiently,
he has also discovered those processes which minimize his labor requirements.
Without explicitly trying, he has solved his assigned task of keeping his use
of labor to a minimum !

The Dual Problem.

Let us review the requirements satisfied by the prices found by the
manager. First, there will be no excess wages in any activity; that is

(17) ) md < ¢

Second, the total amount of wages to be paid for all activities should be the
same whether they are paid directly or by use of the pricing device; that is

(18) 2° == cx® = 7rb

where z° is an optimal solution to (1).
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Let us now show that these prices, m, themselves represent the optimal

solution to another linear programming problem —specifically, to the dual
problem of our munnger’s oryginud production problem. By multiplying the
J equation of (17) by &5 and summing, we lind that

n n n
(19) m Z a2t - my z I B B Z 0 << z ;a0

PR j o j1 ol

Substituting from (1)
(20)' b; = Zaﬁx‘; (i=1,2,...m
j=1

gives
mby 4 Tobs 4+ . o o+ Wb << €125 Ct5 4 . . .+ CaTpy

Thus, #b < cz® for any = that satisfies (17). The prices, =°, found by the
manager give n%b = cz° and thus 7° maximizes 7, subject to the constraints
(17). Hence, m = 7° may be viewed as an optimal solution to the dual linear
programming problem, namely,

(21) md ¢
nb = v (Max)

The relation 7°%b = cz°, where »° is an optimal solution to (21), and z°,
an optimal solution to (1), agrees with the duality theorem established in
§ 6-3, Theorem 1. The reader should interpret for himself the economic
meaning of maximizing #b in the case of the tool plant manager.

Let us now consider two other examples showing how the dual problem
arises in other ways and how it may be interpreted. )

12-2. EXAMPLES OF DUAL PROBLEMS

The Scheme of the Ambitious Industrialist.

In this section we shall formulate a problem whereby the dual problem
arises “naturally.” Consider a defense plant which has just been built by
the government. The plant has been designed to produce certain definite
amounts, —b, i =k + 1, . . ., m, of certain defense items and to use only
certain definite amounts, +b;, i = 1, 2, . . ., k, of certain scarce materials
which will be provided without cost by other government plants. The consult-
ing engineers who designed the plant provided the government with a list of
the various processes available in the plant and their input and output
coefficients. Somewhat confused by this mass of data, the civil servants who
were supposed to operate the plant decide to call in a private industrialist
to consult on how they should plan their production. The industrialist
realizes that it would be good training for his men and a feather in his cap
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actually to operate the plant. Accordingly, once he gets the information
and studies the data, he proposes a flat fee for which he will manage the
plant, turn over to the government the required amounts of output. and use
no more than the alloted quantities of the scarce materials. The civil service
men declare that. all other things being equal, they think it would be best
for the government to operate the plant, but if he can convince them that
his proposal is a good one (meaning that if the government operates the plant,
it is unlikely it could do so less expensively), they will accept his offer.

The industrialist takes the data back to his office, gets out his linear
programming book, and uses the data on input-output coefficients to form
a matrix, 4, similar to that of the manager of the machine tool plant, but
with this difference: he includes the cost of purchased materials needed per
unit of process j in the process cost, ¢;.

To determine the minimum fee for which he can afford to operate the
defense plant, the industrialist has only to solve the following linear program:
find z > 0, such that ’

(1) Ax = b
cx = z (Min)

He calls in his computer man, gives him the problem, and the next nmorning
the results are on his desk: z° is the minimum cost and 2° is the vector of
optimal process utilization levels. His first thought is to explain the linear
programming technique to his civil service friends, show them the final
tableau, and thereby convince them that they can do no better than to
accept his offer and pay him z°. But then he realizes that this plan will give
away his secret; the civil servants will have no further need for him; they
will take his z° vector and operate the plant themselves. Hence, he must
convinee them that 2 is minimal without giving away his plan 2°.

To this end, he decides to invent a system of prices which he will offer
to pay for the materials, provided he is paid certain prices for outputs. He
wants these prices to be such that there are no profits on any individual
activity, for if there were profits, the government would spot them anhd
would want to run this particular activity itself. On the other hand, given
these restraints, he wants to make as much money as possible. That is, he
wants his price vector =, a row, to satisfy

(2) A <c¢
and

b = v (Max)

Again he calls the computer man, who recognizes this problem as the dual
of the one he solved the night before and immediately produces the solution:
optimal 7 = n°, the simplex multipliers from the last stage of the previous
problem, and maximal v = +°. Fortunately, they note with relief, v* = 2°.
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With these results under his arm, the industrialist goes back to see the
civil servants and presents his offer in price terms. The bureaucrats check
to be sure that every one of the inequalities (2) is satisfied, and, of course,
calculate the total cost using these prices: n°b = 1°. The industrialist then
invites them to consider any program, z, satisfying (1). Its cost to them, if
they operate the plant themselves, is cz. But, replacing = by #° in (2) and
multiplying both sides by any feasible x yields

3) mAzx < cx
or, by (1),

4) ‘ b < cx
Hence,

(5) vl cx

s0 that the cost of the progﬁ).m will be at least »*. This argument convinces
the civil servants that they can do no better than to accept the industrialist’s
flat fee offer of v, With one last hope of operating the plant themselves, they
try to pry out of him just how much of each process he intends to operate;
but he feigns ignorance of such details and is soon happily on his way with
his contract signed.

The Nutrition Pill Manufacturer.?

A housewife can buy foods in the grocery which vary in cost and nu-
tritional elements. For simplicity, let us assume five foods and only two
nutritional elements, calories and vitamins. The housewife’s problem is to
determine a minimum cost diet that has at least 21 X 100 calories and
12 x 100 vitamin units per person per day. The data for the simple linear
programming model for this problem are given in Table 12-2-I.

TABLE 12-2-I
PriMAL P PROBLEM
Activities
Items Buying Food Having Excess Constants
Cal. Vit.
z, Ty T3 £ Ty Zg z,
Calories -1 -1 -1 —2 1 —21 x (100)
Vitamins —1 -2 ~- 1 —1 1 —12 x (100)
Cost 20 20 31 1l 12 z (Min)

* This example is a variant of one given in the book, Linear Programming and
Economic Analysis, by Dorfman, Samuelson, and Solow [1958-1]. Our discussion can be
regarded as a supplement to theirs.
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12-2. EXAMPLES OF DUAL PROBLEMS

A nutrition pill manufacturer wishes to supply the entire dietary require-
ments by marketing in the drug stores a pure calorie pill and a pure vitamin
pill at prices that will not only compete with similar *“foods” 1 and 2 offered
in the grocery store but will be a cheaper source of nutritional needs than
any food on the market. What prices shonld he charge in order to maximize
his revenues?

Let 7, be the price he charges per calorie pill and 7, be the price per
vitamin pill (cach pill = 100 units). Then the dual problem takes the form
shown in (6a). By substituting for ,,

= —Y;

it takes on the form (6b) which is more convenient for plotting; see Fig.
12.2.1.

Dual Pill Problem

(6a)  —m < 20 6b)  w < 20
- m=<20 Yy << 20
—m — 2my < 31 Yy, + 2y, << 31
—m = my<< 11 nt+ <1l
—2m — w12 2, + <12

L8 <0 41 =0

: Ty <0 Y2 =0

—21m, — 127, = v (Max) 21y, + 12y, = v (Max)

In (6b) the sum of the terms to the left of the inequality (such as y, + 2y,
in the third constraint) represents the cost to the housewife if she simulates
the type of food in question by purchasing nutrition pills with equal amounts
of nutritional elements; the quantity to the right represents the cost to her
if, instead, she buys the food. In each case it is required that it cost no more
to buy the simulated food.

The inequalities (6b) are plotted in Fig. 12-2-1, and it is evident that the
optimum choice of prices is to charge 1 cost unit for the calorie pill and 10
cost units for the vitamin pill.

(7) Optimum Prices: n¥ = —1,#f = —10

Maximum Revenue: v* = m¥b; + w¥b, = —(—21) — 10(—12) = 141

It should be noted that there is a built-in assumption that the drug
manufacturer will supply all dietary needs. Granted this, it is clear that his
prices must be competitive with the price of each food, for otherwise the
housewife would buy part of the diet in the grocery store and part in the
drug store. Another point worth noting is that foods 4 and 5 are still
competitive with the pills; that is to say, no more costly than the pills, as
can be seen by substituting these values of #* in (6a). Thus, pill prices must
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be set slightly below the optimum in order to overcome any residual bias
toward pills and thereby guarantee the market. In the nutrition case, it is
obvious from Fig. 12-2-I (and true in general when all a;; << 0) that a slight

Y2
20
- r2:20 '
~N
.\ pd-
hN\ gy
=\ Q
3 N o
< Optimum
g '° (1,10)
°
3
3 N
L]
o
2 5
a
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-
© ) * r2:0 " ¥
!
v}‘\\)\ 10N\ 20 30 o~
’,,/\ Price of calorie piil: (m = -y)
AN
L
2\

Figure 12-2-1. The dual pill problem.

decrease in all y; (or increase in ;) from the optimum is sufficient to
guarantee the entire market, if the decisions of all housewives are determined
strictly by minimum cost. Let us hope that this is not the case.

12-3. THE SIGN CONVENTION ON PRICES

DerrviTion: The price of an item is its exchange ratio relative to some
standard item. If the item measured by the objective function is taken as
a standard, then the price ; of item 1 is the change it induces in the objective
z per change of b;, for small changes of b,. Asset items will have negative
values for prices because an increase in their quantity shoéuld bring about
a decrease in the objective function, since we are minimizing.

The optimal dual “prices” m; satisfy the relation

Zo=mby + by + . . . A by

where Min z = Z,. This same relation yields the value of z in any basic
solution if 7r; are the corresponding simplex multipliers. If the basic solution
is nondegenerate, then, for small changes in any b;, the basis and hence the
simplex multipliers will remain constant. Thus the change in value of z per
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change of 6, for small changes in b, is clearly 7,5 hence by the above
definition, 7; can be interpreted s the price.

Let us introduce into the program a fictitious *‘procurement’ activity—
“increasing the allotment of item ¢ whose coefficients are zero except for
minus unity in row i and p; in the cost row. Query: How low must the cost
p; be hefore it pays to increase the allotment of £ 7 Pricing out this activity,
we see it pays if

py Vo -l Qorp e

Hence, —m, is the break-even cost of the item ¢ procurement activity.
Now, according to our interpretation of the price scheme developed in
§12-1 and §12-2, for each unit of activity j, the input, a; > 0. would
induce a payment to the manager of ma,;. If the item is an asset, 7; << 0
and ma;; < 0. In other words, the flow of money is out (negative). Similarly,
if a;; < 0, then the flow of money is toward the activity =.a;; > 0.
The total flow of money into the activity by the price device is given

by pricing it out, i.e.,
z Tlis
7

If this value exceeds c;, the amount that would be received by the alternative
of direct payment, then this activity (or some other with the same property)
will, as we have seen for the example of §12-1, be used in lieu of a basic
activity now in use. This in turn will generate a new set of prices, ete.

12-4. SENSITIVITY ANALYSIS ILLUSTRATED?

The term sensitivily analysis refers to an analysis of the effect on the
optimal solution to a linear programming problem of changes in the input-
output coefficients, cost coefficients, and constant terms. We shall discuss
these effects in terms of an illustration. The reader will find no difficulty in
extending the results to the general case.

Consider the product mix problem as stated in § 3-5-(6):

(1) 4z, + 9z, + Tz, + 10z, + z; = 6000 Carpentry Shop
z, + x,+ 3z, 4 40z, + x4 = 4000 Finishing Dept.
—12z; — 20z, — 18z, — 40x; = 2’ (Min)

For computational ease, let us scale the problem so that the production
activities are stated in units of 1,000’s of desks, the capacities in units of
1,000°s of hours, and cost in units of $1,000. Letting z; = 1,000z;, 2’ = 1,000z,
system (1) in simplex tableau form, becomes (2).

3 This section was contributed by W. O. Blattner.
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Basi Admissible Variables (Including Slacks)
(2) v a's;:i Constants
ariables z, z, 4 z, 5 4 -z
x5 4 9 7 10 1 0 0 6
g 1 1 3 40 0 1 0 4
—z —-12 -20 -—18 —40 0 0 1 0
[ J ® [ J

Since this is already in canonical form, addition of artificial variables is
unnecessary, and we can proceed directly with Phase II of the simplex
method. After several cycles we arrive at the optimum solution (3).

Basi Admissible Variables (Including Slacks)
(3) asic Constants
Variables

z, z, Z, %, x4 £ —z

z 1 73 53 0 415 —1/15 0 4/3

e 0 —1/30 1/30 1 —1/150 2/75 0 1/15

—z 0 20/3 10/3 0 44/15 4/15 1 56/3
® ® [ ]

From the information contained in this tableau (3) we see that the
optimum product mix for the problem as stated is at the rate of 1,333}
desks of type 1 and 66% desks of type 4 per time period for a total profit
rate of 2’ = $18,667 per period.

In addition to giving us the point of most profitable operation, it is
possible to obtain from the optimum tableau a wealth of information con-
cerning a wide range of operations in the neighborhood of this optimum by
making a sensitivity analysis. In many applications, the information thus
obtained is as valuable as the specification of the optimum solution itself.

Sensitivity analysis is important for several reasons: '

(a) Stability of the optimum solution under changes of parameters may
be critical. For example, using the old optimum solution point, a
slight variation of a parameter in one direction may result in a large
unfavorable difference in the objective function relative to the new
minimum, while a large variation in the parameter in another
direction may result in only a small difference. In an industrial situa-
tion where there are certain inherent variabilities in processes and
materials not taken account of in the model, it may be desirable to
move away from the optimum solution in order to achieve a solution
less likely to require essential modification.

(b) Values of the input-output coefficients, objective function coefficients,
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and/or constraint constants mafy be to some extent controllable, and
in this case we want to know the effects which would result from
changing these values. ‘

(¢} Even though the input-output and objective function coefficients and
constraint constants are not controllable, the estimates for their
values may be only approximate, making it important to know for
what ranges of these values the solution is still optimum. If it turns
out that the optimum solution is extremely sensitive to their values,
it may become necessary to obtain better estimates.

Optimality Range for Cost Coefficients: Non~-Basic Activities.

Problem 1: - A new desk called Type 7 has been designed which will
require 6 man hours of Carpentry Shop time and 2 man hours of Finishing
Department labor per desk. Based on an estimated profit of §18 per desk,
would it pay to produce this desk ?

Note that the negatives of the values of the simplex multipliers, 4%, +%, 1,
for the last iteration can be obtained from the bottom row vector of the
inverse of the final basis, and it is obvious that these are simply the up-
dated relative cost factors corresponding to the initial basic variables z;, z,,
(—=z). This yields, after pricing out, & = $%(6) + %(2) — 18 = +%. Since
é; > 0, it does not pay to produce this desk.

Problem 2: How much would the profit for desk Type 7 have to change
before it becomes worthwhile to produce ?

In order for a non-basic activity to be a candidate to enter the basis, its
relative cost factor must bé << 0. If any non.basic activity has a relative
cost factor exactly equal to zero it can be brought into the basis without
changing the value of the objective function. Therefore, if the cost coefficient
¢; for any non-basic activity is decreased by the value of its relative cost
factor ¢; in the optimum solution, it becomes a candidate to enter the basis.
In this case, desk Type 7 becomes a candidate for production if its profit per
unit can be increased by &, = +%.

Exercise: How much must the profit on desk Type 2 be increased to
bring it into an optimum solution? How much would you have to raise the
selling price on desk Type 3 in order to make its production profitable,
assuming that all desks of Type 3 produced can be sold at the new price?
How would you modify the model if the amount that can be sold is a function
of selling price ? See Chapter 18; see also Chapter 24.

Effect of Changing Input-Output Coefficients: Non-Basic Activities.

Problem 3: How much would the Carpentry Shop labor requirement
for desk Type 7 have to change for it to become profitable to produce?

For non-basic activities the effect of changing the input-output coefficients
or a;; in the initial tableau can be easily caiculated using the negative of the
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simplex multipliers. Replacing the original value of aj, = 6 by the parameter
a, ; in the ¢; calculation, we have '
@yq
(4) L=t &% 11 2 | =4#a,, — ¥
—18

In order for activity j = 7 to become a candidate to enter the solution,
Z, must be << 0 or a,; << H&.

Exercise: To what value would the Carpentry Shop hours for desk
Type 2 have to be reduced to make it competitive ?

Problem 4: Suppose that we are not really sure of either the labor
reqﬁirements or profit for desk Type 2. Give a formula for these parameters
that may be used to determine if it is profitable to produce desk Type 2.

For activity j = 2 to become a candidate to enter the solution:

12
=013t &% 1] |an|= $4a,, + 500 + <0
Co
If, for example, it turns out that a;, = 8, agp = 2, ¢y = —25, substitu-
tion in the above formula gives &, = —1 so that it pays to produce desk

Type 2.

The Substitution Effect of Non-Basic Activities on Basic Activities.

Problem 5: How many units of the entering activity j = s can be
brought into the solution and what will be the effect upon the quantities of
the other basic activities? Here again the answer is given by the simplex
method:

(5) Max z, = Min <i)
d;,>0 \Gig

Let us review the information directly available from the optimum
tableau (3). The rows express the basic variables in terms of the non-basic
variables, while the columns express the non-basic activities in terms of the
basic activities. The column vector of matrix coefficients, &;;, under each
variable z; can be interpreted as “substitution” factors. For example, for
each unit of activity j = 2 we bring into the solution we must remove %
units of basic activity j = 1 and add % unit of basic activity j = 4 for a
resulting net increase of %2 units in the objective function. From (5), when
(Max z,) units of activity j = 2 are brought into the solution, then the
corresponding itk basic activity drops out.

Observe that the relative cost factor &; for each variable can be calculated
from the “‘substitution” factors, @;;, and the original cost coefficients ¢;;
namely

(6) &=10— D i,
i
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where j; is the index of the ith basic activity. This is an alternative way to
do the “pricing out” calculations. For each unit of j = 2 added, the following
changes in the basic variables result:

. Quantity  Cost per Cost
(7 Variable Change Unit = Change
T (-9 - (—12) = +28
Zy: (+4%) - (—40) = —%
Z,: (+1) - (=20) = —-20
Relative cost factor: &, = <+ %2 per unit of

z, introduced

Exercise: If the profit on desk Type 2 is increased by exactly ¢, = ¢
per desk, show that up to 5713 desks of Type 2 can be produced per period
without reducing total profit. What is the resulting product mix?

Effect of Changing Constraint Constants.

Problem 6: What is the effect of increasing Finishing Department
capacity ?

An increase in the value of a constraint constant can be considered
equivalent to introducing a fictitious procurement activity with coefficients
equal to but opposite in sign to the corresponding slack variable in the
original formulation (2). It follows that the effect of increasing Finishing
Department capacity is to increase net profit by $:% per hour of increase,
up to 20,000 hours increase in the period, because the value of &5 = % for
the corresponding slack variable.

Exercise: If Finishing Department capacity is increased by 20,000
hours per time period, what is the resulting product mix? Which basic
activity has dropped out of the solution ? '

Exercise: Necessary equipment to increase the capacity of the
Carpentry Shop by 10 per cent can be rented for $5,000. Also, overtime
hours up to 20 per cent of the rated capacity of either shop can be obtained
at a premium of $1.50 per hour. Above this figure the premium is estimated
to be about $3.00 per hour because of loss of productive efficiency. What
would you do?

ExEercise: Show that if a slack variable is in the basic set with value
£; in the optimum solution, then the corresponding constraint constant b,
in the initial tableau can take on any value b, > 6% — £; where b2 was its
original value, with no change in the values of the objective function or the
other basic variables in the optimum solution. In this range, is b, actually
constraining the solution ?
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Optimality Range for Cost Coefficients: Basic Activities.

Problem 7: For what range of costs of the basic activities does the
present optimum solution still remain optimum?

In particular, consider basic activity j = 1. The present solution will
remain optimal until cost coefficiert c, is increased or decreased sufficiently
so that the relative cost factor on one of the non-basic activities goes to
zero, at which point that non-basic activity becomes & candidate to enter
the solution.

Referring to (6) we have

(8) & = —20 — [+3(¢)) — os(—40)] = —F¢; — %

We see that the value of the cost coefficient ¢; of —(64/3)/(7/3)
is required to make the relative cost factor &, = 0. We must, however, also
investigate the effect of a ¢, change on all other non-basic activities; we find
in general that the change in ¢, necessary to make the value of &, =0 is
given by

0 C-; 0
(9) ¢ — ¢ =—>~ (2 = —12)
Gy;
Hence,
- e T
&, = 0 if ¢, is increased by — = %*
T
. e s 3
& = 0 if ¢; is increased by — =2
3
. e 1
¢ = 0 if ¢, is increased by 3-5_ = 11
1
&g =0 if ¢, is increased by ‘1*: = —4
15

Thus the présent solution (3) is still optimal, for —12 —4 < ¢, < —12 + 2

where ¢ = —12 was the original value of ¢,. The computational rule can
be summarized:
] . .
(10) Max ¢; = ¢ + Min (_—’) j non-basic
" a5 0 \@y
Min ¢; = ¢ + Max (—f—j-) j non-basic
) P ay<o \Qij :

Exercise: For what range of profit for desk Type 4 is the present
solution (3) still optimal ? Determine what activity enters the solution if ¢,
is decreased to —20, increased to —32. What activity leaves the solution
in each case?

Exercise: Construct an example by changing b, in the original problem
(2) to show that if ¢, is increased to —42, desk Type 1 is not necessarily the
activity that leaves the solution.
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ExErcisE: Prove that if the cost of a basic activity is reduced, it will
not be dropped from the optimum solution.

Exercise: The reason for the Irish Rebellion. The average Irishman
has 27 pence per day to spend on food and requires a diet of 2,000 calories
to live. Irish potatoes cost 3 pence per 1,000 calories and meat costs 24
pence per 1,000 calories. Since he detests potatoes, he eats 1,000 calories of
meat and 1,000 calories of potatoes per day. Show that if the price of
potatoes goes up to 10 pence per 1,000 calories (which will, of course, be
blamed on the English), the average Irishman must increase his daily potato
consumption by 50 per cent.

Effect of Changing Input-OQutput Coefficients: Basic Activities.

Problem 8: What happens if the Carpentry Shop requirements for desk
Type 1 change? Changing an input-output coefficient for a basic activity
results in changes to the negatives of the simplex multipliers and other
elements of the updated inverse of the initial basis. To evaluate the effect
of varying a,, we must find:

a, 10 0]
(11) (B = [ 1 40 0
—12 —40 1
already knowing that

4 10 0] %~ 0
(12) (BI"t = { 1 40 O:I = ,:—'1‘?1,‘6 A 0:,
—12 —40 1

We can write [ B] as [4] - [B], where the matrix

40, —1 4 —ay,

0

15 15
(13) (4] =(B]-[B]' = ) 1 0
0 0 1

Since [4] is an elementary matrix (see § 8-5) we can eagily find its inverse.
Let the reciprocal of the diagonal element in the first row be y, thus

15 15+ y
14 = — =
(14) y yr— and ay, yoe
We shall show that [4]-! and hence [B]-! are linear in Y.
1 /1 1 1-—
s (-5 o 7o
156 A = -1 —
as =0 " 7 and (4 L o
0 0 1 0 0 1
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Then

(16)

where by (14) ° = 1 corresponds to aj;, = 4. Note that in order for [B] to
be a basis, [ B]~! must exist. This means that [4]~! must exist which requires
1/y #0, y # 0. We shall show later that for feasibility y = 0. Together
these two restrictions require ¥ > 0. The question now becomes one of
finding for what range of y the present basic activities are still optimal.
We first determine what values of y will insure & > O for each of the non-

THE PRICE CONCEP?T IN LINEAR PROGRAMMING

basic activities.

15

15

15 — 11y

15 —

11y

15 — 11y

44y

17) & = | —
17) & [15
. [44)’
¥ L15

44
c-5=[—”

15

44

fe |2

15

In order to maintain feasibility we must also determine what range of

15

[B)* = [[A)YBI = [B] - [4] =

6
1] 1
L—20 ]

o
15

4
150
44y
| 15

_ Ty

55y

v
15
y+15
600
15 — 11y
15

. 57
19201fy2_7
7
15>0ify >

44y
= —=>0if 0
15._>_ iy =

0]

1

11

. [0

15 — 11y
15

1 1
- 0

values of ¥ will maintain each of the elements b; > 0:

(18)

From this we see that 5, > 0 if y > 0; and b, > 0 if y < 3. Noting
first row of [B]-1is simply y times the first row of [B]~?, we see that b, = yb3.

- 4
15
-
150
44y
15

-

_X
15
y+15
600
15— 11y
15

[272]
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Assuming nondegeneracy, 5 > 0. Then the requirement b, > 0 requires
y > 0. Since ¥ # 0, ¥ > 0 and §, > 0. Taking the most restrictive of the y
calculated by (17) and (18) above we find that the objective function z, and
the values, b,; of the basic variables are all linear.in y and the adjusted basic
solution is feasible and optimal for the range &% <y << 1§ or 3¢ > q,, = 3.

ExErciSE: What is the effect of increasing Carpentry Shop time on
desk Type 1 to 43 hours per desk ? To 5 hours per desk ?

Exercise: Under what conditions can the value of an input- output
coefficient for a basic activity be changed without any cost effect ?

Problem 9: What is the effect of simultaneous changes to Carpentry
Shop and Finishing Department requirements and profit for desk Type 1°?
Here the problem is to find v

ayy 10 0]-?
(19) (Bl t=|a, 40 O
g —40 1
Writing [B’] this time as [B] - [4'] we have
i 4a,; — ‘7'21’ 0 0-
15
4a, —a
20) A4l =[B}!-(B]= —= 1 0
(20) (4] =[B}!-[5] 150
444y, + day + 15¢, 0 1
. 4a,; —a 40, — a 44a,, 4+ 4a,, + 15¢
Lett 11 21 — 21 11 — 11 21 1 —_
"5 P 150 ¢ and 15
- -
- 0 0
p
"o —q
(21) [A)t={— 1 0
p
—r
—_ 0 1
. P J
and
- -1 -
— — 0
15p 15p
—p — 40q 2 5
@)  (Br-upEr- | Z-REEH
150p 75p
44p —4r 4p+r 0
156p 15p -

where, as before, the pivot element p % 0 and 1/p # 0.
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Observe that p°=1, ¢=r"=0 corresponds to af; =4, ay =1,
g = —12. We now determine what values of p, ¢, r will insure ¢; > 0 for
each of the non-basic activities,

~ ' 9
44p — 4r 4 20 7 . 0
(23) [G]l= p—dr dptr 1] 1 =——l_olffg_

L 15p 15p —20 3 3p P
[d4p — 4r 4p +r [ 7] 10 5 )

[G] = 1] S |l=—m——2>0if-<2
[ 16p 15p s
_ 1

— 4 4

()= | Xt tr 1] ol =2 _ 2 Soifl<u1
L 15p 15p 0 15 15p P
44 4 0] 4

c]= | Hp—4r o4 1] 1] =241 >oif- > —4
L 15p 15p 0 15  15p P

and also maintain each of the elements b; > 0:

.1 [ 4 -1 T T T4
by — —— 0 6 —
15p 15p 3p
—p — 2 1
T P W e k. B k. S PY Y
150p 5p 15 3p
44p — 4r 4dp +r 56 4r
—z 1 0 =
L 15p 15p 1 L | 3 3p_
1 1 s
whence b, >0 if - >0, b, >0 if g < 55 and the value of the objective
P r
. 56 4r . :
function z = — 3 + 3 Note that assuming nondegeneracy as before,
P

1 1
by =~6>0and - >0.
r p
Taking the most restrictive of the limits calculated above, we see that z
q

1 1
and the b, are linear in -, g, and ! for the range — >0, = < —, and
PP P ? p~ 20

r
2 25 > —4. These restrictions are equivalent to p > 0, p > 20g, and
2p > r > —4p, which upon substitution yield the conditions on the input-

output coefficients and cost coefficients of basic activity j = 1 for which

the basic variables given in (3) remain in the optimum solution:

[ 274 ]



12.5. PROBLEMS
(25) 4a,, —az =0
2a);, —3a, >0

12 2a
—_ ._‘Z'l._l__;____ﬂ >¢, > —4ay,

The effect of varying the a,, and ¢, within these limits upon the b, and z of
the optimum solution is given by (24).

Exercise: Show that if a,, and a,, are varied within the limits of the
first two inequalities in (25) and if ¢, is correspondingly varied so that

44a 4a
s 2, then there will be no change in the value of the

T 15
objective function.
ExErcise: Prove the following:
THEOREM: Given a general linear program, the domain of all possible
variations of a column P in an optimal feasible basis is convex in the space of the
components of P.

12-5. PROBLEMS

1. Show in §12-1 that if, in an optimal solution, there are surpluses of
certain items, their prices are zero. Show that the price of an item is
zero if there is no cost associated with the activity of storing it and there
is a surplus of the item.

2. Show that the above case might lead to excessive use of the raw material
inputs, unless the central planners place some value on excess raw material
in terms of labor.

3. Show that it would be better to also introduce activities for procurement
of additional inputs and to place a labor value on these as well.

4. (Review) Show that the price s, represents the change in the total costs
z per infinitesimal change in the availability of item <.

5. Which of the various properties associated with the duality theorems of
Chapter 6 explains why the manager of the tool plant discovered the
process which minimizes his labor requirements in the course of developing
a pricing system ?

6. Given an optimal basic feasible solution and the -corresponding system in
canonical form, show that &; represents the change necessary in the unit
cost of the jth non-basic activity before it would be a candidate to enter
the basis. If the other coefficients as well as cost coefficients can vary,

show that
6 =1¢; — Z"ﬂu’
i

is the amount of change where m, are the prices associated with the basic
set of variables.
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7. Develop a formula for the change in cost ¢; of a basis activity before it
is a candidate for being dropped from the basis. Which activity would
enter in its place?
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CHAPTER 13

GAMES AND LINEAR PROGRAMS

13-1. MATRIX GAMES
Background.!

According to Gale [1960-1, p. 216], “One of the most striking events in
connection with the emergence of modern linear economic model theory was
the simultaneous but independent development of linear programming on the
one hand and game theory on the other, and the eventual realization of the
very close relationship that exists between these two subjects.”

This relationship between linear programming and games was first
pointed out by J. von Neumann in the fall of 1947 in informal discussions
with the author. He showed that the central mathematical problem associated
with a matrix game.could be stated as a linear program and he conjectured
that the converse was true. A. W. Tucker and his group at Princeton in early
1948 undertook a systematic study of the interrelations between the two fields
in order to place the theory on a rigorous foundation [Gale, Kuhn, and Tucker,
1951-1]. It is the purpose of this chapter to bring out these connections.

Game theory is concerned with finding the best “strategies” for solving
conflict situations. In the abstract these may be characterized as situations
where the participants of the contest each control some but not all the
actions that can take place. This, together with chance events (if present),
determines the outcome upon which the participants may place widely

- differing values. The mathematical foundations of game theory are found in

certain papers by J. von Neumann in 1928 and 1937 and less conclusive
contributions by Borel in the early 1920’s [von Neumann, 1928-1, 1937-1;
Borel, 1921-1, 1924-1, and 1927-1]. Actually, until 1944 there were almost no
papers; it was then that von Neumann and Morgenstern [1944-1] published
their famous book, T'heory of Games and Economic Behavior.

Matrix Games Defined.

In a matrix game there are two players whom we will refer to as “R”
and “C.” Each is supposed to make one choice from a set of possible choices

1 For a popular explanation of Game Theory, the reader is referred to The Compleat
Strategyst by John D. Williams [Williams, 1954-1]; a more formal introduction can be
found in Luce and Raiffa, Games and Decisions [Luce and Raiffa, 1957-1] and in M.
Dresher, Games of Strategy : Theory and Applications [Dresher, 1961-1]. Fundamental
papers on the subject can be found in Annals of Mathematics Studies, Nos. 24 (1950)
and 28 (1953) entitled “Contributions to the Theory of Games,” edited by Kuhn and
Tucker, [Kuhn and Tucker, 1950-1, and 1953-1].
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without knowledge as to the choice of the other player. For each such choice
by the two players, say ¢ for R and j for C, there is a resulting outcome that
can be specified by a single number a,;, the payoff R stands to receive
(positive, negative, or zero) according as R wins from C, loses, or draws; at
the same time, C is in diametric opposition to R and stands to receive what

R loses—namely —a,;. If choices i for R range from¢ =1,2,. . ., mand
choices j for C from j =1, 2, . . ., n, the possible payoff to R may be
displayed as a matrix:
Payoff to R
if R chooses row ¢ and C chooses column j

Gy, Gz - - -Gy

Gy, Ggp . - . Gop

Gi Oz - - Omn

The problem for each player is this: What choice should ke make in order
that his partial influence over the outcome benefits him the most?

Our immediate purpose is to show that a variety of competitive situations
can be cast into the form of a matrix game if we interpret “‘choice’ in these
cases to mean a selection among the “pure strategies” available to each
player.

DEFINITION: A pure strategy is a plan so complete that it cannot be upset
by the opponent or nature [Williams, 1954-1]. It is a complete set of advance
instructions that specifies a definite choice for every conceivable situation
in which the player may be required to act [Kuhn and Tucker, 1955-1].

Ezample 1, A Calling Game: Player R has two cards, one black and one
red. He selects one. Without showing it to his opponent, he lays it down on
the table. Player C then calls it. The card is turned over. If the card is
called, R pays C a penny, otherwise he loses a penny. The pure strategies
open to R are listed in the left row margin of the two-way array (1); we refer
to R for this reason as the row player. In a similar manner, those for C are
listed in the column margin, shown across the top, and C is called the column
player. The table entries are the payoff to R if C calls the card correctly or
incorrectly.

s Player C's
Player R’s .
1 1}’,\"0 Pure Strategies
Strategies | coli Black  Call Red
Choose black -1 +1
Choose red +1 -1
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This matrix game points up how important it is to both R and C that
their plans not be discovered in advanee, The result could be: disastrous,
No matter how R chooses, his highest ‘‘floor,” the maximum gain that R
can guarantee himself, if he is discovered, is —1. Similarly, C’s lowest
“ceiling,” the minimum loss that C can guarantee himself, if he is discovered,
is 4+ 1. We shall show, however, that there is a way to play this game so
that R can have nn expeeted gain of 0, and C ean have an expected loss of 0.

Example 2, Morra {Williams, 1954-1]: Two players simultaneously
throw out one or two fingers and call out their guess as to what the total
sum of the outstretched fingers will be. If a player guesses right, but his
opponent does not, he receives payment equal to his guess. In all other cases,
it is a draw.

The pure strategies open to each player are show 1, call 2; show 1, call 3;
show 2, call 3; show 2, call 4. If we abbreviate these combinations (1, 2),
(1, 3), etc., the matrix game takes the (skew-symmetric) form

C
(2) (1,2) (1,3) (2,3) (2,4)
1, 2) 0 2 -3 0
r| &3 ~2 0 0 3
2, 3) 3 0 0 —4
2, 4) 0o =3 4 0

The maximum floor for R, if his pure strategy is discovered, is —2 and
similarly the minimum ceiling for C is +2. Again we see how important it
is not to reveal the pure strategy in advance.

Example 3, The Campers: John D. Williams [1954-1] in his humorous
elementary introduction to game theory, The Compleat Strategyst, supplies
the following example and discussion, which we quote with minor changes.?

“It may help to fix these ideas if we give a specific physical realization.
When the payoffs are all positive, we may interpret them as the altitudes
of points in a mountainous region. The various R and C strategies then
correspond to the latitudes and longitudes of these points.

“To supply some actors and motivation for a game, let’s suppose that
a man and wife—Ray and Carol—are planning a camping trip, and that
Ray likes high altitudes and Carol likes low altitudes.® The region of interest
to them is criss-crossed by a network of fire divides, or roads, four running
in each direction. The campers have agreed to camp at a road junction.

2 We have changed the actress’ name to Carol to correspond to C and have deleted a
few phrases.

3 Williams implicitly assumes that the interests of the man and wife, as far as altitude
is concerned, are diametrically opposed and the *‘payoff” to R can be measured in feet
of altitude.
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They have further agreed that Ray will choose the east-west road and that
Carol will choose the north-south road, which jointly identify the junction.

“Let us suppose the junctions on the roads ¢ available to Ray and roads
Jj available to Carol have the following altitudes, in thousands of feet:

Carol (j)

®3)
1 (2 @ @

ml7r 2 5 1

(2) 2 2 3 4
Ray (z)

3| 5 3 4 4

4|3 2 1 &

Ray, being a reasonable person, who simply wants to have as much as
possible, is naturally attracted to the road Ray 1—with junctions at alti-
tudes of 7, 2 5, and 1—for it alone can get him the 7-thousand-foot peak.
However, he does not dare undertake a plan which would realize him a
great deal if it succeeds, but which would lead to disaster if Carol is skillful
in her choice. Not anticipating that she will choose carelessly, his own
interests compel him to ignore the peaks; instead, he must attend particu-
larly to the sinks and lows which blemish the region. This study leads him
finally to the road Ray 3, which has as attractive a low as the region affords,
namely, one at an altitude of 3-thousand feet. By choosing Ray 3, he can
ensure that the camp site will be at least 3-thousand feet up; it will be higher,
if Carol is a little careless.

““His wife—as he feared—is just as bright about these matters as he is.
As she examines these, she knows better than to waste time mooning over
the deep valleys of Carol 3 and Carol 4, much as she would like to camp

_ there. Being a realist, she examines the peaks which occur on her roads,
determined to choose a road which contains only little ones. She is thus led,
finally, to Carol 2, where a 3-thousand-foot camp site is the worst that can
be inflicted on her.

“We now note that something in the nature of a coincidence has occurred.
Ray has a strategy (Ray 3) which guarantees that the camp site will have
an altitude of 3-thousand feet or more, and Carol has one (Carol 2) which
ensures that it will be 3-thousand feet or less. In other words, either player
can get a 3-thousand-foot camp site by his own efforts, in the face of a
skillful opponent; and he will do somewhat better than this if his opponent
is careless.”

DerFINITION: When the guaranteed maximum floor for R and the
minimum ceiling for C are exactly equal (as they are above), the game is
said to have a saddle point and is also called a sirictly determined game
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because the players should use the strategies which correspond to it. If
either alone departs from the saddle-point strategy, he will suffer unnecessary
loss. If both depart from it, the situation becomes completely fluid and
someone will suffer. Note too, this consequence of having a saddle point:
security measures are not strictly necessary. Either can openly announce a
choice (if it is the proper one), and the other will be unable to exploit the
information and force the other beyond the guaranteed maximum floor or
minimum ceiling.

ExEercisg: Show for a general matrix game that the maximum floor
for R is less than or equal to the minimum ceiling for C.

Ezample 4, Chance and Bluffing: A deck consisting of one Ace, one
King, one Queen is shuffled and the three cards are dealt face down one to
each player and the last card placed in the middle of the table. R inspects
his card and can either bet an amount b (including the ante) that he has the
higher card or he can “fold.” In the latter case, he loses an amount a, the
ante, to his opponent. Player C can then inspect the card in the middle of
the table and can either call the bet or he can fold, in which case he loses
an amount a. If C calls, the player with the higher card receives the amount
b from his opponent

The pure strategies for R are four in number (if we assume he always bets
if he has an Ace). For example, he might state (to himself) two of his four
complete alternative plans this way:

~ Abbreviation
Pure “If I receive Ace, I will bet.”
( bR ¥y K'in k] b2) ” b, b’ b)
Strategy ) Quein K
Pure ” »  Ace, vy
Strate, (2) ” ”. King’ ”» » (b, b, f)
gy ., Queen, T will fold.”

The pure strategies for C depend on whether R folds or, if he does not,
on the outcome of the middle card. He has eight pure strategies, two of
which he might state (to himself) as follows:

Abbreviation
“If R folds, I will collect ante.”
) “If R bets, and middle card is Ace, I will ca.l].”}
’s ” ” » King, o (b, b, b)
”» »” » »  Queen, ,,

“If R folds, I will collect ante.”
@) “If R bets, and middle card is Ace, I will call.”
2 b 2] " 2 King’ b3 b4 (b, b’f)
Queen, I will fold.”

2 b t2) 2
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Let us now turn to the payoff under the pure strategy (b, b, b) for R and
(b, b, b) for C. We examine the payoffs in the six cases arising out of the
random shuffle.

R receives Middle Card  Probability — The Play  The Payoff

R C
Ace, King 3 bet bet b
Ace, Queen 3 bet bet b
King, Ace 3 bet bet b
King, Queen 3 bet bet —b
Queen, Ace 1 bet  bet —b
Queen, King 3 bet bet —b
0
Expected Payoff: i 0

In this problem, the payoff for given pure strategies for R and C cannot be
stated with certainty because of the random elements which are beyond the
control of either player. In this situation, the expected payoff is defined to
be the “payoff’’ entry in the game matrix.

With this definition the game matrix (multiplied by 6 to avoid fractions)
can be calculated to be

4) ©

(bbb)  (bbf)  (bfb) (b)Y  (feb)  (fBNY (B (D

(bbb) 1] 2a 2a 4a 2a 4a 4a 6
R (bbf) |26 —2a 2b b—a b4+a b-a b+a 0 2u
(bfb) —2a —b—a 0 —~b4a b—a 0 a+b 2a

(bff) |26 —4a b —3a b—3a —2a 2 —4ab—3a b—3¢ -—2a

Exercisg: Verify the entries in the game matrix. Which player has the
advantage ?

ExErcise: Introduce the full set of pure strategies for R into the
matrix game, i.e., include (fbb), ( fbf ), (ffb). (fff ). Do you feel R’s decision
not to consider the latter possibilities was a good one?

Mixed Strategies.

As R weighs the consequences of various courses of action open to him
in a matrix game, he becomes more aware of the need to keep secret his
choice of pure strategy. In situations where there will be many repetitions
of the same game, any obvious pattern of choice could lead to disastrous
consequences.

If R is completely pessimistic, i.e., assumes that C knows his plan and
will counter it to limit his gain to a bare minimum, then R will select his
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Maz-Min pure strategy, namely the row r whose row minimum is maximum.
As we have seen in the matrix game

(G- n (-2
(5) (=1 =1 +1
(i =2) [ +1 —1 jl

this highest floor is —1 attained when R chooses cither (2 = 1) or (3 — 2).
If C is also completely pessimistic, he will employ his Min-Max pure strategy,
namely the column s whose column maximum is minimum, in this case +1.
The payoff of a matrix game between two complete pessimists is a,, which
is somewhere in between R’s highest floor and C’s lowest ceiling, i.e.,
(6) Max (Min a;;) < a,, << Min (Max a;)

2 3 2 1]

When there is a saddle point so that Max-Min = Min-Max, the pure
strategy choices r, s are completely satisfactory as a solution to the game
because whether R is pessimistic and assumes his opponent knows his
choice or, if R is pessimistic and it turns out that his opponent is also, R
can do no better. In any case, C can force R to accept a maximum gain of
a,s and if R deviates, he can only lose and if C deviates, R can only gain in
general.

When there is no saddle point, the contradictory assumptions on the part
of the two players lead to an unstable situation. In the event of repetitions of
the same game with the same players, we can expect sooner or later one
of the players will become bold and change his assumptions about his
opponent’s finding out and taking advantage of his plan. Depending on what
assumptions are made by the opponents about each other’s knowledge of their
respective plans, there can be, in general, different solutions to the game.

If R is less than completely pessimistic (we will call him conservative)
l.e., assumes that C can never be sure what his plan is, but can guess with
what probabililies he will use one or the other pure strategy, then R will
select the row probabilities so that the smallest ‘“‘average” payoff in a
column is a maximum. (For example, in repeated trials of the same game,
R may seek to protect his plan by varying his choice of row and is willing
to assume that his opponent cannot discover his particular selection, but at
best can only detect his frequency of choice of the various rows.)

In the matrix game above, if row 1 is selected by R with probability z,

and row 2 with probability 1 — z,, and if his opponent chooses strategy j,
the expected payoffs are

(j=1) (1=2)
(7 —1z; + I{1 — ), lz) — (1 —=zy)

which simplifies to 1 — 2z;, and —1 + 2z,. From 0 < 2, << } the right term
is the smaller and its largest value 0 occurs at z, = }. From } < z, < 1
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the left term is the smaller and its largest value 0 also occurs at z; = §.
Hence, in this case if R selects his pure strategies with equal probability,
and if C should discover these probabilities, then R can assure himself an
expected gain of at least 0.

Because of symmetry, it is obvious that if C makes the same kinds of
assumptions with regard to his opponent, C can assure himself an expected
payoff of no more than 0 if he randomizes his selections by choosing columns
j = 1and j = 2 with equal probability. Since the expected maximum floor
for R equals the expected minimum ceiling for C, it is clear to C that even
if he changes his mind and assumes that R is playing conservatively against
him, he cannot take advantage and pay less than zero, and may have to
pay more if he deviates. On the other hand, C also notes that he may pay
less if he sticks to his optimal conservative mix of pure strategy choices
and R deviates from his.

DEFINITION: A mixzed strategy is a selection among pure strategies with
fixed probabilities.
DEFINITION: A conservative player is one who assumes that his mixed

strategy is known to his opponent.

As a second example of the optimal selection of probabilities for a mixed
strategy, let us change the value of a,, = 2 to a;; = 6 in Williams’ example (3)
to avoid a saddle-point solution. Let us now consider the simpler problem
of determining an optimal mix between two strategies i = 3 and 7 = 4 for
the matrix

(8) (=1 (j=2 (=3 (j=4)| Probabilities

) 5 3 4 4 Zy
1 —

. ".

Iy
Il
303
W
[=2}
[y
[=2]

It is clear that any choice of a pure strategy on the part of R which
becomes known to C (say through many repetitions of the same game
using the same pure strategy each time) could at best achieve 3 units
(strategy i = 3) because his opponent will surely choose j = 2. On the
other hand, if he chooses ¢ = 3 with probability z; and ¢ = 4 with proba-
bility 1 — x; = x,, then his expected payoff for various j of his opponent
would be the weighted average of his former payoffs:

@  G=0 (G =2 G=3 G=4
5y -+ 31 — xy), 3y + 6(1 — z5), 4y + W1 — x4), 425 + 6(1 — x3)

If z; = 1, then his opponent will select road j = 2 and his payoff will be 3;
if z; = 0, then his opponent will select road j = 3 and his payoff will be 1.
However, if 3 < x; < 1, then the expected value for any j will be greater
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than 3. To determine the best value we plot these expectations for different
j strategies as a function of z,. It is clear that C will choose j = 3 for
0 < z, < $ and will choose j = 2 for § < 2, < 1. For z; = § he can choose
either j = 2 or j = 3 and the expected payoff to R will be % which is the
best he can do if C knows his mixed strategy. See Fig. 13-1-1.

Expected poyoff to player A

Figure 13-1-I. Graphical solution of a 2 X 4 matrix game.

On the other hand, if C randomizes his pure strategies, choosing j with
probability y; where y, = y; = } and y; = y, = 0, then all the alternatives
facing R reduce to a single dotted line at constant height 7. In other words,
C can limit his maximum gain to # without knowing R’s mixed strategy
and could very well limit his gain to less if R deviates from his optimal
mixed strategy.

The Mathematical Problem.

It thus appears that a conservative player can increase his expectation
against an opponent who (he believes) knows he is conservative, by choosing
at random among his pure strategies with certain probabilities z;, 25, . - ., Tm-
Any particular choice of z; values is called a mized strategy for player R.
The mathematical problem for him thus becomes one of choosing z; = 0,
Tz, = 1, so that his expected payoff is maximum. This is referred to as
the optimum mized strategy for R. Just how to choose the z; in general will
be the subject of the next section. We will consider also mixed strategies
for C which will be denoted by (y;, ¥, - - -» ¥n) Where y; > 0 and Xy, = L.

A remarkable theorem due to von Neumann states that R can always
assure himself a value v, the value of the game, if he plays his optimal mixed
strategy and cannot hope to get more than this same value v even when
playing to take advantage of a conservative opponent. What is more, any
deviation by R, the other holding firm, runs the risk of a loss. The same
statement holds, of course, for C and so we can expect that both players
will play their optimal mixed strategies.
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13-2. EQUIVALENCE OF MATRIX GAMES AND LINEAR
PROGRAMS; THE MINIMAX THEOREM

Let z,, z,, . . ., 2,, denote the probabilities that the row player R selects
his pure strategies ¢ = 1, 2, . . ., m. We assume that R is conservative, that
is to say R believes that C knows only R’s probability of choice (but not
his particular choice) and that C will play to take full advantage of this
knowledge. If C chooses pure strategy j == 1, 2, . . ., n, for any particular
choice of z; the expected payoff to R is >, a,x, where, by definition, a,;
is the payoff to R if he chooses 7 and C chooses j. Thus R expects C to choose
that pure strategy j corresponding to the minimum of these n expressions.
Alternatively, if we let L be any lower bound for these expressions so that
> M agx; > L, then another way to state this is to say that C will choose
(for fixed z;) his pure strategy j to correspond to j =j, such that

w1 @:%; = Max L. Since R is interested that L be as large as possible,
he will try to choose his z; such that this Max L is as large as possible. Thus
Max L is the largest floor that R can assure himself.
The Row Player’s Problem: Choose z; > 0 and Max L satisfying

(1) Ay ¥y + &y + . o o F QX = L (z; > 0)
Q19%) + GpgZy + - - -+ Cme¥m = L
Gy + Bops + . o -+ G = L
4+ x4+ ...+ Ty =1

It is clear that we have reduced the solution of a matrix game for a
conservative row player to a linear program. Let us now suppose that his
opponent C also plays conservatively. In an analogous manner C is interested
in choosing M as small as possible in the problem below. Thus Min M is
the smallest ceiling that C can assure himself.

The Column Player’s Problem: Choose y; > 0 and Min M satisfying

(2) anyy + @Y + - - -+ Gl <M - 520
Gn¥Yy + Gogls + . . - F Ao <M
Am1¥1 + AmeY2 + e + a"rnﬂyng M
nt Yttt ga=1

TaEOREM 1: If each player plays conservatively, each solves a linear
program that is the dual of the other; this implies that the largest floor for R
equals the lowest ceiling for C.

Proor: To see that (1) and (2) are duals of one another, transpose L
and M to the left and let M = z be the objective equation for (2) where z
is to. be minimized and L = z be the objective equation for (1) where z is
to be maximized. Because any values z; >0, 2z, =1; y;, >0, 2y, =1
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may be used to obtain feasible solutions to the primal and dual problems,
the duality theorem states thai optimal solutions exist and Max L = Min M
(§ 6-3, Theorem 1).

In substance, Theorem 1 tells us that if C plays conservatively, he can
always hold R to the maximum assured gain whether .or not R plays his
optimal mixed strategy. Any deviation by R from his optimal runs risk of
loss if C sticks to his optimal mixed strategy and there is a possibility of
gain to R if C deviates from his. In such a situation we can expect that both
players will use their optimal mixed strategies.

DeriNrTioNs: The pair of optimal mixed strategies, if both players play
conservatively, is called the solution of the matrix game; the resulting guar-
anteed expected payoff to the row player is called the value of the game.

THEOREM 2 (von Neumann’s Minimax Theorem): Given,
inz Zy:‘_: 1:“’.‘20,%20,

3) Max Min Z z Ay Y; = .Min Max z Z a2y
2 2

z  ylz y =y

The symbol y|z is to be read ““y given z.” The left-hand side of (3) means:
For some fixed (given) z, minimize the sum with respect to y; this results in a
value that is a function of #; now choose z so that this value is maximum.
Part of the term appearing on the right above may be rewritten (because

in =1,2,>0),

Max x-Za-. ; = Max a;Y;

xly Z z - tJyJ p JZ JyJ

and is the payoff to R if R knows C’s mixed strategy and makes use of it.
If C plays conservatively, he minimizes the entire right expression. Hence
the right-hand side is a restatement of C’s problem, and its value is Min M.
Similarly, the left side is a restatement of R’s problem and its value is
Max L. In short, Theorem 2 is a concise statement of Theorem 1, since it
includes (1) and (2).

CoroLLary 1: If C's optimal sirategy yields a strict ineguality in the i'b
relation of (2), then R’s optimal strategy must have z; = 0; if R’s optimal
strategy yields a strict inequality in the jtb relation of (1), then C's optimal
strategy must have y; = 0. (For proof see Theorem 4, § 6-4.)

Equivalent Linear Programs.

We will now discuss various linear programs equivalent to the game
problem [Dantzig, 1951-1; Gale, Kuhn, and Tucker, 1951-1]. Introducing
into (2) slack variables y,,; = 0, we have

(4) apth + GYs+ - -t G Yt Yn =M

CyY1 + Aty + - - '+amn3/n+yn+m=M
1+ 7% SR Yn =1
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By subtracting the first equation from each of the others (except the last),
the resulting system i equivalent to a linear program in standard form.
Find y; - 0 and Min M satisfying

(5) any + oY + . . .+ B1aYn + Ynira =M
(@51 — @)y + (@ag — )Y+ -+ .+ (@2 — W)Y + Wi — Ynir) =0
(@my — A1)Y1 + (G — C2)Y + -+ .+ (@ — C10)Yn + Ynsm — Ynar) = 0

¥+ Y2+ ...+ Yn =1

Exgrcise: Show that solutions to primal and dual systems of (1), (2)
and hence to (5) always exist.

Exercise: Show that if a constant X is added to each element of the
payoff matrix, the optimal mixed strategy for either player is unchanged.

Another more symmetric way of effecting the reduction to standard form
is found by substituting y;M = y, in (2), thus obtaining

(6) Y+ @Yyt ot Gy <1 (y; =0)

Cor¥y + QmglYy + o o Ay <1
1
Y+ Y+ .+ y,i=ﬂ(MaX)

Note y; > 0. This substitution is valid only if the value of the game, M, is
known to be positive. However, since an arbitrary constant K can be added
to all the elements of a payoff matrix without affecting the optimal mixed
strategy, the restriction M > 0 presents no difficulties.

ExErcise: How large must K be to guarantee M > 07

Reduction of a Game to a Symmetric Game.

A two-person game is symmetric if the same number of pure strategies
is open to both players and if the payoff to player R, when he selects his
strategy 1 and his opponent selects J,, is the same as the payoff to player C
when the latter selects ¢ and his opponent selects j. In other words, if
a;; = —ay; for all ¢, j. A matrix with this property is called skew-symmetric.

ExERrcIsE: Prove that the value of a symmetric matrix game is zero.

Von Neumann and Morgenstern [1944-1] first showed how to find a
symmetric game matrix which is equivalent to any given game matrix.
Later Gale, Kuhn, and Tucker [1951-1] showed a more compact way to
symmetrize a game based on the same device by which a linear program is
reduced to a game (see (11)). To reduce a game with matrix 4 to another
game which is symmetric, we assume all a;; > 0 (by adding a sufficiently
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large constant if necessary) and consider the dual programs which yield the
optimum mixed strategies x and y of the two players:

ulex =1 vy =1 (x=>0,y>0)
() ATz > vl Ay < Mu
L = z (Max), M = z (Min)
where T, as in Chapter 8, denotes the transpose and «7 = (1, 1, . . ., 1),
vT=(1,1,. .. 1)arem-and n-component row vectors; thus wTy =Zr.=1

and vTy = Xy, = 1.
We now consider a new matrix game with skew-symmetric matrix (8)
of m + n + 1 columns and rows, and with a new pair of players:

(8) i g ¢
Z 0 A —u
g |—-4T 0 v
t ul —oT 0

where (£, 7, t) = (&1, - - - &m; J1» - - - Fn; ) denotes the optimal mixed

strategy of either new player, and Zz; + Xg; + ¢ = 1.

ExERcisE: Prove that if £, ¢, ¢ is optimal for player R, it is also optimal
for player C.

THEOREM 3: If a game with matriz 4 has all positive elemenis, then any
optimal mized strategy (%, §, t) for either player of the symmetric game (8) will
yield optimal mixed strategies z, y and payoff M for players of the original
game, namely

(9a) y=9/ g x=3) & M=2/1-1
or conversely,
(9b) g=y/[(M + 2), Z=z[/(M + 2), t=M|(M + 2)

Proor: Since the value of the symmetric game must necessarily be
zero, the optimal mixed strategy satisfies

(10) A —ut <0; (>0,§>0.t>0)
—ATz 4+ ut < 0;

>a —>g <0
D& + D gi+t=1

where (10) is a special case of (2) when the skew-symmetric S replaces the
A matrix of (2) and the value of the game is replaced by zero. We now
observe that ¢ > 0 if matrix 4 has all positive elements, because ¢ =0
implies § = 0 from the first inequality, but then Xi; = 0 by the next to
the last inequality and Z# = 1 by the last equation—a contradiction.
Next we observe from .Corollary 1 that XZ; = Xg; because ¢ > 0 implies
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the “first” player of the symmetric game selects the last row with positive
probability which means the expected payoff XE, — Xg; is maximal, ie.,
zero. Finally, we note that £ # 0, for assuming £ = 0 would contradict
the second equality; from £z, = Iy, follows § # 0, and thus ¢ < 1 from
the last equality. It is therefore possible to define mixed strategies x and
y and M = L by (9) and observe that (10) reduces to (7) with M = L;
hence z and y are optimal solutions to the dual programs and therefore
optimal mixed strategies for the matrix 4. Q.E.D.

Reduction of a Program to a Symmetric Game.

Analogous to the above we consider the dual programs
ATz <c Ay =>b (=0,y=>0)
bT z = 2 (Max) ¢Ty = z (Min)

where b and ¢ are column vectors and study their relationship to the skew-
symmetric game matrix,

(11)

(12) £ g ¢

0 —4 +b
447 0 —c

o~ @ B

—bT T 0

THEOREM 4: A necessary and sufficient condition that solutions to
linear programs (11) exist is that there exists an optimal mixed strategy
(€, ¥, t) to the symmetric game (12) with t > 0. The optimal solution fo the
programs is x = Eft, and y = gft.

The reduction of a linear program to a game was first established in
1948, based on conversations between the author and G. W. Brown. Soon
thereafter, both Brown and Tucker noted its skew-symmetric game matrix
[Dantzig, 1951-1].

Proor: The optimal mixed strategy satisfies
(13) — A7 + <0 (Z=0,9=0)

ATz —d <0 '
—bT% 4- Ty <0

Setting 7 = yt, € = at, and noting ¢ > 0, yields
(14) Ay =b (2=0,y=0)

ATz < ¢

Ty <b¥z
However, if the first inequality of (14) is multiplied on the left by 27 and
the second by y7, we obtain b7z <L 2T Ay < ¢Ty. This together with the last
inequality of (14) implies

1s) . z=cTy =0Tz =z
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Hence, by the Duality Theorem (§ 6-3, Theorem 1), z and y are optimal
solutions to the dual programs. :
Conversely, if optimal solutions z, y exist for the dual programs, then

we ean reverse our steps by defining ¢ - 0 by

(16) Dz + Dy +1) =1

and setting txr = Z and ty = 7.

The reduction of a linear program to a game depends on finding a
solution of a game with ¢ > 0. If £ = 0 in a solution, it does not necessarily
mean that an optimal feasible solution to the linear program does not
exist. See Problems 3 through 7 at the end of the chapter.

13-3. CONSTRUCTIVE SOLUTION TO A MATRIX GAME
(ALTERNATIVE PROOF OF MINIMAX THEOREM)

The matrix game is solved by a sequence of pivot operations on the
linear program representing either the row or column player’s problem.
The rules of pivot choice will be reviewed so that the reader is provided
with a constructive proof of the Minimax Theorem independent of the
earlier chapters.

The linear program § 13-2-(4) is set up in detached coefficient form (1)
with constant terms in the first column; next, the columns y,, . ; corresponding
to slack variables; next, (—M), the variable to be maximized, and then the
main variables y;.

{1) Constants | ¥,y -« « Ynimer Ynam | (—M) W Vs c e Yn
1 0 1 1 e 1
0 i 1 an [ N I
0 1 1 Am-11 Cmerz - -+ Bmoga
0 1 1 Gmi  Oma R

For convenience we assume the rows and columns of (1) are arranged so
that
a,,; = Min [Max a;]
i i

By multiplying the last row by —1 and the first row by (a,; — a;;) and
adding their sum to row k=2, 3, . . ., m — 1 results in the equivalent
tableau (2), where a;; = a;; — @,; — @y + @p;. The last row is obtained

4 Material in this section is drawn from Dantzig [1956-1], Tucker [1960-3], and
Dorfman {1951-2].
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by multiplying the top row by —a,, and adding to the last row. Heavy dots

are placed below the unit vector columns ¥,,, . . « Ynim-1, (—H), ¥
(2)
Cycle 0
Constants |Yns1 - -+ Ynim-1 Ynem —M ¥ Ya cee Yn
1 0 1 1 1
Gy — Gy 1 -1 0 af, ... ag,
Cmy — Gy, 1 -1 0 f LA c e Bmoya
—Qmy ) 1 1 0 Omg — Qpy -« - Oy — Gy
® ... ® o [ J

Each cycle provides an improved mixed strategy for the column player
C. The probability of choosing column j of the matrix game is zero, unless
the corresponding column for y; in some cycle is a unit vector column with
a dot below. The value of y; for such a column with a unit coefficient in row

i is the ith component of the constant column. Thus for cycle 0, 7, = 1.

Let us suppose the equivalent system in tableau form for cycle p is given
by (3) which always includes some m + 1 unit vector columns (usually
indicated by dots below these columns).

Cycle p
3 Constants| Yuu; Ynsz -+ - Ynam —M Y1 ... Y .. Y
Bl ﬁll ﬁl! A ﬁlm 0 a-l R 6’1! - dlﬁ
5, B Bz - Bem 0 dn e Gy ... G
b Bmi Pmz -+ Bmm O A A S
—My i Gasy Gnpz e v - Casm || 1 & ... & ... &

THEOREM 1: If & >0 for all j and b; >0 for all 1, then an optimal
mized strategy for Risx; = &, fori =1, 2, . . ., m, and an optimal mixed
strategy for C is to choose columns j of the matrix game with probability 0
unless the corresponding j in (3) is a dotted 1*h unit column, j = j,, in which
case y; = b;; moreover, M, is the value of the matriz game.

Proor: Note that the linear combination of rows of (1) with weights
M, z,z,,. . .z, that forms the last equation of (3) is —My, Gnsys - - - G-
These weights applied to the coefficients of —M yield Zz; = 1, and to any
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other column j yield Zza; - & 4 My > M, Since y; = b; obviously
solves C’s problem and the payoff is also cqual to My, the solutions arc
optimal.

Rules for Pivoting.

Step 1. Choose pivot column s (and dot column) by
4) é, = Min ¢ G=1,2...,n+m)

If ¢, > 0 exit via step 4.
Step 2. Choose pivot row r (and remove dot from column with unity
in row r) from among rows ¢ with d;, > 0 such that the row vector

(5) [51'1 ﬂﬂ) ﬂrz’ LS ] ﬁm]/a'-ﬂ
is the lexicographic minimum of the row vectors
(6) [Bi: ﬁil: ﬂiz’ M ﬂim]/dis

This is done by first comparing the leading components of these vectors,
thus

6r/drs = Min Bi/dis (drsr ;e > 0)

where @;, = 8, if s =n + k.

The Rule for Resolving Ties

If the choice of r is not unique so that r = r;, r,, . . . yields the
minimum ratio above, then pass to column y,,, and choose pivot
row r by \
I?—”:Min&1 (ri=r,rsy...)
Qg Qs

If the choice of 7 is still not unique so that r = r{, 74, « . . mini-

mizes both ratios above, pass to column y,, ., and choose row r by
@: i @3 (rni=r,r .. )
Qrg Qg

Continue in this manner, passing to columns ¥, 3, ¥n.4 . - - until

L7 is uniquely chosen.

Step 3. Pivot; cycle p is complete. Return to Step 1.
Step 4. Terminate by computing an optimal mized strategy for player R:

(7 Zy = lp41s T3 = Cpygs - + Ty = Cnim

and an optimal mixed strategy for player C: choose column j of the matrix

game with probability 0 for j =1, 2, . . ., n unless corresponding to j in
cycle » is a dotted ¢*® unit vector column, in which case for each such ¢
(8) Y, = b

[ 203 ]



GAMES AND LINEAR PROGRAMS

Note on Lexicographic Ordering.

We now digress for a moment and discuss a way to arrange or order a
set of vectors (each with the samie number of components) in sequence in
much the same way that one orders a set of words in a dictionary; we will
therefore refer to this way of ordering vectors as ‘lexicographic.” We
define a vector R as greater than zero in the lexicographic sense or, more
simply, lexico-positive’ and denoted R > 0, if it has at least one non-zero
component, the first of which is positive. We next define a vector R to be
greater than S in the lexicographic sense, denoted R > S, if B — S > 0.

EXERCISE:

(1) Show that the lexicographic ordering relation is transitive, i.e.,
R>8,8>7T, implies R > T.

(2) Show that any two vectors R and S with the same number of com-
ponents satisfy cither R > S, § > R, or R = §; show also that
R > 8 implies B # 8.

(3) Let R > S mean that either B > S or B = §; show that R > §
and S > R implies B = S.

(4) If R>0 and S >0, then R4S > 0. If k> 0 is a scalar and
R > 0, then kR > 0.

Example: A. W. Tucker in his [1960-3] paper, “Solving a Matrix Game
by Linear Programming,” provides us with the following matrix game

|

&)

—6

~1

—5

01,
-2
2

The column players problem in detached coefficient form is:

(10)

By ansalogy with (2), the.starred entry ay, = 2 is Min [Max a;;], hence the
i i
cycle-0 tableau (11) is obtained from (10) by two easy pivot operations such

Constants

Y,

Ys

Ys

—-M

1

0
0
]

that the y,, y5, —M, y, columns are unit vectors.

8 The abbreviated term is due to A. W. Tucker.
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Cycle 0
(11) Constents |y, ¥ ¥ —M ¥ ¥ Y
1 1 11
2 1 -1 -5 6 Tie
4 1 -1 —10 12 Tie
-2 11 6 -7
e o ° x ®

Note that » = 2 and r = 3 are both tied for pivot since § = 1%. However,
lexicographically the vector ${210-10] > #[401 -10]. Hence r =3
is chosen for pivot row. Pivoting on 12 yields

Cycle 1
(12) |Constants | y, ¥s Ve -M % Ye Ya
8/12 —112 1/12 22/12 1
0 ] —6/12  —6/12 0
412 112 —1j12 —1012 1
+4/12 12 5/12 1 2/12
™ ° ° °

Since all entries in the bottom row are nonnegative, the cycling is terminated.
The optimal solution for R is taken from the bottom row in the y,, v;, ¥
columns; it is 2, = 0, z, = ¥%, x; = %. The optimal solution for C is taken
from the constant column; it is y; = &, y, = 7% and all other non-slack y;
are zero. The value of the game is M, = —;.

Proof of Algorithm.

In (2), the tableau for cycle 0, entries in columns for ¥y, Yn.i1, Ynse - - =
Ynim-1, —M form an identity matrix. The effect of a pivot operation in
column s, row r is to transform column s into a unit vector with unity in
the 78 position. The effect of several cycles is to shift the position of the
identity matrix into the columns y;, y;, . . ., ¥; and the —M column.
(The column for —M remains the same from cygle to cycle.) The set of
columns of the cycle-0 tableau corresponding to these unit columns in the
cycle p tableau is referred to as the bastis for cycle p. We shall denote it by
B. It is easy to see that B is non-singular and, because under the pivot
operations B transforms into the identity matrix (see §8-4-(9), (10), and
sequel), the identity matrix consisting of the first m 4 1 columns of cycle 0
transforms into B-! of cycle p.

We now show that the choice of pivot row r given in Step 2 always
results in a unique value for r. Since » must be chosen among i such that
@;, > 0 we first show that at least one d;, is positive (so that this class is
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non-empty). Notice in the tableau of cycle p that the columns corresponding
to ¥i, Yip - - - ¥;, —M, form an identity matrix; hence, the linear com-
bination of these columns using weights d,, results in column s and therefore
this same relation among columns must hold also for the original tableau (1)
(since pivoting does not effect a linear-combination relation among columns).
However, assuming on the contrary that all d;, <{ 0 would imply that some
nonpositive linear combination of certain columns of (1) could yield column
s. But this is clearly impossible since each columnj = 1,2,. . ., n has unity
in the top row and the linear combination must include at least one such j.

We now show that the rule for deciding in which row to choose the
pivot term results in a unique choice because non-uniqueness would imply
at least two row vectors (5) and (6) to be equal component by component;
but then, the square submatrix of (3) consisting of the first m + 1 rows and
columns (starting with the constants column) would be singular—a contra-
diction, since this submatrix is obtained from (1) by a sequence of pivot
operations and the corresponding submatrix of (1) is an identity matrix
and, hence, non-singular.

The rule for selection of 7 also prevents the repetition of a basis obtained
on an earlier cycle. To demonstrate this, let us denote for cycle p the rows
of the tableau by R,, R,, . . ., Bpn; Bn,,, and those for cycle p + 1 by
R¥, RY, . . ., R%; R ,. We will now show

Lemma 1: R, > 0 for all i and any cycle p.

Levma 2: R:,, > R,....

The Proof is Inductive. The relation between R, and R} is

(13) Rt =R —R= (i #7)
ars
Rr = R
a’n

By = Bpu — R,  where &, <0

where 7 is the pivot row and d,, > 0. It follows at once that R* > 0 if
R, > 0; moreover if d;, << 0, then R¥ > 0 since R; and —R,(d;/d,,) are
each lexico-positive by our inductive assumptions (the same argument
applies to R*, since &, < 0 and thus establishes Lemma 2). On the other
hand, if @,, > 0, then we write

R:'k - [Ri/dis - Rr/dﬂ]dis

We now observe that the rule for selecting the pivot row in Step 2 is the
same as selecting the lexico-smallest vector R,/d,, among ¢ such that &, > 0.
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Thus B} > 0. As observed earlier, the square submatrix of the first m + 1
rows and columns of (3) is non-singular so that a non-zero component exists
for each vector R, somewhere among its first m + 1 components and hence on
the next iteration for R} s 0 also. Since we have already shown R} > 0 it
follows that R¥ > 0.

To show ﬁmteness of the algorithm note that the last row is strictly
increasing in the lexicographic sense; hence no tableau can be the same as
one obtained earlier. We get a contradiction by assuming an infinite number
of iterations because the number of different bases is finite, and, therefore, on
some iteration, there would be a basis that is the same as one obtained earlier.
But in this case the entire tableau would have to be repeated because the
d;; in the tableau simply express the combination of columns in the basis
that form column j and this linear combination is unique and invariant
under pivoting.

13-4. PROBLEMS

1. Suppose each of two players has a penny, a nickel, and a dime that he
can select from as his pure strategies. If both players select the same type
coin, Player 1 wins Player 2’s coin; if the two coins are not the same type,
then Player 2 wins Player 1’s coin. How much should Player 2 give
Player 1 before the game in order to make the game fair?

2. What is the analogue for a linear program of the saddle point solution
of a game, if it exists?

3. (a) Show that, if £ = 0 in Theorem 4 of § 13-2, this does not imply that

a program does not have a solution.

(b) Show that, if ¢ = 0 and if the optimal solution has positive slack in
the complementary relation of the dual system using the solution to
the symmetric game, then there exists no solution to the linear
program.

(¢) Show that, if ¢ = 0 and there is zero slack in the complementary
relation, it does not imply that a program does not have a solution.

(d) If the coefficients a,; > 0, show that ¢ > 0.

(e} (Shapley) Show that no feasible solution exists for the primal program
below but that ¢ = 0 and its complementary slack is zero for the
equivalent game.

Solution — 0 1 0
Primal Oy, > +1 Equivalent 0 0 ! 0
P . — 2 (Mi G ] 0 0 0 1
rogram: |0y, = 2z (Min) ame: —1 0 0 0
)
Solution
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(f) (Shapley) Show that feasible solutions exist and no lower bound for »
exists for the dual of the above program (shown below) but that ¢ = 0
and its complementary slack is zero for the equivalent game.

Solution — 1 0 0

Dual O0x, < 0 Equivalent 0 0 v 1
Program: |+12, = v (M Geme: |0 O TH 0
rogram: |+ 1lx, = v (Max) ame: | 1 0 0
1

Solution

where z, >0, y, > 0.

4. Construct an example to show that feasible solutions to both the primal
and dual systems can exist, but that the solution to the equivalent game
can have { = 0.

5. Prove: If a solution to a game is unique when variables corresponding
to positive complementary slack values are dropped, then the remaining
variables have positive values.

6. (Wolfe) Prove the following theorem: AUl solutions of the corresponding
game have t > 0 if, and only if, there exist u, x > 0 such that ud > c and
Az < b.

7. (Wolfe) Prove the following theorem: If the set of x =0, Ax << b is
non-empty, bounded and has an interior, and A has no zero row, then any
solution [z, u, t] of the corresponding game has t > 0.
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CHAPTER 14

THE CLASSICAL TRANSPORTATION
PROBLEM

14-1. HISTORICAL SUMMARY

An important class of linear programming problems of economic and
physical origin can be formulated in terms of & network composed of points
(nodes) connected by routes (arcs), over which various kmds of transport
{flow) take place (see Chapter 19).

The classical transportation problem arises when we must determine an
optimal schedule of shipments that:

(a) originate at sources (supply depots) where fixed stockpiles of a
commodity are available;

(b) are sent directly to their final destinations (demand depots) where
various fixed amounts are required;

(c) exhaust the stockpiles and fulfill the demand; hence, total demand
equals total supply;

and finally, the cost must

(d) satisfy a linear objective function; that is, the cost of each shipment
is proportional to the amount shipped, and the total cost is the sum
of the individual costs.

In this chapter we will take up this problem and show how it may be solved
by the simplex method. (Succeeding chapters will explore some of its
important variations.)

Although he awakened little interest at the time, L. V. Kantorovich
{1939-1] showed that a class of problems closely related to the classical
transportation case has a remarkable variety of applications concerned
typically with the allotment of tasks to machines whose costs and rates of
production vary by task and machine type. He gave a useful but incom-
plete algorithm for solving such problems (see Chapter 21). Again, in 1942,
he wrote a mathematical paper concerned with a continuous version of
the transportation problem, and in 1948, he authored an applicational
study, jointly with Gavurin, on the capacitated transportation problem (see
Chapter 18).

The now standard form ‘of the problem was first formulated, along with
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a constructive solution, by Frank L. Hitchcock [1941-1]. His paper, “The
Distribution of a Product from Several Sources to Numerous Localities,”
sketched out the partial theory of a technique foreshadowing the simplex
method; it did not exploit special properties of the transportation problem
except in finding starting solutions. This paper also failed to attract much
attention.

Still another investigator, T. C. Koopmans, as a member of the Combined
Shipping Board during World War II, became concerned with using solu-
tions of the transportation problem to help reduce over-all shipping times,
for the shortage of cargo ships constituted a critical bottleneck.

In 1947, Koopmans began to spearhead research on the potentialities of
linear programs for the study of problems in economics. His historic paper,
“Optimum Utilization of the Transportation System’ [1947 -1], was based on
his wartime experience. Because of this and the work done earlier by Hitch-
cock, the classical case is often referred to as the Hitchcock-Koopmans
Transportation Problem.

Another whose work anticipated the recent era of development in linear
programming was E. Egervary, a mathematician. His 1931 paper considered
the problem of finding a permutation of ones in a matrix composed of zero
and one elements. Based on this investigation, Kuhn [1955-1] developed
an efficient algorithmic method for solving assignment problems (see § 15-1).
Kuhn’s approach, in its turn, underlies the Ford-Fulkerson Method for
solution of the classical transportation problem (Chapter 20).

The method to be described in this chapter was developed independently,
by specializing the general simplex method [Dantzig, 1951-2].

14-2. ELEMENTARY TRANSPORTATION THEORY

Suppose that m warehouses (origins) contain various amounts of a
commodity which must be allocated to n cities (destinations). Specifically,
the ith warehouse must dispose of exactly the quantity a; while the jt
city must receive exactly the quantity b;. It is assumed that the total demand
equals the total supply, that is,

» Sus$s
=1 j=1

J

Besides the numbers, a; and b;, which are nonnegative, we are also given a
set of numbers, ¢ ;, which may be unrestricted (although usually nonnegative
under the present interpretation). The number c;; represents the cost (or
profit, if negative) of shipping a unit quantity from origin i to destination j.
Our problem is to determine the number of units to be shipped from i to j
in order that stockpiles will be depleted and needs satisfied at an over-all
minimum cost.
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The special structure of the -matrix is evident when the equations are
written in standard form, as in (2).

(2)

T+ Ty e+ Ty, =&
RaE 2 ol VI P =a
............ AU
1y + Zyy + Zmg =0,
+ 2y + 2y + Zma =b,
+ Ty + oy + Tpp = b,

Ty + ...+ Cin¥in + Car®ar + o oo F ConZan -+ F CuiTmy F oo F CpnTn = 2

Exercise: Condition (1) renders the system dependent since the sum
of the first m-cquations is the same as the sum of the last 7. Prove that the
rank of the system is exactly m + n — 1. Also show that each equation is
a linear combination of the other m + n — 1 so that any one equation may
be called redundant and discarded.

The Standard Transportation Array.

An important feature of this model is that it can be abbreviated in the
form of a rectangular array, which displays the values of z;; and ¢,; in row ¢
and column j, and the values of the constants and corresponding multipliers
for the first m equations in a marginal column and for the remaining »
equations in a marginal row.

Row
Totals
I Z12 Zy3 Zys T1s a,
Cn C12 €3 C1g Cy3| Uy
T2 L2 T3 Tag Zas az
Ca1 Caa Cos Caq Cag Uy
Ty Z32 L33 T34 Zas az
Ca Caz Ca3 C3q C3s U3
Column
Totals | b, by by by bs
Implicit
7, v, V, vy s || < Prices ¢

At any stage of the algorithm, the square (4, j), situated in the ith row and
the j'b column, contains c,; in its lower right-hand corner while, at its upper

left corner, we find 2%, the current numerical value assigned to z,;. The
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lack of such an entry implies that z,; is non-basic and hence of zero value.
Zero-valued basic variables are indicated by a zero entry (degeneracy).

Any square along the right-hand or bottom margin, however, differs in
that it contains the row or column totals, a; or b;, at upper left, and the
corresponding current value, 2 or ¢J, of the simplex multipliers at lower
right. Each row and column of the array represents an equation. Specifically,

n

(4) The Row Equations: _
(=12 ...,m) ZF“'M
j=1
(5) The Column Equations: i —"
G=1,2...mn) 4=

i=1

In order that these equations continue to be satisfied during the course of
the algorithm, we must keep the sum of the entries in each row and column
equal to the appropriate row or column total, a; or b;, which appear in the
margins.

Finding a Basic Feasible Solution.

As candidate for the first basic variable, choose any variable, z,,, and
make it as large as possible, consistent with row and column totals, i.e., set

2y, = Min [a,, b,]

Case 1: 1If a, is less than b,, then all the other variables in the p'B row are
to be given the value zero and designated as non-basic. Next delete
the ptb row, reduce the value of b, to (b, — @), and proceed in the
same manner to evaluate a variable in the reduced array composed
of the m — 1 rows and n columns remaining.

Case 2: If a, is greater than b,, then, similarly, the g*t column is to be
deleted and a, replaced by (a, — b,), ete.

Case 3: If a, equals b,, then delete either the row or the column, but not
both. However, if several columns, but only one row, remain in the
reduced array, then drop the gtk column, and conversely, if several
rows and one column, drop the pt® row.

This rule will select as many variables for the basic set as there are rows
plus columns, less one, m + n — 1, since on the last step, when one row
and one column remain, both must be dropped after the last variable is
evaluated. The important fact is that, as we shall show, all basic solutions are
of this form, so that in defining a specific algorithm for achieving optimality,
it is unnecessary to consider other forms of solution.

ExERCISE: We have assumed that 5™ ; a; = >7., b;. Show that every
reduced array retains this property, so that the last remaining variable can
acquire a value consistent with the totals for the single row and column still
remaining in the final reduced array.
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14-2. ELEMENTARY TRANSPORTATION THEORY

ExErcisE: Let B be a square matrix. Show that B is nonsingular if
and only if Bx = b has a unique solution for every b.

THEOREM 1: The candidate variables chosen by the rule for initial solution
constitute a basic set.

ProoF: Since the rank of the system is m 4+ n — 1, a set of variables,
Z5, constitutes a basic set if its values, satisfying all m + n equations, are
given uniquely as linear combinations of any m 4+ n — 1 of the m + n
marginals a,, a,, . . ., @y; by, by, . . ., b,, when the remaining variables are
set equal to zero. Now, the value given each basic variable by the starting
rule is the same as a marginal total of some reduced array, but this total,
because of the way in which it was derived, is equal to the difference between
partial sums of the original row and column totals. This shows the values
are uniquely determined by some particular set of m 4+ n — 1 marginals.
However, because of condition (1), any one of these totals may be re-
expressed as a linear combination of the others; for example,

m n—1
ba= > a;— > b
i=1 i=1

CoroLLARY 1: The row totals of each reduced array are expressible as
partial sums of the a; minus partial sums of the b;, whereas every column total
s expressible as the negative of such a difference.

Exzercise: Show the above by induction.

The Property of Basis Triangularity.

When a system has the property that every basis is triangular (see § 4-2),
then basic solutions are easily obtained. Let numbers, for example zeros,
be substituted for all the non-basic variables. The resulting system of
equations will, of course, involve only the basic variables. By definition, if
triangular, the subsystem will contain at least one equation having exactly
one variable, and this variable may, of course, be immediately evaluated by
means of a single division. When the value so determined is substituted in
the remaining equations, there will again be at least one equation with
exactly one variable in the reduced system, and so forth. Thus, all of the
basic variables may be evaluated in an analogous way. In particular, since
each equation corresponds to a row or a column, this is the same thing as
saying that all basic sets of variables can be generated by the starting rule
of solution [Dantzig, 1951-2].

TaEOREM 2: Fundamental Theorem for the Transportation Problem:
All bases are triangular. .

Proor: Suppose we have a standard transportation array, similar to
(3), with m rows and n columns and with arbitrary constants, a; and b;.
Consider any particular set of basic variables and substitute the value zero
for each of the non-basic variables.
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THE CLASSICAL TRANSPORTATION PROBLEM -

Contrary Assumption: Assume that no row or column has exactly one
basic variable. We discount the possibility that some row or column might
have no basic variables since this would mean that the left member of
the corresponding equation would be zero while the marginal total, presumed
arbitrary, could be non-zero. Hence, all columns under our assumption must
have two or more basic entries. If % is the total number of basic entries in
the array, then, since there are at least two such entries per column, we

must have
k>2n

Similarly, we have
k>2m

since there are at least two basic variables per row. Summing, we get

(6) k>m+n

Now, there are m + n equations, but since condition (1) renders one of
these redundant, the number of basic variables, k, must also satisfy

(7 k<m-+n

in direct contradiction to (6). Thus, we have proved

LemMa 1: Some row or column has exactly one basic entry.
Now to establish the triangularity of the basis, we must show

LemMA 2: The subsystem resulting by the exclusion of any redundant
equation from the original system still contains an equation in exactly one basic
variable.

Suppose we drop some equation as redundant, say, the last row equation,
and again make the contrary assumption, then

(8) k>2n
K> 2m —1)

where &’ is the total number of basic variables in all but the last row. How-
ever, since there is at least one basic entry in the last row, we have

9) >k +1
Hence, adding both relations in (8) and (9), we have
(10) 2% >2m + 2n —1 or

Ek>m+n—13

contradicting the fact that at-least one equation is redundant. This proves
the lemma.

Now, starting with the original array, we delete the row or column having
a single entry and repeat the argument for the reduced array, etc., thereby
establishing the theorem.
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14.2. ELEMENTARY TRANSPORTATION THEORY

THEOREM 3: The values of all basic variables are integers if the row and
column totals are integers.

Proor: The value of each basic variable is the same as a marginal
total of some reduced array, but this is expressible as the difference between
partial sums of the original row and column totals (see Corollary 1).

Simplex Multipliers.

Instead of using the symbol «,;, we represent the multiplier of the sth
row equation as u;, and that of the jth column equation as v,. Since any
equation may be considered redundant, we can assign an arbitrary value to one
of the simplex multipliers and then evaluate the set of multipliers, thereby
rendered unique, which will cause the vanishing of all the relative cost
factors corresponding to basic variables. For the present, we will suppose
that

(11) v, =0

After multiplying the ith row equation of (2) by u, and the jtb column
equation by v,, we subtract the weighted sum from the objective form, to
obtain a modified z-equation,

(12) Z Gty =12 — %

i,

where
(13) Cij=¢y;—(u;+v) fori=1,2,... m;and
i=12,...,n
and
m n
(14) 2y = Z au; + z bv;
i=1 j=1

The values for u; and v; are chosen to make the coefficients of the basic
variables vanish, i.e.,

(15) Cij = U; + v; for z;;, a basic variable

Note that (15) defines a system of equations in which the simplex multipliers
play the part of variables. This system of equations has a matrix which is
the transpose of the particular basis for which we desire simplex multipliers.
(The basts, it will be recalled, is the matrix of coefficients belonging to the
basi¢ set of variables (§ 4-2 and § 8-2).)

Exercise: Show that u; and v; may be replaced by (u; + %) and
(v; — k) without affecting the value of ¢,; and Zp in (13) and (14); hence,
any one of m + n multipliers may be given an arbitrary value in determining
the remainder.

THEOREM 4: When the unit costs, c;;, are integers and one multiplier is
given an arbitrary integral value, then all the simplex multipliers will be integers.
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THE CLASSICAL TRANSPORTATION PROBLEM

Proor: Since the basis is triangular, so is its transpose. Moreover, the
transpose is also of rank m + n — 1. This means that the values of u; and
v; satisfying (15) can be obtained uniquely, after one of them is arbitrarily
assigned, in the same manner as the values of the basic variables; i.e., by
looking for one equation in one unknown, etc. Since the coefficients in the
basis are either unity or zero, the values of u; and v; will be sums and differ-
ences of c,; corresponding to basic variables. -

Finding an Improved Basic Solution.
The simplex criterion for optimality is &; > 0 for all (s, j), i.e.,

(16) i = U + V), fori =1,2,. .. m;and
i=12,...,n
On the other hand, if for some s and ¢

(17) Cst < Usg + Uy

then a new basic solution is obtained by increasing the value of the non-basic
variable, z,,, if possible, and adjusting the values of the basic variables so
as to compensate.

To determine the effect of increasing z,, the terms involving z, are
moved to the right in (2), and the values of the basic variables are
redetermined.

THEOREM 5: If the value of a non-basic variable, z,, 18 allowed to increase,
with the other non-basic variables remaining at zero, the value of any basic
variable, x,;, will change from x; to

(18) Ty = 2% + Oy, where =0 or 1

Proor: When, in the Igeneral simplex process, the non-basic variable,
z,, is allowed to increase while the other independent variables remain at
zero, the value of the it® basic variable is given by

z;, = b; — @;.x,
13

where b; is obtained by solving the basic system of equations when the
right-hand side of the it equation is ;. The value of 4, is obtained by solving
the same system when the right-hand side is a,. In this case, the coefficient
of z,,, as given in (2), is unity for the st® row equation and for the ¢*2 column
equation, and zero elsewhere. Hence, the coefficient of x,, in the canonical form
is obtained by solving for the values imposed on the basic variables when the
constants are replaced by a, = 1 and b, = 1, while all other a; and b; are zero.
By Corollary 1, the value of a basic variable is the difference (positive or
negative) between some partial sum of the a; (which in this case can only
be unity or zero), and some partial sum of the b; (also unity or zero). This
difference must clearly be +1, 0, or —1; (18) is thus established.
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14-2. ELEMENTARY TRANSPORTATION THEORY

Degeneracy.

If all a; are positive, then degeneracy in the transportation problem can
be avoided by considering the class of perturbed problems:

Zy, Zyo oo o Typ ay
Ty Zyg RN ay
(19)
Tm-1.1 Tmo1.2 : ¢ - Tmn Ay
Zony Zpmo v o Tpn a,, + ne

by+¢e by+e...b,+¢

For our discussion, we shall assume that the last row equation has been
omitted as redundant. An arbitrary basic solution is chosen by the process
of Theorem 1, except that basic variables are not selected in the last row
until all other rows have been eliminated. If, at any step, there is a tie for
&£ = 0 between a reduced row and column total, then that total with the
smallest coefficient of ¢ is selected for the minimum.

THEOREM 6: It 13 not possible that there be a tie for minimum and thus
a degeneracy in the basic solution for the subsequent perturbed problem.

Proor: The coefficient of ¢ in any row total of the reduced array is
either zero or negative, since it is composed of a non-vacuous partial sum
of the a, (excluding a,, + n¢), minus a (possibly vacuous) partial sum of the
b; + &. Similarly, the coefficient of ¢ for any column total of the reduced
array is always positive, since it is composed of a (non-vacuous) partial sum
of the b; 4 ¢, minus a (possibly vacuous) partial sum of the a, (excluding
a,, + ne).

The adjusted row totals in each reduced array will always remain positive
(non-zero) for ¢ = 0, while the column totals will be nonnegative. We can
see this inductively. Assume all a, are positive and all b; are nonnegative.
Suppose this is still true for some reduced array, so that a; = « — pe (where
« is positive and p is nonnegative), and that b = 8 + gz (where § is non-
negative and ¢ is positive). Now, if x,; becomes a basic variable, then its
value is Min [(x — pe), (8 + ¢¢)]. For a < §, the row total is satisfied and
the new column total becomes (8 — «) + (p + g)e, where (8 — «) is non-
negative and (p + g) is positive. On the other hand, if § < «, then, for
¢ in some range, 0 < & < &), the column total is satisfied, and the new
row total becomes (¢ — ) — (p + g)e, with (@ — ) and (p + ¢) both
positive.

This establishes the assertion that the enitial basic solution is non-
degenerate for a positive range of ¢ in the neighborhood of & = 0. If we
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now perform an iteration of the simplex method, the new basic solution is
feasible for some positive range of e. Since the basis (formed by excluding
the last row equation) is triangular, we have (by a repetition of the same
argument as above) that the values of the new basic variables are of the form
« + &, where either « is positive or it is zero and g is positive. Hence, the
new basic solution must be nondegenerate for some range of ¢, 0 < ¢ < &
and the first two basic solutions remain feasible and nondegenerate for any
0 < & < Min (g, &)-

In general, for any sufficiently small ¢, there will be a positive (non-zero)
decrease in the value imposed on z after each cycle. Orden [1956-1} has
shown that no basic feasible solution can be degenerate if 0 < & < 1/n.
(See Problems 14 and 15.) Thus, no basis can be repeated, and the algorithm
will terminate in a finite number of steps.

14-3. COMPUTATIONAL ALGORITHM FOR THE
TRANSPORTATION PROBLEM

A notable feature of this problem is that, whereas linear programs
typically require hand-operated calculators or, for larger problems, high-
speed computing machinery, the transportation problem frequently is best
solved by nothing more sophisticated than pencil and paper, since additions
and subtractions are the only calculations required.

The standard transportation array § 14-2-(3) is repeated here for con-
venience. The array appearing here, however, is slightly different in that
it contains certain Theta symbols. These are part of the computational
procedure and will be explained later in this section.

£11 x2 — 0 + 6% ay
1) {enter)

Cy1 Cy2 C13 €14 C1 Uy

x22 + 0 x94 — 6 az
Coy Cap Cas Caq Cag Uy

x33 x34 + 6 xg5 — O a3
Ca1 Caz C33 C3¢ C3s Ug

b be b3 by bs
Implicit

vy v, vy v, vg|| < Prices ¢

Finding a Good Starting Solution.

Computationally, the starting rule of solution given in the last section
is not too practical, since usually the number of iterations required to
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achieve optimality can be greatly reduced if the basic set is selected with
some reference to the values of the coefficients in the objective form. Several
rules for selection can be found in the literature; one is

The Least-Cost Rule: Secan the

‘n  Ci2 C1n

. [ Cog . - - C
2) Unit Cost Array: 2 22 2n
cml cm2 Cmn

for the smallest c;; and choose the first basic variable, z,,, such that

(3) Cpe = Min c;;
G, 5

The value of z,, is chosen to be the minimum of its row or column total,
and the row or column where the minimum is attained is then ineligible for
the assumption of further increases in the values of its variables; if both
the row and the column totals are minimum simultaneously, then either the
row or the column is made ineligible, but not both. For subsequent entries,
find the smallest cost factor, ¢;;, among those remaining in eligible squares,
and set the corresponding value of z;; as large as is consistent with row and
column totals (and with the values already entered). In all, m 4+ n —1
entries will be made. If any of these m 4+ n — 1 values is zero, it is important
that a zero symbol be entered to distinguish this zero of a basic variable
from the zero of a non-basic variable (the latter being indicated by the lack
of any numerical entry). The steps that follow apply to the initial or to any
subsequent basic solution.

Computing the Values of the Implicit Prices (Simplex Multipliers).

First of all, since one equation must be redundant, we may set one of
the prices at an arbitrary value. A good convention is to find a row or
column having a great many basic variables and to set its corresponding
price at zero. The remaining u; and v; are then so chosen that

4) ¢y — u; —v; =0, if z,; is basic

We can determine such prices by scanning the squares corresponding to
basic variables until one is found for which either the row price, u;, or the
column price, v;, has already been evaluated; subtracting either price from
¢,; determines the other price. The fundamental theorem on the triangularity
of the basis guarantees that repeated scanning will result in the evaluation
of all u; and v;.

Optimality Criterion: By inspection, every unit cost, c,;, is compared
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with the sum of the implicit prices of its row and column. If their differences,
which are the relative cost factors; are all nonnegative, that is, if we have

(®) € =cCy — (u; +v;) =0

for every square in the array, then the basic solution is optimal and the
- problem is finished.

Finding a Better Basic Solution.

If some &;; is negative, then a non-basic variable, z,,, is entered into the
basic set, replacing one of the m + n — 1 basic variables which is dropped
from the basic set and becomes just another non-basic variable.

Choose z,, to be the new basic variable, where

6) Cot — Uy — Uy = Min {(cy — % — v;) < 0]
(1,3

The symbol, +6, is entered in square (s, ) to indicate that a value,
called 6, will be given to the non-basic variable, z,,. Next, assuming that
x,, = 0, the basic entries are symbolically adjusted to compensate; we will
append (+0) to some, (—6) to others, and leave the rest unchanged. Because
of the property of basis triangularity, it will always be possible to evaluate the
basic variables, whatever be the values assigned to the non-basic variables, by
repetitive scanning of the rows and columns for one in which only a single
basic entry remains undetermined. This entry is symbolically adjusted (if
necessary), and the scanning is repeated until all entries have been con-
sidered.

The symbol, 8, is replaced by the largest numerical value which does not
require any basic entries to be nonnegative; that is, 6 takes on the value,
2%, of the smallest entry to which the symbol (—0) is appended, so that
2, — 6 becomes zero. Thus, z,, is the variable to be dropped from the basic
set. (If several variables are tied for smallest entry,! only one of them is
selected for rejection; the choice can be made randomly (see § 6-1) or by
the special perturbation procedure given in § 14-2-(19).)

" Using the value of 6 so determined, all the basic entries are recomputed
and will constitute a new basic solution. Théreafter, as necessary, we repéat
the cycle.

Three examples follow. The first is the original example due to Hitchcock,
the second is an “assignment’” problem (a transportation problem in which
each z,; equals zero or one, while all a; and b; are unity (see Chapter 15));
the third illustrates the perturbation method for avoiding degeneracy.

1 This is the case of degeneracy. It is not known whether circling can occur in the
transportation case, but a simple procedure for avoiding degeneracy is illustrated in
Example 3 and represents only a trivial amount of extra work.
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14-3.

Column
Totals

COMPUTATIONAL ALGORITHM FOR TRANSPORTATION PROBLEM

TABLE 14-3-I
Example 1 (Hitchcock)
Cycle 0
Row
Totals
25 25
10 5 6 i —1
20 — 0 5490 25
8 2 7 6 -2
15 +6% 30 5—6 50
(enter) (drop)
9 © 3 4 8, 0
15 20 30 35
Implicit
9 4 4 8{| <« Prices 4
Cycle 1 (Optimal)
25 25
10 5 6 7 0
15 10 25
8 2 7 6 —1
15 5 30 ‘50
9 3 4 8 0
15 20 30 35
Implicit
9 3 4 7}| <« Prices 1t
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TABLE 14-3-I1

Example 2 (4 x 4 Assignment Problem)

Cycle 0
Row
Totals
040 0—0 1 1
(drop)
14 5 5 0
1 1
2 12 6 7 -1
1 1
7 8 3 9 -5
0 1-0 9* 1
(enter)
2 4 10 —1
Column |- Ll N [ . _
Totals |1 1 1 1
Implicit
3 5 8 51| «— Prices %
Cycle 1 (Optimal)
0 1 1
14 5 8 5 0
1 1
2 12 6 7 -1
1 1
7 8 3 9 —4
1] 1 (1} 1
2 4 6 10 —1
1 1 1 1
Implieit
3 5 i 5|| <« Prices ¢
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Column
Totals

TABLE 14-3-I11

Example 3 (Perturbation)

COMPUTATIONAL ALGORITHM FOR TRANSPORTATION PROULEM

Cycle 0
Row
Totals
1 1
14 5 8 5 -5
1-0 + 0% 1
(enter)
2 12 6 7 0
1 1
ki 8 3 9 -3
€+ 6 1+e€ € c— 0 1 + 4e
(drop)
2 4 6 10 0
14 € 14 € 1l+4+e€ 1+4+e€
Implicit
2 4 6 10|| < Prices ¢
Cycle 1 (Optimal)
1 1
14 5 8 5 -2
l—e€ € 1
2 12 6 7 0
1 1
7 8 3 9 -3
2¢ 14 € € 1 + 4¢
2 4 6 10 0
1+4+e€ 14¢€ 14e¢€ 1+e€
Implicit
2 4 6 7|} < Prices ¢
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14-4. PROBLEMS

. (Review.) Prove that 3™ a,= 3" . b, is a necessary and sufficient
i=1"1 Li=1"2 Yy

condition for the feasibility of a transportational problem.

. (Review.) Prove there are m + n — 1 independent equations in the

classical transportation problem, and that any equation can be dropped
as the redundant equation.

3. (Review.) What is the dual of the transportation problem ?

4. (Review.) Prove that any basis of the transportation problem’s dual is

6.

triangular.

. (Review.) Show that the simplex multipliers u; and v; are integers if ¢;;

are integers and u, is an integer.

Prove that in a regular transportation problem (u,, = 0) the values of
the implicit prices are always +1 or 0 or —1 if all ¢;; = 0 except ¢;; = 1.

. Prove for the classic transportation problem that the unit costs c;; of

any column [ can be replaced by ¢;; + ¢, without affecting the optimal
solution; similarly, for any row %, c,; may be replaced by c;; + 7.

. Prove that the classic transportation problem with some (or all) ¢;; < 0

can be replaced by an equivalent problem where all ¢;; > 0.

. Suppose corresponding values of ¢;; in two rows differ by a constant;

show that the two rows can be combined into a single row.

10. (a) Solve Example 1 (Table 14-3-I) using the perturbation method.

11.

12.

13.

14.

15.

16.

(b) Solve the transportation problem given in Fig. 16-1-1.

Prove every k X k sub:determinant of coefficients of a transportation
problem has value +1, 0, or —1.

Solve the transportation problem of Chapter 1.
Solve the transportation problem of Chapter 3.
{(Orden [1956-1].) Prove that if a;, b; are integers for: =1, 2, . . ., m;
j=1,2,.. . nandif b; are replaced by b; + (1/r) and a,, by a,, + 1,
then the new problem is never degenerate for a basic feasible solution

and the corresponding solution for the unperturbed problem is always
feasible. How can this be used to guard against the possibility of circling ?

(Orden [1956-1].) With reference to Problem 14, show that fractions
can be avoided in applying the simplex algorithm if the original b; are
replaced by nb; + 1 and the a, by na, except a,, by na,, + n.

(Unsolved.) Can a degenerate transportation problem ever circle?
(See Chapter 10.) If the answer is no, is a perturbation scheme required
such as that deseribed in Chapter 10 or such as the simpler one given in
§ 14-2-(19) and in Problems 14 and 15?
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CHAPTER 15

OPTIMAL ASSIGNMENT AND OTHER
DISTRIBUTION PROBLEMS

The transportation problem, as set forth in the preceding chapter,
appears to treat a rather narrow situation. However, the method developed
for dealing with the problem may be extended to certain cases which are
different in appearance but which can all be shown to be equivalent to the
classical case:

1. Optimal Assignment
We shall take up the problem of optimally assigning tasks to operators.

2. Allocation When Surplus and Deficit Are Allowed

We shall give a means for dealing with the transportation array when
the assumption of exact sums for the rows and columns is relaxed.

3. Fized Values

We shall explore the problems that arise when some of the variables
in the array must assume certain predetermined values (e.g., zero).

15-1. THE OPTIMAL ASSIGNMENT PROBLEM

The term “assignment’ describes the problem concerned, typically, with
finding the best way to assign » persons to n jobs, assuming that the indi-
viduals vary in their suitability for a particular job. We shall assume that,
by means of performance tests, the “value” of assigning the ‘R person to
the jtB job can in some sense be determined. The negative of this value (i.e.,
the unit cost) will be denoted by c;;. Suppose for each ¢ the itt person has
been assigned to job p;; the total cost, z, for this assignment of personnel
will be, we assume, the sum of the individual costs, that is,

n
z2 = E Cip,
i=1

The numbers p,, Py, - - -, P, constitute a permutation of 1,2,. . ., n; hence,
the optimal assignment problem is to find a minimizing permutation.
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Stated in this form the problem is evidently combinatorial. There are n
ways in which to choose p,, (n — 1) ways remaining to choose p,, . . ., or

nl= @m)n —)n —2)....@2)1)

different possibilities. For n = 6, n! = 720, and one might pick the smallest
value of z after calculating the costs of all the 720 possible assignments.
But the number of possibilities grows rapidly. For example, 12! =~ 4.79 x 108
To attempt the solution of even a 12 X 12 assignment problem by seeking
all the permutations is not very practical even on present-day computers.
However, the problem can be reformulated as a 12 X 12 transportation
problem which, through the procedures described earlier, can be solved by
hand in a few minutes. For this purpose, let

1) v — {1 if the it individual is assigned to the j* job
i =

0 if not

Because (we assume) each person can be assigned only one job, we have

()

z;=1 fort=1,2,.. .,n

v

—

<,

and, because each job is assigned to only one person,

e

-

®3)

z;=1 forj=12,...,n

i=

Square arrays of nonnegative numbers, z,;, with the property that all
row and all column sums are unity, frequently appear in statistical theory.
They are called doubly stochastic matrices, and the z;; are interpreted as
probabilities (not necessarily zero or one). When such arrays have all z;
zero or one, they are called permutation matrices.

The objective of the assignment problem is to choose z;, satisfying (1),
(2), and (3), in such a way that the total cost,

n n n
(4) z = Z Cip, = z Z CiiT4j

is minirized. ’

Condition (1), however, forestalls the direct application of linear pro-
gramming methods to this formulation. Conditions of this type can, in
themselves, make a problem very difficult to solve. The condition, “z;; = 0
or 1,” assigns x;; a disconnected range composed of discrete values, as diagram-
med in (5).

G ®...... ® ...... Ty

Another example of a disconnected range which can take a problem out of
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the direct reach of linear programming methods is the condition, “z; = 0
or 1 < z,;<2,” depicted in (6).

©® ... ® ...... Ommm———y . ..... T

In Chapter 26, we shall develop general methods for handling conditions
such as these, which generate variables having disconnected or discrete
ranges.

In lieu of the assignment problem formulated above, we shall show that
we can obtain an equivalent transportation problem simply by replacing (1)
with the condition,

(7) 0< oy

Garrett Birkhoff [1946-1] showed that the set of permutation matrices is
given by the extreme points of the convex set defined by the conditions for
a doubly stochastic matrix with nonnegative entries; i.e.,

THEOREM 1: An optimal solution of the assignment problem {(1), (2), (3),
and (4)} is the same as an optimal solution of the linear programming problem
given by {(2), (3), (4), and (T)}.

Proor: Each basic feasible solution has the property that the =z
values are either zero or one, for Theorem 3, § 14-2, states that if the row
and column totals are integers, then so are the values of the basic variables,
and it is clear from (7) and (2), or (7) and (3), that the only integer values
possible for z,; are zero and one. It follows that an optimal basic feasible
solution will be a permutation. Since all permutation solutions satisfy
conditions (2), (3), (4), and (7), and since the minimizing solution is a
permutation, it must also be a minimizing solution for the original assign-
ment problem. Von Neumann [1953-1] establishes Birkhoff’s theorem by
reducing an assignment problem to an interesting matrix game. See also
[Marcus, 1960-1].

Degeneracy.

Degeneracy, as earlier defined, occurs whenever one or more of the basic
variables are zero. The linear program equivalent to an assignment problem
has the property that every basic solution is degenerate, since exactly =
basic variables must receive unit value, and the remaining n — 1 basic
variables must, therefore, all be zero. If the number of basic variables with
zero value is taken as measuring the “extent” of degeneracy, the equivalent
linear program is seen to be highly degenerate. As pointed out earlier, it is
not known whether circling can occur in transportation problems. (See
Chapter 10.)

In practical work where, because of degeneracy, there is ambiguity as to
which basic variable should be dropped, various procedures can be adopted.
A simple rule would be to choose the variable, z,,, whose corresponding c,,
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is maximal. The special &-perturbation method developed in § 14-2-(19) for
avoiding degeneracy in transportation problems, requires but a trivial
amount of extra work and can be used whenever insurance against circling
is necessary. A second method, guaranteed with probability one, is simply
to resolve the degeneracy by random choice (see § 6-1).

Equivalence of Transportation and Assignment Problems.

We have already seen that the assignment problem is but a special case
of the transportation problem. We shall now show that, mutatis mutandss,
the transportation problem is, in its turn, a special case of the assignment
problem, so that the two problems are completely equivalent. We shall
assume that a; and b; are integers; if they were rational fractions, then,
through a change of units, they could immediately be replaced by integers,
while if irrational, they could be rationally approximated and then replaced.

A constructive proof will be indicated by example. Consider the trans-
portation problem defined by tableau (8).

(8) Tn Tyo Zy3 Z1a 2=
¢y = 10 Cp =5 Cia =6 e =7
Tey Tag T3 Taq 3 =a,
€y =8 Cyg = 2 Cog =T Co =6
Ty T3g L33 T34 1 =u
cyp = 9 ¢ = 3 €y = 4 ¢ =8
2 == b 1 = b, 1= by 2 = b,

The first row equation

o

Ty + Zyp + Tyg o+ Ty =
is replaced by two equations (since a, = 2),
’ ’ ’ ’
T+ 2t I+ E, =1
” 4 " " —
T+ 2 + 2 2 =1
The second row equation
Tgr + Tap + Tag + Lo = 3
is, similarly, replaced by three row equations (since a, = 3),
’ ! ’ ’ —_ 1
e 2 i
Ty + gy + Tpg + Ty = 1

" V4 "t /4
Ty + Tpp + Thy + Ty =1
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Since ag = 1, the third row equation is left untouched. This results in an

equivalent transportation problem with all row totals unity, as given in (9).

) *n *a *y x4 1 =aj
¢i, = 10 5 6 7

*1 *{g *{3 *{4 1 = af
o, = 10 5 6 7

x5 *39 *i3 X5y 1=a;
8 2 7 8

x4y *39 *33 *34 1=a
8 2 7 6

*f 3 g =g, 1=ay
8 2 7 6

%31 %32 X33 X34 1=ua3
9 3 4 8

2 1 1 2

In this table, ¢;; = 10 has been replaced by (c;; = 10 and c;; = 10), ete.
Any solution of (9) yields a solution of (8) upon setting

Ty, + 2 =2y, Ty + Ty + Ty = Ty
Typ + Ty = 21a Zgy + Tgy + Tgy = Ty
Tyg + i3 = T3 Tgg + Ty + Tyg = Ty
Tiy + 2y = Ty Toy + Toy + Tyy = Ty

Because of the linearity of this relationship and the equality of the corre-
sponding cost coefficients in (9), it is clear that the same values of z are
obtained for (8). Moreover, if the original problem has a solution, then a
solution of (9) can be obtained by apportioning the z,; between the rows in
any arbitrary manner, provided the row totals are unity. For example, the
z;; values in the first row of (8) can be divided equally between the two
corresponding rows of (9); the second row values can be divided into three
equal parts. The same value of z is obtained. From these observations, it
follows that a minimizing solution of the first problem corresponds to a
minimizing solution of the second, and conversely. Hence, the two problems
are equivalent.

So far, however, only the row equations of (9) have been modified. To
obtain the corresponding assignment problem, it is necessary to modify the
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column equations in a similar manner. The result is the assignment array
given below, with y,; denoting the new variables.

(10) yu yiz yi3 yie yis Y16 ‘ 1
10 10 5 6 7 7
ya1 ya2 ya3 ya4 yes Ya6 1
10 10 5 6 7 7
y31 Yaz a3 Y34 35 Y36 1
8 8 2 7 6 [
ya Va2 Y3 Y44 a5 Va6 1-
8 8 2 7 6 6
ys1 52 53 Y54 55 Y56 1
8 8 2 7 6 6
o1 Ye2 63 Ye4 Y65 Ye6 1
9 9 3 4 8 8
1 1 1 1 1 1

Some Typical Uses of the Assignment Model.

Machine Set-up Time (See Problem 1). A job has n tasks to be assigned
concurrently to n different machines. Each machine must receive an adjust-
ment so as to adapt it to the particular task assigned. Cost is the time it
takes to do this, and total cost is the sum of the man-hours thus consumed.
The time it takes to set up a machine depends on what the machine was
doing previously; if the same kind of task, it will not be necessary to reset
the machine, or if the same raw material is used, it may not be necessary
to remove residual material, and so forth.

The Marriage Game (See Problem 2). A pioneering colony of 10
bachclors is joined by 10 prospective brides. After a short period of courting,
it is decided to have an immediate ceremony. Each bride is given a list of
10 names on which she is to list her preferences in a scale of 10, e.g., she may
assign her first choice the number 10, her second choice the number 9, ete.
She may also cross out names unacceptable to her. We assume that the sum
of the assigned numbers constitutes a valid measure of the anticipated
“happiness” of the colony in marital bliss [Halmos and Vaughan, 1950-1].

In taking leave of this example the reader may be amused by the
following story:
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In 1966, at the summer meeting of the Operntions Resenrch Society in
Los Angeles, 1 (the author) was interviewed by the press. The reporter
turned out to be the brother of my small daughter’s piano teacher, and so
we became quite friendly. I explained to him that linear programming
models originated in the Air Foree, and T deseribed their growing application
to industrint problems. It heenme obvious that this veteran Hollywood
reporter was having a hard time seeing how to make the material into
exciting news copy. In desperation I suggested, “How about something with
sex appeal?” “Now you're talking,” he said. “Well,” I continued, “an
interesting by-product of our work with linear programming models is a
mathematical proof that of all the possible forms of marriage (monogamy,
bigamy, polygamy, etc.), monogamy is the best.”” “You say monogamy is
the best of all possible relations ?”’ he queried. “Yes,” I replied. “Man,” he
said, shaking his head in the negative, “you’ve been working with the wrong
kind of models.”

15-2. ALLOCATION WITH SURPLUS AND DEFICIT

It is often possible to identify one set of totals, say a;, as the amount
available at origins and b; as the amount required at destinations, but in some
applications it may be impossible (or unprofitable) to supply all that is
required or to ship all that is available. Accordingly, the array takes the
form (1), with Za; > Zb,,

(1) Origins Destinations j Row Totals

1 1 2 ...n Available
1 £y Ty - . -Typ <o
2 Ty Tag - - - Tom <a
m Ly xmz" « «Ton Sa'm

Column < < ...

Totals ‘

Required | b, b, .. .0,

where the inequality symbols indicate that the row and column sums do not
exceed the corresponding totals, a; and b;.

Let x;, denote the surplus at the ith origin and z,; the shortage at the
Jt8 destination, and let zy, be the total amount shipped from all origins to
all destinations, so that

m n
(2) ZLop = z z Ty
i=1

% j=1

[ 322 ]
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Upon augmentation with a surplus eolumn and a shortage row, to accom-
modate the slack variables, 2, and z,;, array (1) takes the form (3).

(3) Surplus .. Row Totals
Column Destinations Available
Shortage =
Rowg Zoo Zgy - - - Ton = Z b;
1
o Z10 I - Z1n =0y
Origins || ... | ....... R
Tmo Zmi- - - Tmn = Qp
Column m= =oeo e =
Totals
Required Z a; b, .. .b,

This is a standard transportatiorj array, because it is clear from the way
we have defined the variables that

(4) iai—ixio=§n:bi“ixw=§ixﬁ'=x¢m
i=1

i=1 i=1 j=1 i=1j=1

We have thus converted (1) to the standard format, but it should be
noted that if there is no penalty associated with failure to deliver the
required amounts, then there is really no problem at all; simply ship nothing.
A meaningful problem exists only where failure to ship means a loss of
revenue or good will, i.e., where positive cost factors, ¢,y or ¢y, are assigned
to surplus or shortage.

Surplus only: In case the availabilities exceed the requirements (i.e.,
Za; > 2b;), but requirements must be met exactly, the array takes the
form (5). .

(5) Surplus - Row Totals
Column Destinations Available
Z10 S VI DR St =0
Origins Zg Ty Loy - - - Tay = a,
Lo Tmi ZTm2- - - Tmn = 0n
Column = = = ...=
Totals
Required { Za; — Zb; | b, b, .. .b,
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Shortages only: In case the requirements exceed the availabilities (i.e.,
Zb; > Za;), but all available supplies must be shipped, the transportation
array takes the form (6).

e Row Totals
(6) Destinations Available
Shortage
Rowg Zyy Zog - - - ZTon || = Zb; — Za,
Zy %y - Tin || = 0y
Origins ||................
xml x m2 x’mn == a"m
Column | = = ...=
Totals
Required | &, b, .. .b,

Theoretical Background.

Upon introduction of slack variables, z,, and z,;, the surplus-shortage
problem may be displayed as in (7).

(M) Tyy Tog - - - Ton
Zio | Tu1  Tr2 Tin =y
Tmo Tm1y  Tma Zrmn = Qp

b, b, b,

All m + n equations are independent, in contrast to the classical transporta-
tion case, in which only m + n — 1 are independent. For example, it is
easy to see that the slack variables constitute a basic set of m 4 n variables.
Moreover, every basis is triangular. Proceeding as in the proof given
earlier for the basic triangularity of transportation problems, let f be the
number of basic variables among the surplus variables, z,, ¢ among the
shortage variables, x,;, and 2 among the non-slack variables, so that

g

(8) ontm=f+g+h fih
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THEOREM 1: Ewvery basis contains at least ome slack variable, i.e.,
f+g=1

Proor: If some basis has no slack, then it would also constitute a
basis for the analogous transportation problem, without slack. This can
only happen if g, = Zb;, but in this case we know that the number of
basic variables cannot exceed m + n — 1. We conclude that

9 f+g=1

THEOREM 2: Every basis is triangular.
Proor: If not, then every row (except the shortage row) and every
column (except the surplus column) has two or more bastc variables. Thus,

(10) 2m < h+f, and
2n < h + ¢, so that

(11) n+m<h+ 3f+9)
Since, according to (9), f -+ ¢ is positive, (11) implies the strict inequality,

(12) n+m<h+f4+g

which contradicts (8).

Thus, the assumption that all non-slack rows and columns contain at
least two basic variables apiece must be false, and at least one of them must
therefore contain exactly one variable. Upon deleting such a row or column,
adjusting the totals as necessary, we may repeat the foregoing argument
for the reduced system so derived, so that Theorem 2 is established by
mathematical induction.

Pricing.

If u; and v; are the simplex multipliers (or “‘prices”) associated with row 4,
column j, then the relative cost factors are

(13) € = €y — (u; + v;) for ¢ 3£ 0,5 # 0,
Cos = Coj — V; for j # 0, and
Ci0 == Cip — Uy for ¢ #0

It may be noted that we need not define slack multipliers, u, or v,, since
there is no equation pertaining to row zero or to column zero. For uniformity,
however, it is convenient to assign fictitious prices,

(14) 'u,o = 'Uo = O
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We can then characterize the choice of prices as a selection of u; and »;
such that, if z;; is a basic variable, then

(15) Ui + V5 = Cy5

Optimal Allocation of Receivers to Transmitters. (An example of
allocation with slack.)

A certain engine-testing facility is fully using four kinds of instruments:
two hundred thermocouples, fifty pressure gauges, fifty accelerometers, and
forty thrust meters. Each is measuring one type of characteristic and trans-
mitting data about it over a separate communication channel. There are
four types of receivers, each capable of recording one channel of information:
two hundred cameras, one hundred fifty oscilloscopes, two hundred fifty-six
test instruments called “Idiots,” and fifty others called “Hathaways.” The
set-up time per channel varies among the different types and also according
to the kind of data to be recorded. Assuming that all data must be recorded,
the problem is to find an allocation of receivers to transmitters which
minimizes the total set-up time.

The allocation table takes the form (16).

Measuring Instrument Total
Recording I Recording
(16) Instrument Ct ols
7 Temp. Pressure Accel. Thrust Available
1 2 3 4
Cameras Ty T, 25 Tyg <200
1
1 3 o) 1
Oscilloscopes || z,, Loy Zg3 T4 <150
2
5 5 .5 5
“Idiots” %4, 39 Zg3 T34 <256
3
2 2 10 2
“Hathaways” || z,, 4o Ty Ty < 50
4
1.5 1.5 1.5 1.5
Total Channels
to be recorded |}200 50 50 40

The number, ¢,;, appearing at the lower right of square (3, j) is “cost” or
set-up time of assigning a recording chanmel of the ith type to a measuring
channel of the jtb type The condition that ¢,;3 = co means a camera is not
to be used to record acceleration data. From a procedural point of view,
square (1, 3) is to be avoided, if possible, in forming a starting solution, and
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if avoided initially, it will not thereafter be considered as a candidate in the
basic set. (See § 15-3 for further details concerning inadmissible squares.)
The objective is to choose nonnegative z,; so as to minimize

m n
a1 Z CisT1j
i=1j=1

If slack variables are introduced to measure the number of unused
recording channels, we have the transportation array (18).

Measuring Instrument a;
(18) Recording
Instru- || Surplus Temp. | Pressure | Accel. Thrust
ment 0 1 2 3 4 u;
10 190 200
1
0 1 3 @© 1 5
10 50 50 40 150
2 0 5 5 5 5 0
256 256
3
} 0 2 2 10 2 5
50 50
4
0 1.5 1.5 1.5 1.5 5
b; 316 200 50 50 40
v; —.5 5 .5 5 5

The total of the surplus column is the same as the number of channels
available minus the number of channels required, i.e.,

(200 4 150 + 256 + 50) — (200 + 50 + 50 - 40) = 316

The costs for this column, ¢,, are all zero, because there is no set-up cost
involved in not using a channel.

The basic solution shown was generated by using the rule discussed
earlier in this section for choosing a good starting solution. When several
¢;; were tied for minimum, squares were chosen which caused rows or
columns having high ¢;; values to be deleted. For example, because the set-up
costs for recording most transmissions are highest with the instruments in
rows 3 and 4, allocations to surplus were made in these rows first. This left
rows I and 2, and columns 1, 2, 3, and 4. Because the costs in the second
row are all exceeded by the corresponding first-row costs for these columns,
allocations to surplus were made next in row I. The remaining allocations
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follow the rule given earlier. Computing the implicit prices, one can easily
establish that this basic solution is optimal.

When recording instruments are in short supply (or are not of the most
suitable types), a decision must be reached as to how much of each kind of
data not to record. Consider the following unit-costs which the engineers
assigned to the shortage row and surplus column:

cop = 10, cgp = 10, co3 = 4, ¢y = 100,
Clo =0, Co9= —1,Cq0=0,¢50=0, and oo =0

For example, it is 25 times more costly to neglect thrust data (cy = 100)
than to neglect acceleration data (cey = 4). In general, however, it is less
costly to record data than to neglect it.

The negativity of ¢, is an expression of the fact that unused oscilloscopes
may be profitably employed outside the model; how profitably, may be
difficult at times to determine. As noted in § 14-4, Problem 7, the optimal
solution is unaffected when we increase all the c;; in a row or column of the
equivalent transportation array by a constant. Accordingly, in experimenting
on the effect of changes in the c;;, it is advisable to hold at least one cost
factor at a fixed value in a row and some column.

This problem may be treated by means of the standard transportation
array, (19), with a shortage row and a surplus column. Alternatively, it may

Recording Measuring Ixistrument ay
(19) Instru-
ment Surplus Temp. Pressure Accel. Thrust
% 0 1 2 3 4 %
Shortage |} 340 340
0
0 10 10 4 100 .5
10 190 200
1
0 1 3 o 1 5
10 50 50 40 150
2
~1 5 5 .5 5 0
256 256
3
0 2 2 10 2 5
50 50
4
0 1.5 1.5 1.5 1.5 5
by 656 200 50 50 40
vy —.5 5 5 5 .5
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be set up as in (7). From a computational viewpoint, the two methods are
almost identical, as may be seen by perusal of (20) and (21).:

Phase II—Cycle 0

(20)
10 10 4 100
10— 0 190 4+ 6 200
0 1 3 @ 1 0
0% 10-0 50 50 40 150
-1 0.5 0.5 0.5 0.5 —-0.5
256 256
0 2 2 10 2 0
50 50
0 1.5 1.5 1.5 1.5 0
200 50 50 40
1 1 1 1
Phase II—Cycle 1—(Optimal)
(21) .
10 10 100}
200 200
0 1 3 © 1 -5
10 0 50 50 40 150
-1 0.5 0.5 0.5 0.5 -1.0
256 256
0 2 2 . 10 2 0
50 50
0 1.5 1.5 1.5 1.5 0
200 50 50 40
1.5 1.5 1.5 1.5
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15-3. FIXED VALUES AND INADMISSIBLE SQUARES

In solving transportation problems, it quite often happens that some of
the variables must assume predetermined values. In the preceding section,
for example, it was not possible to assign cameras to record acceleration
data, so that z,; had to be zero. Similarly, if there exists no route from an
origin ¢ to a destination j in a network, then the variable x;; must be zero.
In the problem of assigning people to jobs, certain assignments may be
mandatory; for example, assigning a physician to a medical position. Note,
however, that a fixed variable can always be replaced by a zero-restricted
variable after subtracting its predetermined value from the corresponding row
and column totals. We will designate the squares associated with zero-
restricted variables as inadmissible and will shade such squares when they
appear in a tableau.

If only a few squares are inadmissible, the best practical procedure is to
attempt an initial basic feasible solution by using the least-cost rule discussed
earlier, § 14-3-(3), but there are a great many problems in which inadmissible
squares can be avoided only at the expense of selecting basic variables
having higher unit-costs than would be suggested by this rule. Moreover,
if too many squares are inadmissible, there may be no solution, or no readily
discernible basic solution, using a set of variables selected from the
admissible squares. ’

If there appears to be no way of avoiding inadmissible squares, they
can be used to furnish artificial variables for a simplex Phase I, in which a
basic feasible solution will be constructed if possible. For this purpose, the
infeasibility form, w = 37, >7_, d,x,;, is used, so that the ¢,; entries in
the array are replaced by

4. = 1 if (4, 5) is inadmissible
4710 if (3, 7) is admissible

If a feasible solution exists, then Min w is zero, but if Min w is positive,
then the problem is infeasible.

Even if the problem is feasible, it may happen that some inadmissible
variables remain in the basic set at the end of Phase 1. If so, they will be
zero in value, and they must remain so throughout the remaining procedure.
Before initiation of Phase II, any non-basic z,; will be dropped from further
consideration if its relative infeasibility factor d; is positive, i.e., if

dﬁ—u;——‘v,->0

where u; and v; are the implicit prices associated with the infeasibility form
at the end of Phase I.
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Examperi:  Find an optimal feasible solution to the transportation
problem (1). The algorithm is initiated with any basic solution such as the
one shown in (2). The latter has two inadmissible basic variables z,,, 24,
indicated by heavy-bordered squares.

14=b | T=by| 5=0by| 17=8,

2) Phase I—Cycle 0
Starting Solution
(c,; replaced by d;)

14 7 5 17

(=

[~
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(3) Phase I—Cycle 1 (Feasible)

% /7/;;//// j
. T

14 7 5 17

(=4

(=4

Phase II—Cyecle 1 (Optimal)
(d;; replaced by c;;)

% MV/% 3
//%, ] B

14 7 5 17

[

-3

]
[

1 0 -2 5

Note: In Phase II, z,; is dropped because dy; > 0 at
end of Phase I. The value of ¢, for the artificial variable
is arbitrary, for example, ¢, = 0.

15-4. PROBLEMS

. Find the optimal assignment of 12 tasks to 12 machines if the time, ¢,;,

needed to set up the *h tagsk on the j't machine is that given by the
first table on page 333. (See § 15-1.)

Find an assignment which gives the greatest total ‘‘happiness,” where
the rating of the jtb bachelor by the ith bride is that given in the second
table on page 333 [Halmos and Vaughan, 1950-1]. (See § 15-1.)

i3}
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TRE MACHINE.-TAask PROBLEM

Tasks

Machines
(1) (2 3) @ (5 (B (O (8) (9H 0) (1) (12)

(1) 79 24 13 53 47 66 85 17 92 47 46 13

(2) 43 59 33 95 55 97 34 55 84 94 26 56

(3) 29 52 26 27 13 33 70 11 71 86 6 76

(4) 88 83 64 72 90 67 27 47 83 62 35 38

(8) 65 90 56 62 53 91 48 23 6 89 49 33

(6) 44¢ 79 86 93 71 7 8 59 17 56 45 59

M3 51 9 91 39 32 3 12 79 25 79 81

(8) 50 12 59 32 23 64 20 94 97 14 11 97

(9 25 17 39 0 38 63 87 14 4 18 11 45

(10) 68 45 99 0 94 44 99 59 37 18 38 74

(11) 93 36 91 30 44 69 68 67 81 62 66 37

(12) 19 386 5 50 49 94 95 17 63 41 84 1

THE MARRIAGE PROBLEM

- >
: 3 g ¢ °
[-+] - o]
= £ & £ 3 3 £ % % 3
& 2 ®m & S5 o ¥ T = B
Jane 9 6 3 X 2 8 7 4 1 5
Mary 3 7 8 1 X 5 4 X 6

Chloe 4 2 1 [ X 8 3 9 7

Beulah | 6 3 5 7 9 x 1 4 2 .8

Phoebe 7 5 6 9 1 8 3 b 2 4

Octavia 1 10 8 4 5 3 6 9 2 7

Juliet | 6 8 10 9 4 3 5 1 7 2

Myrtle | 7 8 4 3 2 6 1 9 5 x

Olga | 3 9 4 2 5 6 7 x 8 1

Mabel 9 3 1 8 X 4 2 7 6 5
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Note: According to the description in the text, each bride is given a list of
10 names on which she is to list her preferences in a scale of 10, e.g., she may
assign her first choice the number 10, her second choice the number 9, etc.
She may also cross out names unacceptable to her. Thus, it should be safe to
assume that all of the brides will have a number 10 (for first choice), which
they do not, according to this problem. It seems that instead they have
assigned the number 9 to first choice if one name is crossed off, 8 if two
names are crossed off. Is this the same problem ?

3. Prove that, for the alternative procedure of §15-2, the m 4 = multi-
pliers, u; and v;, are determined uniquely by m + n of the equations
(14) and (15).

4. (Review.) Show that the system of equations (14), (15) of §15-2 is

triangular. ,

In § 15-2, show that the %, and v, are integers if the ¢;; are integers.

. In a transportation problem with one price set at zero, say u, = 0, or
in a surplus-shortage problem treated by the alternative procedure of
§ 15.2, prove that, if all the cost factors are zero in value except one which
is unity, the implicit prices are always 41, or 0, or —1.

7. Why is z,, dropped on the first cycle of Phase II for the example in

§ 15-37 (See the rules of Phase I-Phase II transition of the simplex method

in § 5-2.)

8. (a) Show that an extra row (or column) of slack variables with arbitrary
unit costs may be introduced into a classical transportation problem
without changing the optimal solution.

(b) Also, show that the solution is unaffected when both an extra surplus
row and an extra “over-supply” column of slack variables with
arbitrary unit costs are introduced.

(c¢) Show in this form there are no redundant equations in the system or
multipliers with arbitrary values associated with a basic solution.

a O
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CHAPTER 16

THE TRANSSHIPMENT PROBLEM

16-1. EQUIVALENT FORMULATION OF THE MODEL

In the Hitchcock transportation problem, cities where goods are produced
(origins) ship only to cities where goods are consumed (destinations); ship-
ments do not take place between origins or between destinations, nor from
destinations to origins. However, while only shipments from origin to final
destination appeared in the Hitchcock model, actual shipments might in
practice be routed through many intermediate cities.

It is tacitly assumed that shipments between any two cities are always
transported via the least-cost routes where cost, ¢;;, may be in terms of
distance, time, or money. In some instances, the amount that can be shipped
on a link between two cities may be limited, in which case it may not always
be possible to fulfill our tacit assumption of a shortest route. Another point
worth noting is that the determination of a shortest route from each origin
to every destination, as is necessary for the Hitchcock formulation, might
in itself be quite a chore. It would be desirable to have an algorithm which
develops this information automatically.

A. Orden [1956-1] proposed a generalized transportation model in which
transshipment through intermediate cities is permitted. For every city, there
is a material-balance equation stating that the amount shipped out minus
that shipped in is equal to the net amount produced there (if positive), or
net amount consumed there (if negative).

We shall consider therefore a generalized transportation model in which
transshipment through intermediate cities is permitted. For every city, there
will be & material-balance equation stating :

Gross Supply = Amount Shipped In + Produced
= Amount Shipped Out + Consumed,

or, in equation form,

(1) DEstal =z tbt=zf (=12...n)
i#] k#j
where

z;; = total quantity shipped from ¢ to j for ¢ # j,
z}; = gross supply at j,

af = the production at city j, and

by = the consumption at city
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THE TRANSSHIPMENT PROBLEM

If local production for local consumption is excluded from the model, so
that either a* or b} is zero, we shall use the symbols a;, b; without the star.
In general, the net production a; and consumption b, are related to a} and
b by

(2) a; = af — Min (a}, b¥): b, = b¥ — Min (a}, b})

We shall refer to a; and b, as the (net) amounts available and required.
The transshipment problem consists in finding x,; > 0 and Min z satis-
fying (1) and the objective equation

3) g 2 = where 1 # j

Upon equating the expressions for gross supply given in (1), we obtain
a complete transshipment model for n cities. The array of detached coeffi-
cients is shown in Table 16-1-1. Excluding the cost factor, each column
contains only two non-zero coefficients, +1 and —1; more generally, if we
allow surplus or shortage, then the rows include slack variables whose
corresponding columns contain only one non-zero coefficient 41 or —1.
(In Chapter 21, systems are considered that have at most two non-zero
coefficients in a column but not necessarily equal and opposite in sign.)

TABLE 16-1-1

TRANSSHIPMENT MODEL—NETWORK FORMULATION
{Detached Coefficients)

Amounts T, T Ty, Z z, z, Progxected or
hi 12 %z ... Ty 21 T2z o0 Tan o0+ Tnr Tz oo T

Shipped " : Consumed
City 1 1 1... 1 -1 -1 at —%?
City 2 |[—1 1 1... 1 -1 af — by

-1 ~1 .

City n -1 -1 1 1... 1 ar — b*
Cost Cig €13 -++ Cin €3 Ca3 o+« Cag +cv Cpg Cng oo Cupaf 2

The general transshipment model is characterized by a cost function and a
system of eguations in nonnegative variables, each column of which contains ai
most two non-zero coefficients (41 or —1 or both). The standard transporta-
tion model is clearly a special case of this formulation. However, under
mildly restrictive assumptions to be discussed in § 16-2, the general trans-
shipment problem will be proved equivalent to the classical transportation
problem.

[336]




16-1. KQUIVALENT FORMULATION OF THE MODEL

The Network Representation.

The array in Table 16-1-I contains n(n — 1) columns corresponding to
the number of ways to ship from each city to any other city. If, however,
all shipments are routed from one city to another by means of a chain of
links between neighboring cities, then we need consider only the network
composed of such local links. All the variables dealing with shipments to
non-neighboring cities can be ignored.

Destination (£,24) Origin (04 =3)

Origin
(a0,=7)
Destination

(bg=2) .,

Cer®10

Figure 16-1-I. An example of the transshipment problem.

In the network shown in Fig. 16-1-I, the cost, c;;, of shipping a ton of
goods from ¢ to a neighboring point, j, is shown on the relevant link: thus
Ca6, the cost from 3 to 6 is 13. We have not shown ¢, the cost from 6 to 3,
because in this example each ¢,; happens to equal c;;. The theory we will
develop, however, is valid even when c;; # Csi

Indeed, although freight rates between two cities are often the same
regardless of the direction of shipment, there might be a good economic
reason why they should be different. A situation in which ¢;; is not equal to
¢;; might actually arise in a pipeline system if ¢ is at the top of a mountain
and j is in a valley, for it costs less to pump downhill than up. As a stabilizing
influence in certain economic applications, Koopmans [1947-1] and Koop-
mans and Reiter [1951-1], have suggested that it would be in the public
interest to have differing rates to encourage demands in the direction of
least use between two cities.

We will show that, with minor modification, the simplex technique
developed for solving the classical transportation problem may be used in
the transshipment case as well. In Chapter 17, we shall present a compu-
tationally convenient procedure, using the network diagram itself, to
exhibit, in an elegant way, the underlying geometrical structure.
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Reduction to the Classical Case by the Direct Shipment Procedure.

In formulating the transshipment model, we assumed no knowledge of
costs except between neighboring cities, but we do presume that the shipping
costs between any pair of non-neighboring cities can be obtained by finding
the minimum sum-of-costs along chains of local links which connect the
two cities through all possible intermediate points (actual freight rates often
do not satisfy this additivity assumption). For small problems, it may not
be too difficult to determine all the minimum costs merely by inspecting the
network. The cheapest ways to ship from origins I and 5 to the three desti-
nations, 2, 6, and 8, in the network example of Fig. 16-1.1, are given by the
classical transportation array, Table 16-1-IIL.

/ TABLE 16-1-IT

Destinations
Origins Available
2 6 8 (ay)
12 16 T8 7
1
Cia =9 € =21] ¢ =29
Tyg Tsg Tss 3
5
Cse = 9 Cgg = 6 | Cgg = 13
Required (b;) || 4 4 2 10

For instance, the cheapest way to ship from I to 6 is along the link
from I to 2 and then to 6. Hence, we set ¢, = €;3 + €y = 9 + 12 = 21.

Although one can in this way solve the transshipment problem by the
classical transportation technique, our present purpose is to show an alterna-
tive approach which has certain advantages:

(a) It avoids the necessity of determining a least-cost route for every
origin-destination pair.

(b) It permits treatment of problems in which certain arcs of the network
have fixed capacities bounding the flows over these arcs.

(¢) It may involve fewer variables, since the number of arcs of a network
often is considerably less than the number of origin-destination pairs.

Reduction to the Classical Case by the Transshipment Procedure.

In Table 16-1-III, an array analogous to the classical transportation
tableau is shown for the transshipment network shown in Fig. 16-1-L
Applying equations (1), the row equations are obtained by equating the
gross supply to the amount consumed plus the amount shipped out; the
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16-1. EQUIVALENT FORMULATION OF THE MODEL

TABLE 16-1-II1
TRANSSHIPMENT MODEL wITH DiacoNAL SUPPLY VARIABLES

ANy
A 0 @
5 /// A ///_/ A% LG
- %%W///Vc“ {/Az,. - Zgs 0 —z?:" —32
il Bl

column equations by equating the gross supply to the amount shipped in
plus produced.

Standard Tableau for the Transshipment Model.

In continuing our analysis, it will be convenient to replace.the gross-
supply variables, z¥%, by a new set of diagonal variables, z,;, representing
the net amount transshipped through point j. These are related to the gross
supply by

) o} = @;; + [a¥ + b} — Min (af, b})]
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To justify the use of the term transshipment variable for 2, we rewrite (4)
(") e (af Min(a* b2 Je¥ o Min(a}, b)) - (b} - Min (a}, b})]

The subtraction of Min (a}, b) from each term eliminates the local produc-
tion for local consumption from the problem. I a¥ > bF, the last term
drops, and x,;  x%  a¥ is that part of the gross supply which originated
elsewhere and is being transshipped. 1 ¥ - b¥, the second term drops and
z;; = x¥ — b} is that part of the gross supply not locally consumed, hence
transshipped. From (1) it also follows that =¥ — a} > 0, % — bF > 0 and
therefore z;; > 0.

If 2% is replaced by (4), and if we let a;, b; be the net production and
consumption as defined by (2), the transshipment problem can be restated
in the following standard diagonal form:

Transshipment Problem. Determine nonnegative numbers, z,;, and the
minimum z satisfying (6), (7), and (8);

(6) Column Equations: z Xy — % = by (1=1,2,...n)
i

(Total shipped into j minus amount transshipped = Net Consumption)

(7) Row Equations: Z Ty — X5 = Q t=1,2,...mn)
Py

(Total shipped from j minus amount transshipped = Net Production)

and the

n n ’
(8) Cost Form : z Z Cify; =2 with ¢;; =0 forall j

i=1j=1

A general array for this standard form is displayed in Table 16-1-IV.

TeEOREM 1: Any basis for the transshipment problem is triangular.

Proor: If the variables, z;; with ¢ % j, are replaced by z/; = —z,,
then equations (1) and (3) are the same as for a standard transportation
problem. Because the proof of triangularity for that problem; as given in
§ 14-2, did not depend on the signs of the variables, it applies to the trans-

shipment case as well. A similar argument applies to the system (6), (7),

and (8) if z;; is replaced by —xz;;.

TeeoREM 2: The diagonal variables, z;; or z¥,
of every basic feasible set.

Proor: Consider a new transshipment problem for which each a; and
b;in (1) is replaced by a; -+ £ and b; + ¢, respectively, where ¢ is an arbitrary
positive number, and z}; are the new variables. It is clear that, in every
feasible solution, zj; > ¢, so that the diagonal variables are positive and
therefore must form part of every basic set. Any feasible solution of the

can be made to form part
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16-1. EQUIVALENT FORMULATION OF THE MODEL

TABLE 16-1-1IV
STANDARD TABLEAU FOR A TRANSSHIPMENT PROBLEM

Origin Destination j a;: Avail,
: W @ | @ | @ | 6| ® | M| @ | Pre:
-y Ly 243 T4 7 7 7/ /// 7
S Y I ™ . % 4//
Ty —Zyy | Zys Tpg Tog 0
@ Car 0 Cas % Cas Cyq V /Ay% — 1,
Zg, Zye — T3y | T T Zyq 0
@ €3 C32 0 Caq Cas | Cag //A % —ry
£ V Zgs — T 7 V// Tyy 7 0

/// R E
//// 7R
Tgso Tgg Tgs | e Tgq Teg 0
© /) Cea Cea %/ 0 Cq7 Ces —mg

(N

/R
7
7/

7

(8) // 4/% % 0//// ) c", ) 3

b;: Req. 0 0 4

<

<
o

Price : +m + + 7y + 7, 4y + g + + g

original problem determines a feasible solution of the new one (and
conversely). In fact, if one sets

(4) x5 = xf 4 b, and 27 = xy; for ¢ = j
then optimal solutions must correspond, since the value of z is invariant
under the transformation.

From a procedural point of view, it is not desirable to transform the
problem explicitly, since we can accomplish the same end simply by allowing
the supply variables, 2%, an unrestricted range of values. They will then be
retained in the basic set, once they have entered it, even though their values
may be zero. (See Chapter 18.) The same applies to the transshipment
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variables since they are in one-to-one correspondence, and we have shown
that z;; > 0 is implied by z,; > 0 for ¢ # j (refer to discussion following (4)).

THEOREM 3: The implicit prices, u,; and v;, for the transshipment problem
can be made to satisfy the relation,

(10) —u; = v; forj=1,2,...,m

Proor: Since ¢;; = u; + v; for all basic variables, z;, and since,
according to Theorem 2, z;; may be assumed to be in every basic feasible set,
imposing the condition, ¢;; = 0, will establish the desired relation.

Let us denote the value common to v; and —u; by the symbol, =;.
Koopmans and Reiter [1951-1] call m; the “potential” of point ¢ in the
network, in analogy with the electrostatic potential of an electrical network.
(In particular, both kinds of ‘“potential”’ are such that,

(11) if z;; > 0, then ¢;; = 7; — m;, and
if Ci" > Ty — T then Ty = 0

at equilibrium. In other words, positive flow from i to j can occur if and
only if the voltage drop, c,;, is equal and opposite to the potential difference
from ¢ to j.)

16-2. THE EQUIVALENCE OF TRANSPORTATION
AND TRANSSHIPMENT PROBLEMS

There is a fundamental difference between transportation and trans-
shipment problems: In the transportation case, each variable is bounded by
the smaller of the row and column totals, whereas transshipment allows the
values in a 2 X 2 diagonal submatrix (z, ;;, %, %;;) to be increased by an
arbitrary constant, k, since the row and column sums of the resulting sub-
array remain unchanged, as in

[‘—zii Zij - ‘i"‘(zﬁ + k) (i + k)]
Zj; _zii] (2 + k) —(=z; + k)

In the case where all costs are positive, it clearly never pays to transship an
amount greater than the total available from all sources. However, if some
of the ¢;; were negative, it might be that no lower bound for z would exist.
For example, if ¢; + ¢;; < 0, then z — —oco for the class of solutions
generated by k. — + oo in (1). More generally, it would pay to have such a
circulation in the flow of the network whenever the sum of the c,; around
some loop is negative.! For a formal proof of these intuitive statements, see
the Chain-Decomposition Theorem, § 19-1, Theorem 2. (Also see Problem 7 in
the present chapter.) The latter theorem implies

(1)

1 There are times, it is said, when the exchange rates between various currencies of the
world are such that there is a net gain in exchanging between 4, B,C, D, . . ., and back
to A again. In theory, one could make a fortune by recycling again and again. In practice
some people have amassed a considerable profit before the exchange rates changed.
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THEOREM 1: If the sum of c;; around every loop in the network is positive,
then in any optimal solution, if one exists, the amount transshipped, z;;, is
bounded, and

2) < D = bj=1

Defining transshipment slack,
3) - E; =1L —uj
we can reduce the transshipment problem to a standard transportation
problem. For our example, L = 3 a; = 5 b; = 10, so that the transship-
ment problem given in Table 16-1-IV can be reduced to the one in Table
16-2-1. :

TABLE 16-2-1

THE TRANSPORTATION EQUIVALENT OF A TRANSSHIPMENT PROBLEM

Origm Destination j L+a
’ (1 (2) (3) (4) (5) (6) (1) (8) -
Fyy C12 Zyy 14 7 // 7 7 17
IR @
| Wl Wl w0
Loy Toa Tay Lag

3) Ty Tas Ea3 Z3g L3 Tae /// V/ 10
[ C3q 0 C3q C3s % // —1rg

Lo ZLgs L7 Teg 10

N
\\
B
>
o
a
&
3
[~
8
N
iy}
:
;
-
<

%
N ;/%
_

—1ty

Tas Tge Ty7 Zgs 10
(8)
Cgs Cag Ca7 0 —7g
L + by 10 14 10 10 10 14 10 12
m; m 7y s ™ g g 7, g
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THE TRANSSHIPMENT PROBLEM I

Conversely, a classical transportation problem can readily be converted
to the transshipment format. Let us consider the 3 X 4 transportation
problem, Table 16-2-II, where destinations have been distinguished from
origins by assigning them the numerically larger indices.

TABLE 16-2-I1

Destinations
Origins Available

(4) (5) (6) (7

T1a Zys Z1s Ty || ¢

(1)

(2)

Caq Cas Cae Caz

(3)

Caq C3s C3g Caz

Required || b, b b b, Totals

The original tableau may be rewritten in standard row-column form,

(4) §}ﬁ=@ fori=1,23
3
(5) D =t “forj = 4,5,6,7

i=1

and then reinterpreted as in (1) and (6), § 16-1; more conveniently, it may
be displayed in the transshipment tableau, Table 16-2-III, where the
possibility of shipping over links between origins or between destinations is
to be excluded.

[
i
-
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TABLE 16-2.II1

Destinations
Origins Available
(1) (2) (3) (4) (5) (6) (7)
89 —Zyn 14 T1s 2T Tz a,
(2) —Taq Laq Tag Tag Taq s
(3) —%Z33 Ty Z3s T3q L3y Qs
(4) %4 0
(5) — g 0
(6) - 0
n —Zqy 0
Required 0 0 0 b, by be b, Totals
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16-3. SOLVING A TRANSSHIPMENT PROBLEM BY
THE SIMPLEX METHOD

Finding an Initial Basic Feasible Solution.

In any connected network,? such as the one diagrammed in Fig. 16-1-1,
it is possible to find a starting solution by inspection.

Begin by selecting a route along the network from any origin to any
destination, and specify the largest flow which does not exceed the total
production or consumption. Next, either by a direct path or by branching
off from a previous path, connect any origin whose gross supply is not yet
exhausted to destinations whose gross demand is not yet satisfied, and
increase the flow along the path to the maximum possible. (If two paths
intersect, as in Fig. 16-3-I, there may sometimes be a reversal of flow in the

Figure 16-3-1.

common arc.) Repeat this procedure until all the demands have been
satisfied.

In forming a basic solution, it is important to do the branching without
Jorming loops and to have each point joined to every other over the constructed
paths. For the latter purpose, it may be necessary to include some extra
paths having zero flow. (The proof that these steps are always possible, and
the more precise meaning of such network terms as “loop,” will form part
of the discussion in the next chapter and hence are omitted here.) For
example, one feasible way to perform the required shipping in network Fig.
16-1-1 is shown by Fig. 16-3-II below. Another feasible way is given by
Fig. 16-3-1I1, but it would not qualify as a basic solution since it contains
the loop corresponding to arcs and nodes of Fig. 16-3-1V.

2 A network is connected if, given any pair of nodes, 7 and 7, it is possible to find a
chain of arcs, joining ¢ to0 7, 7, t0 Ja, 75 t0 J3, - . ., Ji t0 j. When the network consists of
several separate parts and each part is a connected subnetwork, it is clear that the
problem may be decomposed into independent sub-problems that can be solved in the
same way.
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(by:4) (0q:3)

Figure 16-3-II. Graph of a basic feasible solution (see Table 16-3-I, Cycle 0).

(be=4) (0g23)

Figure 16-3-ITI. Graph of a feasible but not basic solution.

oo
0 o
©

Figure 16-3.IV.

Iterative Procedure.

The basic solution depicted in Fig. 16-3-II is used as a starting solution
in Table 16-3-1, cycle 0. The steps of a solution by the simplex method are
shown in the tables for subsequent cycles. Since the technique is practically
the same as the classical transportation algorithm given in Chapter 14,
detailed discussion of the steps will not be given.
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16-4. PROBLEMS

. Show that no feasible solutions exist for the transshipment model shown

in Table 16-1-1 unless the total production equals the total consumption.
Generalize the equation model to allow for the storing of excesses at a
city when the total of amounts shipped-in plus produced may possibly
exceed the total of amounts shipped-out plus consumed.
Show that, in this generalized model, no feasible solution exists if
Za} < Zb¥, and interpret the result.
Formulate the transshipment model in network form (Table 16-1-I) for
the example given by Fig. 16-1-1, omitting all variables x,; such that the
network has no arc connecting city 1 to city j.
If cities are allowed to consume and produce simultaneously {so that a}
and b} may both be positive), review the proof that the amount trans-
shipped is

Ty =af—a; — b

Show that the standard form for transshipment model (Table 16-1-1V)
results from the original when we define new constants and variables as
follows:

a; = a¥ — Min (a}, b})

b, = b} — Min (a}, b})

1?72

zy; = x¥% — Min (a¥, bF)

Why is z,; >0 implied by the standard transshipment form, Table
16-1-IV?

In any transshipment problem, prove that if z,, exceeds Xa,, then there
is a circularity in the flow pattern, and show that such a solution cannot
be optimal if all ¢;; are positive.

. Solve the problem given in Fig. 16-1-I by setting up its transportation

equivalent (Table 16-2-I) and applying the methods of Chapters 14 and 15.

. The post office wishes to send a package from Los Angeles to Boston via

the least-cost route. The cost of shipment between neighboring points of
the transportation network are proportional to the numbers shown on
connecting links of the map shown in Fig. 17-3-1. Find the route.
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CHAPTER 17

NETWORKS AND THE TRANSSHIPMENT
PROBLEM

17-1. GRAPHS AND TREES

T. C. Koopmans, in his pioneering work on transportation problems, was
the first to interpret propertics of optimal and non-optimal solutions with
respect to the linear graph associated with a network of routes [1947-1].

A linear graph or network consists of a number of nodes or junction
points, each joined to some or all of the others by arcs or links. The dia-
grammed circles containing the labels 1, 2, . . ., 6 in Fig. 17-1-I are the

Figure 17-1-I. Example of a linear graph (network).

nodes. The arcs are indicated by straight or curved line segments, each of
which links just two nodes, e.g. (1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4),
(4, 6), (5, 6). The crossing of two of these lines does not indicate intersection of
the corresponding arcs except at nodes. We shall sometimes use the symbol -~
commonly seen in electrical diagrams to indicate a non-nodal crossing.

In transportation problems, the nodes often represent cities and the arcs
represent routes between them. The unidirectional nature of flows in goods
or traffic over routes leads to consideration of a directed graph (a network
made up of directed arcs). The symbol i — j is used to denote a directed arc
and represents an allowable precedence between ¢ and j. Suppose, for example,
in a given situation, we are allowed to proceed, if at 1, to 2 or 3; if at 2, to
3,4,0r5;ifat 4,t0 3 or 6; if at 5, to 1 or 6; if at 6, to 5. This can be repre-
sented by the directed arcs, 1 —2, 1 -3, 23, 2—+4, 25, 43,
4-—+6,5—1,5-—6,and 6 — 5, as shown in Fig. 17-1-I1.
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17-1. GRAPHS AND TREES

There may be several distinct directed arcs joining the same two nodes,
i and j; for our present discussion, however, we need consider only two:
one associated with a possible shipping activity from 4 to j, and the other

Figure 17-1-II. Example of a directed network.

j to i. We shall treat them as distinet arcs, although they may be diagrammed
by a single line.

A sequence of ares (i, i;), (iy, 45), (3, i3), . - -» (4, J), connecting the
nodes, i and j, is called a chain, regardless of the particular ways in which
these arcs may be directed (see Fig. 17-1-111a).

o o

/ / / /
3

&

Figure 17-1.11Ia. Example of a chain.

A chain of arcs connecting i to itsclf is called a loop (a simple loop if the
arcs are distinct) (see Fig. 17-1-1I1b). '

iy

‘3 . .
A two.directional

iq
arc is aiso a loop

Figure 17-1-IITb. Examples of chains that are loops.

A graph containing no loops in which every point is connected to every
other point through a chain of arcs is called a tree. For example, dropping
several of the arcs in Fig. 17-1-II, we are left, as in Fig. 17-1-IIlc, with a
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subnetwork which is a directed tree. Each point, such as 3, 4, or 6, joined
to a network by a single link is known as an end.

Our eventual objective will be to show that the (» — 1) basic, non-
diagonal variables of a transshipment problem correspond to (n — 1) arcs

Figure 17-1-IITc. Example of a tree.

which form a directed tree. The following theorem will be useful for this
purpose.

THEOREM 1: A network having n nodes is a tree if it has (n — 1) arcs
and no loops.

In other words, such a graph is always connected; it cannot break up
into several trees as in Fig. 17-1-IV.

Figure 17-1-IV. Network of disconnected trees.

The theorem being clearly true for two nodes, assume it is true for 2, 3, . . .,
n — 1.

For the case of n nodes, it will be convenient to establish the following:

LeMMa: Under the hypotheses of Theorem 1 there exists at least one node
which is an end, that is, a point p with only one arc (p, g) connecting it to the
rest of the network.

Proor: To find a node which is an end, begin by selecting any node,
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say p,; it is joined to at least one other node, say p,, by an arc. (If this were
not the case, deleting any arc (s, j) joining a pair of the n — 1 remaining
nodes would leave n — 2 arcs containing no loop. By our inductive assump-
tion, this forms a tree and there exists a chain of arcs joining p; to p;.
Adjoining arc (p;, p;) to this chain would form a loop contrary to assump-
tion.) Because there is an arc from p, to some p,, move to p, along the arc
(py, o). Leave p, on another are (if possible) and move to p,;. Because the
number of points is finite and there are no loops, by proceeding in this
manner, a point p will be found which is an end point, with only one arc
(2, ¢) linking it to the rest of the network.

Proor or THEOREM 1: If the end and its single arc are deleted, then the
remaining network has (n — 1) points, (n — 2) arcs, and since it contains
no loops, it is connected by the inductive assumption. If the deleted point,
P, and its arc (p, g) are reinserted, it will be possible to connect p to any
other point via ¢, which proves that a network having » points, (n —1)
ares, and no loops is connected, hence forms a tree.

We have shown that a tree contains at least one end. As an exercise,
prove

THEOREM 2: A tree contains at least two ends.

The Graph Associated with a Transshipment Problem.
Let us consider the transshipment problem in the form

(1) Zipe — xkj=ak—bk (k=172,' . ':n)
Sus3

where the first summation is restricted to (i, k) corresponding to admissible
arcs (i, k) and the second, to admissible arcs (%, j). The objective is to
determine z;; > 0 and Min z satisfying (1) and

(2) Z Z Ciiy = 2
I |

We set up our one-to-one correspondence (<) with a network, as follows:

(3) Each equation k - node & of the graph
Each admissible z;; - directed arc joining 4 to j

In the network of Fig. 17-1-V, the availabilities a, and a; at origins 1
and 5 are shown for convenience on the one-node arrows pointing into these
points. By definition, these are not arcs of the network since they do not
join pairs of nodes. Similarly, the requirements at destinations 2, 6, and 8
are shown on arrows pointing outward. Such arrows are omitted from points
where a; = b, = 0. The arcs (4, j) of the network which correspond to basic
variables, z;;, are shown with heavy lines. The particular values of z;; shown
are those of the initial basic solution given in Table 16-3-1 for the network
problem shown in Fig. 16-1-1.
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Figure 17-1-V. The tree of heavy arcs corresponds to a basic set of variables.

All solutions to the system of equations for this problem, both feasible
and infeasible, can be represented on the corresponding directed arcs of the
network. Consequently, at each node k it is necessary that the sum of values
of x;, and a, on arrows pointing into the node equals the sum of values of
z; and b, on arrows pointing out of it (as in Table 16-1-IV, the common
value of these two sums is assigned to the diagonal variable z,;). Conversely,
any set of values assigned to directed arcs of a network with this property
may be extended to a (feasible or infeasible) solution of the equations, by
determining the omitted diagonal variables by the common values of the
sums described above.

Relationships Between Bases and Trees.

TrEOREM 3: The subnetwork corresponding to a basic set of variables is
a tree.

If the subnetwork of (n — 1) ares corresponding to the (n — 1) basic,
non-diagonal variables contains no loops, it is a tree by Theorem 1. It

(b)

X33+

Figure 17-1-VIa, b. Why loops do not correspond to extreme points.

remains to be shown that no basic set can give rise to a loop. Suppose, for
example, that xz,; and zg, are both in the basic set as in Fig. 17-1.VIa or
Zy5, Tge, and T34, as in Fig. 17-1-VIb. If this were the case, the values of the
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basic variables around the loop could be altered as indicated in Fig. 17-1-VIa,
while the values of all other variables would remain the same, yielding a
second solution of the transshipment equations. This, however, contradicts
the uniqueness property of the basic sohitions; therefore, the basic set

. cannot include loops.

Exzgrcise: Formalize this proof for a general loop.

THEOREM 4: Any subnetwork of a graph, which is a tree, corresponds to
a basic set of variables.

To prove that a tree corresponds to a basic set of variables, it will be
sufficient to show that the (n — 1) variables corresponding to the directed
arcs of the tree, which we will call tree variables, can be uniquely evaluated
for any choice of a; and b;, provided that Xa; = Zb;. To find these values,
set all non-tree variables equal to zero. Starting with any end k, and the
single point, ¢, to which it links, we see that there is only one non-zero tree
variable in equation k, namely z;; or z,;. Hence, its value is Z;; = (a; — b;)
or z; = (b; — a,).

Thus the triangularity property which makes possible the finding of an
equation (say k) with one unknown, evaluating the variable and dropping
of the ktt equation, corresponds to the tree property which makes possible
the finding of an end (say node %) and its arc, evaluating the variable
associated with the arc, and dropping the k2 node and its arc. What remains
is also a tree and the procedure may be repeated, until (on the last step)
two nodes and a connecting arc remain, corresponding to a single variable
and two equations. Since Ta, = Zb,, the sum of the constants of (1) vanishes
initially and after each deletion; this permits a consistent evaluation of the
last step. From these observations, it is clear that the tree variables comprise
a basic set.

17-2. INTERPRETING THE SIMPLEX METHOD
ON THE NETWORK

Phase I, Finding an Initial Basic Feasible Solution.

In this section we shall discuss a simplex procedure for finding a starting
solution if one is not readily available by inspection of the graph. )

Step 1. Join each origin to other nodes j of the network using only
admissible arcs directed away from origins 7. Similarly, join various destina-
tions 7’ to other nodes j’ of the network using only admissible directed arcs
pointing into final destinations 1’. Repeat the process iteratively using nodes
j and j' in place of ¢ and i’ being sure at all times not to form loops. Once a
chain of arcs out of an origin joins with a chain of arcs from a destination,
nodes along the chain may be joined to nodes not on the chain using arcs
in either direction. If there still remain nodes not connected to others, use
the arcs in either direction to make the connections. If, finally, there still
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remain sets of points isolated from other sets of points in the graph, this
means that the original problem breaks up into two or more independent
problems.

ExEercise: Show that if the original network is connected, the procedure
always yields a tree.

Step 2. Evaluate the basic variables corresponding to arcs of the tree.
Since the tree does not necessarily correspond to a feasible set, some variables
z,; may be negative. Reverse the direction of the arrow on the arc and
replace z;; by z;; of each negative variable, which will be positive in value.
Some variables z,;; may now correspond to inadmissible arcs.

Step 3. 1If all directed arcs (3, j) of the tree are admissible, then the tree
corresponds to a basic feasible solution. If not, then try to drive out the
inadmissible arcs (4, j) by the usual Phase I, consisting, in this case, of an
auxiliary transshipment problem in which the infeasibility form

(1) w = z dii%i;
i3

(summed over both admissible and inadmissible arcs) has

@) 4 = 0 if (¢, ) is an admissible arc,
- 47 \1 if (4, §) is an inadmissible arc

This is now in the proper format for applying the tree method which will
be discussed in the next section.

Step 4. If it turns out that Min w > 0, then of course no feasible solu-
tion exists. If, on the other hand, feasibility is achieved at any stage with
no inadmissible variables z;; remaining, then a basic feasible solution and

* its corresponding tree have been constructed. Finally, if w = 0, but inadmis-
sible z;; still remain, there are two roads open:

(a) Drop all arcs (i, j) whose relative cost factors d;; in the infeasibility
form are positive, and continue with Phase II on the subnetwork of
arcs for which d;; = 0; or

(b) Reverse the direction of the inadmissible arc (¢, j), thus making it
admissible, and replace the corresponding basic vanable Z, by z;;,
whose value in the basic solution is zero.

In either case, follow with Phase II, using the original c,; in place of
d;;. We have thus shown

TeEOREM 1: If a connected network possesses a feasible solution, then
there exists a tree corresponding to a basic feasible solution.

Consider as an example, the transshipment problem treated in Chapter
16. A starting solution such as the one given in Fig. 17-1-V may be used to
start Phase II. We could also construct another such solution using the
procedure described in the preceding section. From origins 1 and 5 we can
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ship directly only to nodes 2, 3, 4; 6, 8. From (2, 3, 4, 6, 8), only one new point
can be reached, namely 7. Hence, the tree diagram immediately takes the
form of Fig. 17-2-1. The values of the variables on branches of the tree are

L3 P (origin)

Figure 17-2-1. Starting tree and infeasible basic solution obtained by
fanning out from the origins.

such that the algebraic sum at each point is zero (where the sign is deter-
mined by the arrows). Thus, the value of z;, = 4 is determined by the
equation associated with end point 2 of the tree. End points 6, 7, 8 determine
variables zg, 2,;, and x4, respectively. This, in turn, permits evaluation of
variables associated with arcs leading into cnds of the subtree whose z;
have not been evaluated. These are zy, and z,,. Finally, z,; is evaluated.
The solution is not feasible, since zy; = —3. Reversing the arrow and:

replacing xg; by x5 produces the required basic feasible solution as shown
in Fig. 17-2.I1.

Iizs= Ca6~{mg ""2)"3]

Cq7210
Ta=12 my=22

Figure 17-2-I1. Graphically improving a basic feasible solution (cycle 0).
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Phase II, Finding an Optimal Solution.

Compute the implicit price ; satisfying the network Fig. 17-1-V with
m; — m; = Cyy, for arcs (4, §) of the tree. For this purpose choose any point ¢
and give it an arbitrary price, ;. For example, in Fig. 17-2-I choose node
1 which is the focus of a large number of radiating arcs, and set m; = 0.
The m; such that (1, 1) or (¢, 1) is an arc of the tree can be evaluated next

Loop (1,2,6,5,3,1)

Figure 17-2.III. Adjusting the values of the basic variables around the loop.

from Fig. 17-1-V. In this case, the arcs are (1, 2), (1, 3), and (1, 4) leading to
evaluation of 7, ,, 7. From arcs (3, 5) and (4, 7), 75 and 7, can be evaluated.
Finally, from (5. 6) and (5, 8), 7s and my can be evaluated.

To determine whether the basic solution shown in Fig. 17-2-II is optimal,
compare m; — 7; with ¢,;. This comparison can be made easily on the graph
of the network Fig. 17-1-V by systematically scanning each arc (4, j) and
forming

3) &y = €y — (m; — )

If this is nonnegative for all arcs, then the solution is optimal. In Fig.
17-2.11 the criterion is not met since Zpg = €5 — (75 — W) = 12 — (24 —9)
= -3. Hence, it pays to increase the flow along the arc (2, 6), indicated by

X 47=0
25—
ca7=10

ma=i2 my=22
Figure 17-2-IV. Graph of the improved basic feasible solution {cycle 1, optimal).
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the dotted arrow in Fig. 17-2-II. With arc (2, 6), the subnetwork is no longer
a tree, since it contains the loop shown in Fig. 17-2-IIL. Only the values of
the variables around the loop are affected by increasing the value of z, to
6 > 0. It is clear from Fig. 17-2-III that § = 3 is the largest value that
maintains feasibility. At this value, either arc (1, 3) or (3, 5) is dropped
from the tree and is replaced by (2, 6). In Fig. 17-2-1IV, arc (3, 5) has been
dropped. The values of 7; are recomputed, but now all &; > 0, and the
solution is optimal and is the same as that given in Table 16-3-1, cycle 2.

17-3. THE SHORTEST ROUTE PROBLEM

A. An Iterative Solution. Let us suppose that there is a package origin-
ating in Los Angeles which can be delivered to Boston along any of several
different routes, shown in Fig. 17-3-I. We are interested in having the
package transshipped over the shortest route.

Porttand

(2)

Boston

(9}
Chicago 58 _ — @
) -

~ 40 25

58

washington

(8)

Los Angeles

(1)

Figure 17-3-1. Starting tree for the initial guess of the shortest route
from Los Angeles to Boston.

Now z;; = 1 means that the package is shipped from city ¢ to city j;
#;; = 0 means it is'not (where ¢ 5= j). Let z% (i = 2, . . ., 8) be the total
quantity transshipped through city i. The numbers appearing in the circles
are the distances from Los Angeles along heavy arrow routes. This gives
rise to a system of constraints

Shipped out
(1) Zyg + T3 + Tyy =1
Ty — 2 + Ty + T =0
Ty + Tyg — Tf + Ty + Ty -+ Ty =0

Zgs + Tgg + Tgy — Tgg + Tgp = 0
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Shipped in

(2) Zyy — T | Ty 4 Ty == ()
Ty3 + Ty — T3 + Tgz + L5z + Ze3 =0
Ty + xy — T + Zgg + T =0
Tso + T =1
9 1)
(3) Z Z d;x;; = 2z (Yo be minimized)
i=1j=1

where d;, in this case, is the distance between city ¢ and city j.

The first equation states that the amount shipped out of Los Angeles is
unity. The last equation states that the amount shipped info Boston is
unity. Equating the z;; in the it2 equation of (1) with the z;; in the (¢ — 1)8¢
equation of (2) makes the amount shipped out equal to the amount shipped
in for each city.

If we replace the condition (z; = 0 or 1) by (z;; = 0) (see Theorem 1,
Chapter 15-1), the problem can of course be solved by the transshipment
method, using either a tableau, or a graph, as explained in the last section.
However, there is a closely related, but even simpler graphical procedure:
starting from Los Angeles, draw some route conjectured to be optimal. For
example, ship along the southern route and then up along the east coast to
Boston, indicating the route with arrows. In a similar manner, draw con-
jectured shortest routes and arrows from Los Angeles to all other cities,
making sure that the arrows do not form loops. Note that the result must
be a tree since the origin is connected to every other node. Note also that
the chain from the origin to‘any node has only directed arcs of the form:

(4) origin - . . . .
v J

An example of such a tree is shown by the heavy arrows in Fig. 17-3-1.
Each such tree corresponds to a basis and it is casy to verify that the
corresponding basic solution is feasible. Because of (4), the prices, ;, are
computed in the following manner: set 7, = 0 for the origin. At each city,
put & number in the node circle that is its distance from the origin via
the (unique) path of the tree, e.g. from Los Angeles to Memphis via the tree
is 85 plus 28, or 113. The next step is to test whether the tree represents a
solution to the shortest route problem. To do this, we are interested in
whether the circled numbers are actually the shortest distances from Los
Angeles, when we allow other possible paths. If not, the solution can be
mproved in the sense that a shorter route can be found from terminal to
node. The test of whether these are minimum distances goes like this. Notice
that the total distance to Boston is 191; however, if the route went via
Chicago, and then to Boston, it would be 128 + 58 = 186, a decrease of
5 units, so that this particular tree is not an optimal solution. We can better
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the solution by inserting an arrow between Chicago and Boston, recording
186 at Boston and removing the arrow between Washington and Boston.
Again we test whether a shorter route could be obtained via Portland-
Chicago, say. However, 58 + 130 > 128, so we try Kansas City-Chicago.
But again, 109 + 29 > 128. By continuing in this manner, we eventually
arrive at a situation where it is not possible to improve the distance shown
in any circle. Accordingly, we have arrived at the optimal solution. For the
example at hand, the tree shown is optimal where the Washington-Boston
arrow is dropped and the Chicago-Boston arrow inserted, changing the 191
at Boston to 186. The values of z,; are unity along the path in the final tree
from Los Angeles to Boston and zero elsewhere. Hence the optimal path is
Los Angeles-Salt Lake-Chicago-Boston. The proof of these statements de-
pends on the following observations:

(1) The method of scanning other cities to see if there is a shorter
alternative route is the same as the test for optimality, #; — 7, << d,;.

(2) A tree in which all arcs are directed along the chains joining the
origin to any node has the properties that (a) the corresponding basic
solution is always feasible and (b) only one of the arcs having a given node
as end-point points toward the node; the others point outward (Fig. 17-3-II).

Origin
Figure 17-3-I1. The special adjustment around a loop for the shortest route problem.

Observe that, if the arc (i, j).is entered into the tree to form an improved
new tree, then the ar¢ dropped (assuming non-degeneracy) must be the arc
of the old tree pointing info j. Each new tree has the same properties.

B. A Direct Solution. Qur purpose is to give what is believed to be the
shortest procedure for obtaining the shortest route from a given origin to
all other nodes in the network or to a particular destination point. The
method [Dantzig, 1960-1] can be interpreted as a slight refinement of the
method given in A above, those reported by Bellman [1958-1], Moore
[1957-1], Dantzig [1957-2], and those proposed informally by Gale and
Fulkerson to the author. It is similar to Moore’s method of “fanning out”
from the origin. However, its special feature is that the fanning out is done
one point at a time and the distance assigned is final.
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It is assumed that (a) one can write without effort for each node the
arcs leading to other nodes in increasing order of length and (b) it is no
effort to ignore an arc of the list, if it leads to a node whose distance has been
assigned earlicr. It will be shown that no more than n(n — 1)/2 comparisons
are needed in an n-node network to determine the shortest routes from a
given origin to all other nodes.

Suppose that, at some stage k in the computing process, the shortest
paths to k of the nodes from some origin are known. Call this set of k points
8. (See Fig. 17-3-111.)

a;

7\

-
/i

3

g

(s)

Figure 17-3-II1. Finding the shortest route in at most n(n — 1)/2
comparisons; all arcs selected in the spanning subtree are final.

(a) Let ¢ be a node in S,

(b) let d; be its least distance to the origin @,

(¢) let j; be the closest node to 4 not in S, if any, and
(d) let d; be its distance from 1.

Choose j, as the (k + 1)5t point where
9) é; + d, = Min (J; + d,) t=12,...%k)

~ (In case of ties for minimum, the process could be made more efficient by

determining several new nodes j at a time.) This choice implies that the
minimum path to j, from the origin, having a length of 4, + d,, is via 5. To
see this, consider any other path from j, to the origin. Eventually, the path
must reach some node % of S from some node j not in § (where j may be j;).
We now assume that the distances along the path from j, to j are nonnegative
(see Problem 5) so that the total distance to the origin along the path is not
less than &; + d,; by (5), however, §; + d; = d; + d,.

Note that the minimum requires only k£ comparisons for a decision as to
the (k 4 1)st point; hence in an #-node network no more thanl 4+ 2 + . . .
+ (n — 1) = n{n — 1)/2 comparisons are needed.

In practice, the number of comparisons can be considerably less than
this because, after several stages, one or more of the nodes in § only have
arcs leading to points already in S. The 8-node graph shown in Fig. 17-3-1V,
for instance, required only 16 comparisons instead of (8 X 7)/2 = 28
comparisons.

[364]




17.3. THE SHORTEST ROUTE PROBLEM

If the problem is to determine the shortest path from a given origin to
a given terminal, the number of comparisons can often be reduced in practice
by fanning out from both the origin and the terminal simultaneously, adding
one point at a time to sets about the origin-and the terminal, as if they were
two separate independent problems.

However, once the shortest path between a node and the origin or the
terminal is found in one problem, the path is conceptually replaced by a
single arc in the other problem. The algorithm terminates whenever the fan
of one of the problems reaches its terminal in the other.

Lzample: Distances on links of the network are as in Fig. 17-3-1V.

(Origin)

Figure 17-3-IV. An example of a shortest route problem
(optimal solution shown by heavy arcs).

For each node, list arcs branching out of the node by ascending arc distances:

0y 4 (B) (0 (D)  (B) (Fy (@
04-1 | AB3 | BC-2 | CB-2 | DC-2 | EF-1 | FE-1 | GF-1
0B-2 | AC-3 | BA-3 | CD-2 | DA-3 | EC-3 | FG-1 | GC-3
AD-3 | BG-4 | CA-3 | DE-3 | ED-3 GB-4
cG-3 !
CE-3

Step 0. The set S consists of O initially.

Step 1. Choose arc 04 ; write its length, 1, above column A4, deleting all
arcs tnto A. (Delete 04, BA, CA, DA; add A4 to the set §.) (“Length”
means least distance from 0.)

Step 2. Compare OB-2 and 4B (1 + 3); choose path via OB and write its
length, 2, above column B, deleting all arcs into B. (Delete OB, AB,CB, GB;
add B to the set S.)

Step 3. Compare AC (1 + 3), AD (1 + 3), and BC (2 + 2); and, because
of ties, choose paths via AC (or BC) and AD and write their length, 4,
above columns C and D, deleting all arcs into C and D. (Delete AC, AD, BC,
DC, EC, ED, GC; add C and D to the set S.)
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Step 4. Compare BG (2 + 4), CG (4 + 3), and DE (4 + 3); choose path
via BG, and write its length, 6, above column @, deleting all arcs into G.
(Delete BG, CG, F@; add @ to the set §.)

Step 5. Compare CE (4 + 3), DE (4 + 3), and GF (6 4 1); choose path
via CE (or DE) and GF and write its length, 7, above columns ¥ and F,
deleting all arcs into E and F. (Delete CE, DE, FE, GF; add E and F to
the set S.)

Because of ties, many of the steps were performed simultaneously.

The shortest paths from the origin to other nodes are along paths 04,
OB, AC, AD, BG, CE, GF (see heavy arcs, Fig. 17-3-IV) with alternative
BC for AC, DE for CE, and EF for GF.

17-4. PROBLEMS

1. Consider a transshipment problem consisting of k independent networks,
each feasible. Connect these k networks together by introducing £ — 1
new arcs (i,, j,), where i, is a point in the st® network and j, is a point in
the (s + 1)st network (s =1, 2, . . ., k — 1). Prove that z, ; = 0 in any
feasible solution for the augmented network.

2. Show how the shortest route problem of Fig. 17-3-I can be solved by
the transshipment method; show that the tree corresponding to a basis
need not have the property that the arrows point away from the origin
{Los Angeles).

3. Show that the technique simultaneously works out the shortest routes
from Los Angeles to all cities. What are the shortest routes?

4. What are the best routes for distributing a, packages from the origin to
(n — 1) cities in the quantities b,, by, . . ., b,, where >5b, = ay.

5. Show for the shortest route problem of § 17-3 that, if it is permissible for
d;; to be negative as well as positive, and if the sum of d;; values around
any loop is positive, then the iterative method and the direct solution
method are valid, but that both methods fail if this is not true.

6. Solve the shortest route example of §17-3, used to illustrate the direct
method, by the iterative procedure and the method of Chapter 16.

7. The Caterer Problem [Jacobs, 1954-1]. A caterer has booked his services
for the next 7 days. He requires r, fresh napkins on the ¢® day,
t=1,2, ... 7. He sends his soiled napkins to the laundry which has
three speeds of service, f = 1, 2, or 3 days. The faster the service, the
higher the cost, ¢,, of laundering a napkin. He can also purchase new
napkins at a cost ¢, He has an initial stock of s napkins. The caterer
wishes to minimize his total outlay. Formulate as a network problem.
Define the caterer at time ¢ as a “‘source point” in an abstract network
for soiled napkins that are connected to “laundry points” ¢t + 1, t + 2,
t + 3. The reverse arc is not possible. The laundry point ¢ is connected
to a fresh napkin ““destination point ¢’ which in turn is connected to the
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CHAPTER 18
VARIABLES WITH UPPER BOUNDS

18-1. THE GENERAL CASE

Our purpose will be to develop short-cut computational methods for
solving an important class of systems involving upper bound restraints on
the variables.

In this connection it should be noted that with the growing use of linear
programming models for both dynamic and static problems, the main
obstacle to full application is the inability of current computational methods
to cope with the magnitude of the matrices for even the simplest technological
situations. However, in certain cases, such as the now classical Hitchcock-
Koopmans transportation model (see Chapter 14), it has been possible to
solve this linear inequality system in spite of size because of simple regularities
of the system. This suggests that research be undertaken to exploit the
properties of other special matrix structures in order to facilitate ready
solution of larger systems.

The method described here [Dantzig, 1954-3] was first developed at The
RAND Corporation to provide a short-cut computing routine for the
following problem: The research personncl were dissatisfied with the long
delays generally incurred between the time their request for computation
was initiated and the time their work was completed. The main cause of
dissatisfaction was quite clear, for there was one project that was both top-
priority and so large in volume that it completely absorbed the entire com-
puting capacity for many weeks. The research people, being human, were
no longer interested in the computed answers to their problems when
the computing lab finally got around to them. In this example we have
a case where the priority method of scheduling was not necessarily the
best.1

To develop a more flexible decision method than priority scheduling, a
model was devised in which the value of a job decreased as its completion
date was delayed. The final determination of the optimum schedule depended
on solving the distribution problem defined below.

1 “A Model for Optimum Scheduling of Projects on Punched Card Equipment” was
developed by Clifford Shaw of RAND and the author, and reported jointly before the
RAND-U.C.L.A. Seminar on Industrial Scheduling in the winter of 1952 (the latter,
incidentally, being one of the forerunners of The Institute of Management Sciences).
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Type | 1st 2nd  3ud nth g otal
Job week week week ~ ' week ours
required
Job 1 Ty ), Zy c e Xy, =7,
Job 2 £ Ty, F - =17,
Job m Ty Tmg L2 R Zmn =Tm
}’.Eotal < < < <
S | hy Ry hy h
available | "1 2 3 tn

The variable z,; is the number of hours to be assigned the ith job in the jt®
week. Thus, nonnegative z;; and Min z are to be chosen such that the total
hours assigned to the ith job equals the hours assigned, (1); the total hours
assigned in the j*b week must not exceed the availability, (2); and the total
cost (3) is minimum.

(H

M
&
I
Hﬁ

“
i
—

2) h;

Tis

IA

M

i=1

n

3) z Ci5%;; = z (Min)

i=1j=1

where (—c,;), the value to the customer of one hour expended on his project
in the jtt week, satisfies

(3a) (—ti) = (—cip) = . . . = (—Cin)

In addition to these restrictions, this problem has the added wrinkle
that for some ¢ and 7,

(3b) 2y = oy
or equivalently,
(3¢) Ty + Yi = oy (¥5 =0)

In other words, the hours assigned the :th project in the jtt week cannot
exceed «,;. If we were to proceed in the usual manner of adding equations
and slack variables for the upper bound restraints, this could greatly enlarge
the size of the problem. To illustrate, a problem with a schedule for 18
projects in 10 weeks has 28 equations in 180 unknowns without upper bounds;
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with upper bound conditions, it would require an additional 180 equations
like (3c), as well as 180 slack variables, y,;.
General Case: Find z; and Min z satisfying

"

4) a2, = b, (@ =>0; i=12 m)
154§ i ] = ’ y =y ¢ = vy
n
Zc,- z; = z (Min)
j=1

and, if z; must also satisfy the inequality, z; < «;, use a slack variable, y;,
and the new equation,

(5) Z; Y= z; =>0; ¥, =0)

to account for each such restriction. We shall refer to (4) and (5) as a
capacitated system.

The Technique Illustrated.

An idea which permits the solution of a capacitated system with little
additional computational effort is based on a slight generalization of the
simplex procedure. While the simplex algorithm ordinarily fixes the values
of non-basic variables at zero, a little reflection makes it clear that they
could be at any fixed value. The simplex criterion indicates that it pays to
increase the value of a variable, z,, if its corresponding relative cost factor,
¢, is negative, and to decrease z,, if its corresponding relative cost factor,
é,, is positive. With the added lower and upper bound restraints on z,, it
will only pay to increase its value, if & < 0 and z, is not at its lower bound,
or to decrease its value if &, = 0 and z, is not at its upper bound.

The following example shows how the enlarged system may be solved
by applying the simplex algorithm to the format of the original uncapacitated
system, with very simple conventions to insure that the values assigned a
variable remain in the range between its upper and lower bounds.

Example 1: Find numbers

(6) 0<z <4, 02, <5, 0<z <1,
0<2, <2, 02, <3 :
and Min z, satisfying
Y z, 4 1 2% =3
Zy — Zy -+ 24+ 274 =4

— 2z — Zy+ Xz —2=0
® o *x

Using z,, z,, and (—z) as basic variables, the basic feasible solution is

(8) 3, 4 0, 0, 0, 0]
[ I °
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The values of the basic varinbles nre dotted. Note that no variable is at ity
upper bound.,

Since ¢, is negative, it pays to increase the value of z;. Holding the
other non-basic variables fixed, the solution becomes,

9) 3 —2x, 44z, z, 0, 0, —2z]
[ ] [ J * ®

indicating that xz, can increase to 3. However, due to the upper bound
restraint specified in (6), z; cannot be greater than 1. Therefore, we increase
z, only to its upper bound and hold it fixed at this value, keeping the same

. basic set. The solution becomes

(10) 2, 5 1, 0, 0, —2]
o O * ®

Because the basic set is unchanged, the values of ¢; given in the z-equation
of (7) are still applicable. Because £, = —1, we proceed to increase 'z, first,
obtaining
(11) 242z, 65—z, 1, 2, 0, —2—ux]

A ° ° * °
Now z, cannot increase to 5, since its upper bound is 2, nor can it reach its
upper bound value, because we would then "have z, =2 4 2(2) = 6,
violating the upper bound of z, <C 4. The largest value permissible to z, is
thus z, = 1. Because adopting this value causes the basic variable z, to
assume its upper bound value, we drop z; from the basic set, replacing it
by z,. The canonical form relative to the new basis is obtained by using as
pivot, —2x,, the bold faced term in (7), obtaining

(12) —iz — iz, + 2, =—%
3o + 2 — iz, + 2z, =14
-z, = i + z;—z= —3
associated with the solution,
(13) 4, 4, 1, 1, 0, —3]
[ ) [ ] ®

The variable, x;, enters the non-basic set at its upper bound value,
2, = 4. It will be noted that the basic variables, z, and z,, are between their
upper and lower bounds while the non-basic variables, z,, z;, and x;, are at
their upper or lower bounds. Note that z;, at its lower bound (zero), has a
positive cost factor, while all the variables at their upper bound value have
negative cost factors: &, = —4 and ¢; = —4§. As we shall show in a moment,

~ this satisfies our criterion of optimality for the bounded variable problem,

and no further iterations are required.
To prove optimality in this case, substitute for those non-basic variables
which are at their upper bounds in (12), the expressions

(14) T, =4 —uzx Zy =1 —z,
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thus, deriving the system,

(15) dz; + dx, + 7, =
—x] + z, + dxg + 2z, =4
dx; + $x, 4+ g —z=3
whose corresponding basic feasible solution
(16) 0, 4, 0, 1, 0, 3]

is clearly optimal, ignoring the capacity constraints z; <4, 2, << 5, z3 < 1,
z, < 2, 75 < 3. Moreover, substituting z; = 0, z; = 0 into (14) yields a set
of nonnegative values that satisfies all constraints (14) and (15). Since, in
general, the addition of constraints like (14) can only increase or leave
unchanged the minimum value that z can attain, the value z = —3 is
minimum for the full system (14) and (15) or the equivalent system (6)
and (7).

Theory of the Upper Bounding Technique.

A basic solution of the uncapacitated system (4) is defined in earlier
chapters as a solution obtained by setting (» — m) non-basic variables equal
to zero and solving for the consequent values of the basic variables,
Z;, . . . ;. A solution is said to be feasible, if it assigns nonnegative
values to all the variables. In each simplex iteration, a new basic fea.s1b1e
solution is derived in which one of the basic variables, = z; 1<r<<m)i
given a zero value and replaced in the basic set by a non-basic variable z,.

For this chapter only, we shall use these terms in a slightly altered sense.
A feasible solution will be one which assigns to each variable, z;, a non-
negative value not exceeding its upper bound «;. By a basic feasible solution we
shall mean one in which the non-basic variables have values either zero or «;.

Now we note that the original system (4) and (5) may be replaced by
an equivalent, uncapacitated system in which all non-basic variables are
zero. This is done by substituting «; — z; for any non-basic variable, z;, at
its upper bound. After reatrangement the canonical form relative to some l

set of basic variables, say z,, ,, . . ., %, takes the form,
a7 =z + Gy mi1 [T OF (Cnsy — Tma)] + - -
+ dialzn or (0 — 2] =B l
Z2 + Gy i1 [Tmas OF (Amyy = Tmad)] + - - -

~+ dop [z OF (0 — x’r'z)] = 62

T+ G it Tmsr OF (Epmyy — )] e
+ dmn[xn or («x, — x'l:)] = Bm l
+ Em+1 [x:rn+1 or (am+1 - 'r'n+1)] + L
+ & [x,,or(a,,——x,i)]:z—-z'o
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18.1. THE GENERAL CASE
Upon transposing the constants, (3;;6;) and &ay, to the right member, we get
- - r
(18) =z, + @1, mer [Bmir OF —Zpn] + . - - + &gz, or —2;]

+ ...+ ady[z, or —z,] = b,

Tm + dm.m+l[xm+;1 or —z‘r’n+l] + .. .+ dyxsor —x;]
+ ...+ Guafxaor —x] =0,
bmir [EBmer OF —Zmal + . - .+ & [z, 0r —2,]
+ .G [0 —x =2 — %

where

(i) a,; are the coefficients of the original canonical form;

(ii) z;, with1 =1,2,. . ., m, is a basic variable (j;, = ¢ above);

(iii) a non-basic variable appears in (17) as either z; or (—z;) depending
upon whether its assigned value was zero or «; in the original
solution ;

(iv) b; > 0 and (—Z,) are, respectively, the values of the basic variables,
z;, and (—z), in the basic feasible solution resulting from this
assignment.

Since the basic variables and their coefficients are unaffected by the
transformation, the simplex multipliers remain unchanged.

Test for Optimality.
The basic feasible solution for the equivalent problem (18) is optimal if

m
z; = 0 implies ¢; = ¢; — Z Ty =0

=1

(19) and

m
z; = 0 implies ¢, = ¢; — z ;<< 0
: i=1
where the primed variables must satisfy the reverse inegquality because their
coefficients are of the opposite sign from those of the unprimed variables.
THEOREM 1: A basic feasible solution of (18) which satisfies (19) s
equivalent to an optimal solution of (4) and (5).
The proof is immediate.

Improving a Basic Feasible Solution.

If the solution is not optimal, then the variable to be selected for increase
is the non-basic variable, z, (or z,), such that
&; for non-basic x;

(20) ¢, =Min¢ <0 where &; = {—c’i for non-basic z;
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Let 0 represent the change (plus or minus) in the value of Z,-

Case I: The non-basic candidate is unprimed. The new value of z, is 6
where 0 << § < a,.

Case II: Here xz, is the non-basic variable to be increased; the new
value of z, is (x, 4+ 0), where —a, << 6 << O (since, in this case, the value l
of z, must be decreased from its upper bound value, «,).

In either case, if we fix the values of all other non-basic variables, then
the adjusted values of the basic variables z;, 2 and z, in terms of the
change, 8, are

(21) Z; = 5{ — a0 0< x; < a;) I
z; = by — dy0
z,'m = 6,," — a-,,me I
z=Z, + &0
where
Case I: z,=0and ;< 0 (Ogﬂgas)l
Case I1: 2, =a;,+ fand &> 0 (—a, << 8 0)

Case I: The greatest nonnegative increase, 0*, that maintains feasibility l
is given by

g
(22) _ 6* = Min (b;/a;, - (@ > 0)
(6; — o)/ (@i < 0)

Case II: The maximum nonnegative decrease, 0% that maintains
feasibility is

&g
(23) —0* = Min {b;/(—d,,) (—dis > 0)
(6; — o )(—as) (—d; <0)

_(a) If * = «, in (22), then non-basic variable z, appears as z, in the
next iteration, or if —6* = «, in (23), then the non-basic variable z, appears I
as z, in the next iteration. In either event, the basic set remains unchanged,
but the variables acquire new values as determined by setting # = 0* in
(21).

(b} If, on the other hand, «, is not the minimum in (22) or in (23), then
z, replaces some z; as a basic variable. The new value of z, is 6* in Case I
with z; becoming zero or a,, according as d, > 0 or d,, < 0. In Case II,
the new value of z, is («, + 6*), with z; becoming non-basic at zero or at
«, according as —d;, > 0 or —d;, < 0. The new values for the other basic
variables j; # j, are found by setting § = 6* in (21).
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Ezxample 2: Find numbers

(24) OSIISL 0<r, <2, 0oz <<3, 02, <4,
and Min z satisfying
(25) T+ x4+ 2+ oz, =6

22y + xy —4xy — 52, + (—2) =0

Starting with the feasible solution z;, = 1, z, = 2, 2, = 3, z, = 0, and
(—z) = 8, using %, as a basic variable, the initial canonical form is

(26) Cycle 0

T +x+ oz + % =6

— 2, —6x; — Tz, + (—2) = —12
1 —8, 2, 3, 04064 8-+ 70y]

[ ] *
Max 0y = 1; z, replaces z, as a basic variable.
27 Cycle 1

N R N ol 7 - =6
Txy + 62y -+ 24 + (—2) =30

0, 2—6, 3 1+86, 15+ 66,]
* @

Max 6, = 2; z, is still basic and z,, non-basic, shifts from its upper to its
lower bound.

(28) Cycle 2
T+ Zy+ Xy + oz =6
T2y 4 62 + x4 + (—2z) =30
[o, 0, 3—0, 346, 27+ 06,
* [

Max 6, = 1; z, replaces z, as a basic variable, which drops out at its upper
bound.

(29) Cycle 3 (Optimal)
z, + 2o+ + 2, =6
6z, + 5z, — 2,4+ (—2) =24
{o, 0, 2, 4, 28]
[ ]

The Revised Simplex Tableau.

"Only minor changes in the simplex method using multipliers are necessary
to account for upper bounds (see Chapter 9). These are discussed inder
headings (1), (2), (3) below.

(1) In Table 9-3-Ia, add an extra row and record in it the upper bound
values of the variables.
{(2) In Table 18-1-1, it is advisable not only to record the relative cost
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factors for d; or ¢, but also to indicate which non-basic variables are at
their upper bounds. In the table below, the following notation is used:
(a) A bar above a numerical cost factor is used to indicate that the
corresponding variable is at its upper bound.
(b) Brackets [ ] are used to indicate that the corresponding variable is
basic.
(¢) An asterisk * indicates that corresponding z; is to enter the basic set
in the next iteration.

Referring to Example 1 (sec (6), (7)), we have

TABLE 18-1-I

Relative Cost Factors &, or d;

J={ @ @ @ W 6

Cycle0 | [0] [0] —2* —1 1
1] [ =2 -—-1* 1
2 | =% [0 -% [0 1

(3) There is no change in the layout of Table 9-3-IIa of § 9-3. The choice I
of pivot element d,,, however, is in accordance with (22) or (23) and sequel.
If z, replaces z;, Table 9-3-IIb is replaced by Table 18-1. II where 6* or
(¢, + 0*) is the new value of z, accordingly as z, = 0 or z, = &, in this I
cycle. If there is no change in the basic set, then all ,;, 7;; and o, remain
unchanged ; the new values for the basic variables, z and w are as shown in
the next to last column of Table 18-1-II, except that row r becomes
z; = (b, — a,0%). : l
TABLE 18-1-II
Tableau at Start of Cycle { + 1 (if z, Replaces z;_as Basic Variable) l

Columns of the Canonical Form Values of
Basic x,
—2z —w Variables

Basic
Variables

Tnsr b Tarm

Inverse of basis———

Zn ﬂn - dl:ﬂ:‘l e ﬁlm - &uﬁ:m 51 - dne*

x, b * 0* or a, + 6*

rl rm

Zim ﬂml - dmnﬁ:l s ﬂﬂﬂ - duuﬂ:m . B:n - ame*

— —_ — & R* —_ — * —3 _FB*
z m — &8N ... T e 1 z; —¢8

—w || —a,—dpt ... —a,—dpt 1 || -2 — dg*

B =846, t=12,...m
0* determined by formula (22) or (23).
z, column blank at start of cycle.
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18-2. THE BOUNDED VARIABLE TRANSPORTATION
PROBLEM AND GENERALIZATIONS

Solving a Bounded Variable Transportation Problem.

The theory of upper bounding will be applied to a capacitated transpor-
tation problem. In general form, the problem is that of finding nonnegative
x;; and minimum z satisfying

{1} The Row Equations: Z T =0
(t=12,...m) j=1
i .
(2) The Column Equations: 2y =b;
=12,...,mn) i=1
(3) The Upper Bounds: X << «yy, and
(for all ¢ and j)
m n
{(4) The Objective Function: Cify = 2
22

Referring to (5) as the standard, 3 X 4 transportation array for bounded
variables, we observe that Theorem 1 below is a direct translation of the
optimality criteria given in the preceding section.

Tn %1 | Tye %2 | T3 K13 | F1g %ye [{O1

n Cra €13 Cie Uy
Za oy | Taa Xgy | T3 Xay | Tay QA2q 182
C2y C2z Cas Caq Uq

Ca1 Cag Cag C3q Uz

b, b, by b, ,
Implicit 4
vy T, vy v, [~ Prices

THEOREM 1: A feasible solution, z;; = z%;, for the capacitated trans-
portation problem is optimal, if there is a set of implicit prices u; and »; and
relative cost fuctors &y; = ¢;; — u; — v;, such that

(6) O<ay<ay=>6;=0
2,=0 =30
Ti; = &y =>6;<0

We will show how the methods of § 18-1 may be adapted efficiently to
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this class by solving a simple numerical example given in (7) below. Later
in this section, we will show that the class of capacitated transportation
problems is actually equivalent to the class of ordinary transportation
problems, and also consider various generalizations of the capacity concept.

2, <12 2, <13 23< 5| 2y, 201 25

(7)
cy = 10 5 6 7

g S 14| Ty 20| 255 <10 | 2o, < 9] 25

8 2 7 6

Ty SIB | 23y < 4| 243 25 | 2y < 7| 50

9 3 4 8

15 20 30 35

Finding an Initial Basic Feasible Solution.

While simple rules have been devised for finding an initial solution in
an uncapacitated transportation problem, it does not appear possible to
construct such a rule in the capacitatéd case. If one were able to do this,
one would thereby also have found a simple solution to the problem: find
an assignment of m men to m jobs where certain men are excluded from
certain jobs. Formulated in mathematical terms, the problem is:-given an
m X m incidence matrix (elements 0 or 1), pick out a permutation of ones
or show none exists. So far; no one has been able to give a non-iterative
procedure for solving this problem. '

In attempting to find an initial solution for (7), it is generally useful to
begin by selecting a box with the minimum c,;;, which in (7) is Cqp With a
value of 2, and to assign as high a value as possible to the corresponding
variable without forcing any variable to exceed its upper bound. Here we
set z,, = 20. If the size of this entry is finally limited by a row or column
equation, consider it a basic variable and make no more entries in that row
or column. If, on the other hand, the value of the variable is limited by its
upper bound restriction, then consider the variable non-basic at its upper
bound and place a bar above the entry. In case of a tie between the two
types of limitations, always consider the row or column as limiting and the
variable as basic. Repeat the procedure with the remaining boxes.

Applied to (7), this routine yields in order, the assignments: z, = 20
(basic), zz3 = 25 (bounded), z,; = 5 (basic), z,, = 5 (basic), z;, = 20 (basic),
%3, = 7 (bounded), x5, = 15 (basic). Since the third row and fourth column
still have 3 units unassigned, the solution is not feasible. Extra “short”
boxes are added to the array: an i = 0 row and j = 0 column, and d;; = 0
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replaces the original ¢;;, and d;; = 1 in the shértage boxes. This is sum-
marized in (8).

Short 13 — 8, E
(8) | {
i

! 1 0
12 13(5 5|20 20 { 25
dy =0 0 0 0 -1
14 {20 — 9, 20 10|54+08, 925
Short 0 0 , 0 0 -1
is—en 15 18 | oF 41335 25 |7 7 50
s 1 0 0 0 0 1
i
15 20 30 35 u;
0 -1 1 1 1§

Note that dyy = dgy = 1 must equal u, and v, respectively, since we
have shown in § 15-2-(14), that slack rows and columns can be regarded as
having prices u, and v, equal to zero.

Proceeding now with Phase I, minimizing the sum of the artificial
variables, in particular, z,, + x4, we find that a single iteration furnishes a

- feasible solution as given by (9). The original cost factors, c;;, are now

restored.
12 13 | 5 5|20 20| 25
(9)
10 5 6 7 0
1417—0 20 10{8+6 9|25
8 2 7 6 -1
15 18|13+6 4|25 25 (T—0* 7| 50
9| 3 4 8 0
15 20 30 |85 ug
9 3] 6 7| v,

However, this solution is not optimal, because z,, is a non-basic variable at
its upper bound, whose relative cost factor should be nonpositive, while in
reality, &3 = €3y — U3 — ¥, =8 — 0 — 7 = +1. Thus, it pays to decrease
Ty, from its upper bound value, keeping the other non-basic variables fixed
and adjusting the basic variables. The greatest decrease, 6, that maintains
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fensibility is 0 1, and at this value it is stopped by the upper hounding
restriction, w,, 8 | 0. 9
"The new array, given in (10), is optimal.
12 13 |5 5120 20{{ 25
(10)
10 5 6 7 —1
14 |16 20 109 9{i 25
8 2 7 6 —1
15 18 |4 4|2 25 | 6- 7| 50
9 3 4 8 0
15 20 30 35 Uy
9 3 7 8| v

The foregoing method implies the following theorem whose proof for the
general bounded transportation problem is left as an exercise.

TurEOREM 2: If the upper bounds, the quantities available, and the quanti-
ties required are all integers, every basic solution will be integral in a bounded
transportation problem.

On the Equivalence of a Bounded Transportation Problem and the
Classical Transportation Problem.

It will be noted that each variable z;; appears in three equations with
non-zero coefficients; not only in (1) and (2), the row and column equations
used in the classical problem, but in addition the upper bounding inequality
(3), which may be rewritten

(11) Ty + Yo = %5 (y:; = 0)

where variable, y,;, represents slack. The system can, however, be replaced
by an obviously equivalent one in which each variable enters only two
equations just as in the classical transportation form. Consider the problem
of finding z,; > 0 and Min z satisfying

n

(12) Row: >z =a
t=1...m) ji=1
Column: —2y — Yui = —ay
(all 4, §)
Row: Yi + T = oy
(all 1, 5)
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m
Column: — Z z;; = —b,
(1=1,...,mn) i=1
) m n
Z z Ciij = z (Min)
i=1 j=1

An illuminating interpretation of this result is in terms of networks.
The conventional graph for a capacitated transportation problem may be
represented as in Fig. 18-2-I. The numbers «;; on the directed arc joining

Origins Destinations

(<) (9))]

Figure 18-2-1. Bi-partite graph of a capacitated transportation problem.

(a) QJL xej Sagy ,@

® @) Y

O‘-j

Figures 18-2-ITa, b. How to replace a capacitated‘a.tc by unrestricted arcs.
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origin ¢ and destination j are the arc capacities. The device used in (12)
replaces each capacitated arc of Fig. 18-2-Ila by the set of unrestricted arcs
of Fig. 18-2-1Ib.

Transportation Problems with Bounded Partial Sums of Variables.

An idea formalized by A. S. Manne deals with bounding, not only
variables, but also partial sums of variables. For simplicity, let us consider
a case with only one such partial sum. In the scheduling of jobs on computing
machinery discussed earlier, the condition z;, <C 40 might be interpreted to
mean that no more than one man can be assigned to job 1 in week 1. In
some problems a more involved condition might be desired, such as
Zy; + %y + 2 < 40, expressing the circumstance that jobs 1, 3, and 6 can
be assigned only to a certain individual. Similarly, a condition like
¥, + %3 + T3 = k might mean that at least & hours must be worked on
job 1 during the first three weeks. Just as with the variables themselves, a
transportation problem with a bounded partial sum of variables in either a
row or a column can be reduced to a standard transportation problem. To
see this, consider the system (1), (2) and the added condition

(13) T+ Tt .. Frp<a

This may be written in row-column format as in Table 18-2-1.

///// L S 3 4:

b, ... by b e b, Totals

Zro

a

Lokt . Zan Gy

(The inadmissible boxes are shaded.) It is clear that any number of con-
ditions like (13) can be added to the system by similarly treating each in
turn. For example, the added condition on column 2

{14) Typ + Tap + Too = B
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may be taken care of by splitting column 2 and using a second slack variable.
Moreover, there may be other conditions on column 2, such as

(15) Tog + Typ + T K ¥
that do not involve the same variables. Also, there can be more than one

condition on the same variables in the same column, for example, condition
(14) and ,

(16) P

could be taken care of by further splitting the column associated with the
variables x,,, z,,, z;,.

THEOREM 3: A transportation problem with added partial sum conditions
in rows and columns can be reduced to a standard transportation problem, if
any two conditions in a column (or row) either have no variables in common,
or the variables of one of the conditions are a subset of the variables of the other
condition.

TEEOREM 4: If a bounded partial sum of variables includes variables in
different columns or rows, the basis need not be triangular, so that non-integral
basic solutions can be obtained. :

ExEercisk: Prove these last two theorems.

18-3. PROBLEMS

The General Case. (Refer to § 18-1.)

1. (a) Review the rules for determining the candidate for entering the basic
set or shifting to upper or lower bound and the variable leaving the
basic set.

(b) Modify the procedure to improve a general feasible solution.

(¢) Modify the procedure to cover a problem where variables have lower
bounds other than zero. '

(d) Does the lexicographic scheme for getting around degeneracy still
apply to the bounded variable method; if not, what modifications
are necessary ?

. The Bounded Transportation Problem and Generalization. (Refer to

§18-2)

2. Give a direct proof of Theorem 1 of § 18-2.

3. Show for capacitated transportation problem of § 18- 2 (1), (2), (3), and
(4)- that no feasible solution exists if there is a row p, such that
2.7—1%p; < @, Or & column ¢ such that 3™ a;, < b,

4. Construct an example to show that = feasible solution satisfying (1), (2),
and (3) need not exist even if, foralli = 1, 2, . . .mandj=12,.. .n,

m
Z“ii = ay, Zai;‘ =>b;

j=1 =1
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5. Consider the example shown in § 18-2-(7); restate in the form §18.2-(1),
(2), €3), and (4). :

6. In the 5 X 5 array below, the exclusion of men from certain jobs is
indicated by shaded boxes. Show why this is a bounded variable problem.
Use the methods of § 18-2 to find a feasible solution.

Job
1 2) (3) (4

7/ 2,
Man (3) I ///%/////, 7
"2, 7277

7. Construct an example where artificial variables z,,, z,, are required as
part of every basis during Phase II. Amplify the discussion of the text
to cover situations in which artificial variables form a part of the basis
during Phase II.

8. Prove that the solution shown in § 18-2-(10) is optimal. Is it unique? If
not, construct all other optimal solutions.

9. Given a capacitated transportation problem with m =5 rows and
n =7 columns and the additional partial row sum condition zs +
Zgs + %3, < «, find an equivalent capacitated transportation problem
with no side conditions. :

10. Construct examples to show that if the sets of variables used in the
partial sums are not nested or mutually exclusive in a row or column,
then the basis need not be triangular.

11. If a bounded partial sum of variables includes variables in different
rows or columns, show that the basis need not be triangular; in other
words, it is not equivalent to a transportation problem.
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CHAPTER 19

MAXIMAL FLOWS IN NETWORKS

19-1. FORD-FULKERSON THEORY

Consider a network connecting two nodes, a source and & destination,
by way of several intermediate nodes. Each arc of the network is assigned
two numbers, representing the flow capacity along the arc in each direction.
Assuming a steady state condition, find a maximal flow from the source to
the destination. In this section we shall follow the theory developed by
Ford and Fulkerson [1954-1; 1960-1].

In network Fig. 19-1-1, the source and destination are distinguished from
the other nodes by double circles. The flow capacities, «;;, in each direction

Source

Figure 19-1-I. A maximal flow problem with directed arc capacities.

are shown by numbers along each arc near the node at which the flow might
originate. '

If 2,; = 0 denotes the quantity of flow from 4 to 7, then the following
constraints on capacity hold:
(1) 0z, <ay
(2) Oz <ay

Thus in Fig. 19-1-1, for example, 0 << 245 << 4, 0 < 2, << 0; 0 < 1, << 00,
0 < x5, << 0, ete. In addition, the following conservation-of-flow equations
hold: except for the source where k = 0, and the destination where k = n,
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the sum of flows into node % balances the sum of flows out of it, so that

3) _ ink—zzk,=o k=12...,n—1)
€ i

where all terms x;, and z,; are omitted from these sums, except those
corresponding to arcs of the network. We denote by F the flow into the
source from outside the network; then, by definition,

4) F—{—Zm,-o—zxm-:O
i i

It is not difficult to show, in view of (3), that the flow out of the system at
the destination also equals F for, if we sum the n — 1 relations appearing
in (3) and (4), each variable, z,;, appears in two equations with opposite
signs (hence cancels), except for those representing flows into the destination.
Reversing signs, one obtains

(5) Dt > s —F=0
© j

The Maximal Flow Problem is to choose z;; >> 0 and Max F satisfying (1),
(2), (3), (4), and (5).

Finding Feasible Solutions to Transportation and Transshipment
Problems.

It is interesting to note that the problem of finding a feasible solution
to an assignment problem or, more generally, to a transportation problem
in which not all z,; are admissible, is equivalent (as we shall see in a moment)
to solving a maximal flow problem. Reeall that the primal-dual algorithm
(§ 11-4) seeks feasible solutions to a sequence of restricted primal problems.
This implies that transportation problems could be solved by means of a
sequence of maximal flow problems. This idea is developed into an efficient
algorithm in the next chapter. The following transportation -problem
(actually not solvable) can be reduced to a network flow problem like Fig.
19-1-1.

Destinations
Row

Total

(6) Origins
(4)

(5)
1) g :////A s
(2) 7:1:24 ////A 3
3) '//% T35

Column
Total 5 7
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It is clear that a feasible solution to (6), if it exists, corresponds to finding
Z;; = 0 in the array (7) that sum to unknown row and column totals zy,
and z;, such that the sum, z, of these marginal totals is maximum and equal
to the sum of column or row capacities.

Destinations
(7) Origins Row
4) Total

(5)
1) Ty % Zoy (T <4)
@ | o % tw | (@< 3)
3 % Zas Toa (T3 < 5)

Column
Total Zyg Zsg

(T4 << 5) (w56 < T)

Zoy + Zog + Tog = Ty + T56 = 2 (Max) i
On the other hand, if the maximum value of z is less than the specified
capacities, as is the case here, no feasible solution to (6) exists. It is now
obvious that Fig. 19-1-1 is the network representation of (7).

In the case of a transshipment problem, a modified network is formed
by joining all nodes with surplus available to a fictitious common source
node by ares with capacities equal to the surpluses available, and by
joining all nodes with unsatisfied needs to a common fictitious destination
by arcs with capacities equal to the deficit. A feasible solution to the trans-
shipment problem will then correspond to a maximal flow solution to the
modified network problem, which equals the sum of the capacities of the arcs
from the source node (or into the destination node).

Properties of Network Flow Problems.

The following theorem is easily seen:

THEOREM 1: A4 set of x;; = O satisfying the capacity constraints and the
conservation equations can be replaced by another set x; with the same total
flow F in which either x; or x/; is zero by setting

(8) zy; = z,; — Min (2, ;)
We shall only consider flows where this is always the case. For example, if
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on a directed arc joining i to j a number 6 appears, this will mean z,; = 6
and z;; = 0.

3
<D

@ ;<7 2; < 3)

@ {

It is now possible to replace all variables z,; and z;; by their difference

3

) £y = Ty — Ty

. . &; > 0 corresponds to  &,;; = z;;and z;; = 0
in whiéh case { _ - ; A
#;; < 0 corresponds to —&;; == z;; and z;; = 0

The capacity constraints and conservation equations become

(10) —oy < Ey Koty

Zzi,:=0 k=12,...,n—1
%
F+Z:E,-0=O

—F+me=o

THEOREM 2: A4 set of &; and F > O satisfying the capacity constraints
and the conservation equations can be decomposed into a sum of positive chain
flows from the source to the destination and a set of circular flows such that the
direction of positive flows in any common arc 1s the same for all chains.

DEFINITION: A chain flow, K, is a constant flow value Z; = K for every
arc (i —j) along a chain and #; = 0 elsewhere. This theorem is an inter-
esting one because it means that a solution to a flow problem or a trans-
shipment problem corresponds to our intuitive notion that items start from
nodes of surplus and move (flow) from one node to the next without losing
their identity until arriving finally at some node of deficit.

The proof is straightforward. Assume F > 0. Choose a chain starting at
0 with initial arc (0 — ¢,), where

(11) Fyi, = Max &y, > 0
R i

That £, > 0 follows from F > 0 and the conservation relation F = X%,
We now repeat our procedure at node 3, choosing the second arc (i, — 1)
of the chain by
(12) iil'iz = Ma:x ii‘.,- > O
i

Again by the conservation equation at i, and the fact that Z, >0, it
follows that Z, ; > 0.

Upon iteration, we either (a) generate a chain that returns to a node
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arrived at earlier, thus forming a “loop,” or (b) we complete a chain to the
destination. If a loop is generated, subtract a constant K > 0 from each
&,; for ares (3, j) of the loop where, letting € denote ‘“‘belongs to,”

(13) . K = Min F,; [(z, §) € loop]

It is clear that the new values of #;; satisfy the capacity and conservation
relations. Starting again at the node where the chain first formed a loop,
the chain generation procedure is continued. Only a finite number of loops
can be removed from the solution by the above procedure, since each new
solution generated by a loop removal has at least one more Z;; that is zero.

Hence, after a finite number of steps, a chain from origin to destination
can be constructed with positive flow along it. A value K is then assigned
to the chain by setting

(14) K =Mini; >0 for all (4, j) € chain

A new solution to the flow problem is now constructed with flow value.
F — K, by subtracting K from cach #; value corresponding to ares (4, j)
along the chain. The entire procedure can now be repeated with the new
problem if F — K > 0. Again we note that there can only be a finite number
of chain removals because each new solution has at least one more 7;; that
is zero.

Finally, if F = 0 and some %;; > 0, starting with node ¢ and arc (+ —j),
the above procedure can be followed to construct a loop which can be re-
moved. In a finite number of steps all residual loops can be removed. This
completes the constructive proof of the theorem.

THEOREM 3: If there exists no chain of arcs, each with positive capacity,

* joining the source to the destination, then the maximal flow is zero.

Proor: Assume, on the contrary, that it is possible to have the maximal
flow positive. By the previous theorem it is then possible to decompose it
into chains of positive flows. Along any such chain with flow value K > 0,
we must have 0 < K < #; < «a,;, because the method of decomposition is
such that each Z;; > 0 is represented as a sum of nonnegative chain flows
along the directed arc joining ¢ to j. It follows that the selected chain has
arcs of positive capacity. ’

We can argue, conversely, that if there exists a chain with arcs of positive
capacity, we may choose K = Min a,; > 0 for arcs along the chain and
thereby obtain a flow F = K > 0 along the chain; hence

THEOREM 4: The maximal flow is positive if there exists a chain of arcs,
each with positive capacity, joining the source to the destination.

The following theorem permits us constructively to obtain a maximal
flow in a network by seeking in associated networks a chain of arcs each
with positive capacity joining the source to the destination.

THEOREM 5: A solution F = F,, &,; = &2; is mazimal if and only if the
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mazimal flow F' is zero in a second nelwork formed by replacing a by
o = ayy — T

Proor: Suppose, on the contrary, that there exists a solution,
F' = F} >0, —a), < 7% < «;; to the associated problem. Then

(15) —lay + ) < Gy Sy — Fy
—o;; < Py + Ty <y

It follows that ;; = §% + 2% is an admissible solution to the original

network with flow F —= (F; + F,) > F,, contradicting the hypothesis of

Figure 19-1-IIb. Adjusted arc capacities and an augmenting chain
flow (cycle 1).
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maximal flow. Thus, if F = F, is not maximal, an improved solution to the
original system can be constructed.

ExErcise: Show the necessity as well as the sufficiency of the hy-
pothesis of Theorem 5.

A simple example, Fig. 19-1-I1a, illustrates this. To initiate the compu-
tation, seek a chain joining 0 to 3 with arcs of positive capacity. (Later we
shall describe how to do this systematically.) One such is the chain (0 — 2),
(2 —1), (1 — 3) with capacities (1, 1, 1); along it, initiate the flow K, = 1.

Figure 19-1-Ilc. Final adjusted arc capacities, no additional chain
flow possible (cycle 2).

Figure 19-1.IId. This maximal flow is the algebraic sum of the
previous chain flows.
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This is represented by the numbers at the middle of the arcs, the arrows
indicating the direction of flow along the chain. Adjust the capacity of
each arc by subtracting K, = 1 from the capacity at the base of the arrow
and adding it to the capacity at the point of the arrow. This results in
Fig. 19-1-IIb.

In the new network there is only one chain of arcs with positive capacity;
namely (0 — 1), (1 —2), (2 — 3), with capacities (3, 2, 2). Hence a flow of
K, = 2 can be set up along this chain. Again adjusting the capacities of the
network, we have Fig. 19-1-Ilec.

No chain of positive capacities joining 0 to 3 exists. We now form our
maximal flow as the algebraic sum of the chain flows given in Fig. 19-1-1Ia, b
as shown in Fig. 19-1-IId.

Constructing a Chain of Positive Arc Capacities Joining Source to
Destination.

This can be done systematically by forming a tree of all the nodes that
can be reached from the source by such chains. Thus, all nodes that can be
reached from the source by arcs of positive capacity are determined
first. In Fig. 19-1-1II, these are nodes 1 and 5; arcs (0 — 1) and (0 — 5)
form part of the tree. The procedure is repeated with each new node in turn,
omitting nodes reached earlier. It is easy to show that, if a chain of positive

Figure 19-1-III. Fanning-out procedure for finding a positive chain flow.
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are enpacitios existys joining the source to any node, this procedure will con-
struet ad least one such chan.

Exgrcise:  Show that the above procedure will always construct a
chain of positive capacities from origin to destination, if one exists.

THEOREM 6: If a maximal flow exists and the capacities are integers, the
procedure will construct only a finite number of positive chain-flows, whose
alyebraic sum is the maximal flow.

Proor: Note that if «,; are integers, then the chain flow, A, i also an
integer, and the same is true of the successive adjusted arc-capacities, «;;.
But each flow being positive implies that F must increase by at least unity
on each iteration. Hence, only a finite number of iterations is possible since
F is finite.

Properties of Cuts in Networks.

When the flow F' = F, is maximal for z;; = 27;, it will be observed that
certain of the directed arcs of the network are used to full capacity, or
saturated, i.e., x,; = a;;. It is easy to see that, if for this set all the saturated
arcs are removed from the network, or more precisely, if their «;; values are
set equal to zero, no flow is possible. Indeed, if a positive flow over some
chain of unsaturated arcs existed, the same chain would have positive arc
capacity for the adjusted network, 0z; = &y — 23;, and by Theorem 5,
z;; = z; would not be a maximal flow solution.

DEFINITION: A cut is any set of directed arcs containing at least one
arc from every chain of positive capacity joining the source tothe destination.

Dermvition: The cut value is the sum of the capacities of the arcs of
the cut.

From our remarks it is clear that the collection of saturated arcs in a
maximal solution constitutes a cut. Thus, in Fig. 19-1-IId, the set of directed
arcs, (1 —2), (1 -—3), (0—2), (2 — 3), with capacities, (1, 1, 1, 2), con-
stitutes a cut. The cut value, in this case, is 1 +1 + 1 + 2 = 5. Tt will be
noted that this cut has two subsets which are also cuts. These arc marked
in Figs. 19-1-IVa and IVb with the bullet symbol indicating the direction of
the arc belonging to the cut.

The cut value in both of these cases is less than hefore, namely,
1+1+4+1=38and1 + 2= 3. Notice, however, that this is the same value
as the maximum flow value. It is also the smallest value that can be obtained
for any cut. Fulkerson first conjectured that the minimum cut value was
always equal to the maximal flow value. This was first established for
so-called ‘“planar networks” (RAND Seminar, 1954). Later Ford and
Fulkerson established this as true in general [Ford and Fulkerson, 1954-1].

TaeorEM 7: The Maz-flow value equals the Min-cut value.

Proor: We first establish that, if {F, &} is any flow and C is any cut
value for some arbitrary cut, then C > F. Decompose the flow into a sum of
r positive chain flows. Suppose that arc (i, —j,) of the cut is shared with a
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Cut value =3
V4
s

-—F=3 — F 23—
(a)
Max fiow volue =3
Min cut value =3
Cut value=3
Ve
/
—F 33 — 2 3

(b)

Max flow voiue =3
Min cut vaiue =3

Figures 19-1-IVa, b. An example of the max flow-min cut theorem.

set S, of chains p, with flow values K, ; suppose that arc (i; —j,) of the cut
is shared with a set, S,, of the chains where §; may have chains in cornmon
with 8, etec. We may write

(16> ‘ c‘il'jl 2 ii!‘jl = z K’l
D28y
Caydy = -‘z"a Z K”:
D38,
Because every chain p =1, 2, . . ., r of the decomposition must have at
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least one arc belonging to the cut, K, must appear in at least one of the sums
above. Hence, summing the entire set of inequalities,

(17) C=cil'jl+ci2'j2+'.’2K1+K2+."+KT=F

We shall now show that, if F = F, is the maximal flow for £; = £, a
subset of the saturated arcs constitutes a cut with value C, = Fo. Since in
general C > F, the theorem follows. Divide the nodes of the network into
two classes. In the first class, place all nodes that can be reached from the
source node by one or more chains composed of unsaturated arcs. In the
second class, place all the remaining nodes (if any). All directed ares (3 — j),
joining a node 4 of the first class to a node j of the second must be saturated.
(Otherwise, j could be reached from the origin via some unsaturated chain
through i.) First, we will show that the set of these arcs forms a cut and,
second, that its cut value is minimal.

Call the set of these saturated arcs S, and suppose there exists some
chain joining source to destination that avoids all the saturated arcs of S.
Since the entire set of saturated arcs, S*, forms a cut, lef a chain, p, be
chosen that shares the least number of arcs with S* and none with S. Let arc
(¢ —j) be the first such saturated arc along the chain, p. It follows that
node i is in the first class. Hence, j is also in the first class. (Otherwise, arc
(¢ =) would belong to 8.) But in this case, j can be reached from the source
by a chain of unsaturated arcs. This chain can then be joined to the
remainder of theé chain from j to the destination; the new chain now has
one less saturated arc of §* than p, contrary to the assumption that p had
the least number. -

We wish now to show that the cut value of 8 is Cy = F,. Sum the con-
servation relations (3) over all nodes of the first class. Variables Z,; and &;;
cancel, if both ¢ and j are in the first class. What remains is only the sum,

(18) F,= Z 2, for (i —j) €8

where the i belongs to the first class and the j to the second. Since the
(¢ — ) are all the ares of the cut S, and since these are all saturated, we have

(19) Fo= D &= > ay=0, [ —3) €8]

and the theorem follows. It is now easy to prove:

THEOREM 8: Given any partition of the nodes into two classes where the
Jirst class includes the source and the second class the destination, then a feasible
solution (F = F,, £,; = £5,) is maximal, if every arc (3 —j) is saturated
that joins a node of the first class to a node of the second class.

Observe that, if we sum the conservation equations corresponding to
nodes of the first class, we obtain for any feasible solution,

(20) F = Z Z;
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Adjusted Arc Capacities Search for Chain Flow

Figure 19-1-V. A second example of the Ford-Fulkerson max-flow algorithm.
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where the summation extends over all arcs (i —j) such that i is in the
first class and j is in the second. Because the solution is feasible, #; <7 «;;.

However, our particular solution has the property that £, = a;. 1t follows
that

@1 | F=zf,.,gza,.,.=2i:?,=ﬁ’o.

Exercise:  Show that the set of arcs (3 — j), defined above, forms a cut
and its cut value is minimum.

To illustrate the method with a second example, consider Fig. 19-1-Va,,
where the capacities on the arcs in each direction are indicated. Thus the
capacity on the arc (0 — 1), is 1, and in the reverse direction, 0, etc. Assume
a starting flow, z; = 0, then Fig. 19-1-Va, represents a possible tree of
positive arc capacities fanning out from the source. The flow can now be
increased along the chain (0, 1, 3, 5) to K, = 1, at which point the arcs,
{0, 1) and (1, 3), are saturated. The modified network, Fig. 19-1-Vb,, is
formed by setting «;; = «;; — K, and «;, = «;; + K, for arcs (i —j) of
the chain. In Fig. 19-1-Vb, is a new tree of positive arc capacities fanning
out from (0), resulting in the chain (0, 2, 4, 5). The successive solutions
are shown in Fig. 19-1-Vb,, Ve¢,, and Vd,, the various trees in Fig. 19-1-Vb,,
Ve,, and Vd,. Since it is not possible in the final Fig. 19-1-Vd, to reach the
destination, the procedure is terminated. The sum of the chain flows found
in Fig. 19-1-Va,, Vb,, and Ve, constitutes a maximal flow. This is shown on
network Fig. 19-1-VI. Saturated arcs are marked with the symbol pointing

Figure 19-1.VI. Max flow-min cut solution for the second example.

in the direction of saturation. To find the cut with minimum value, choose
saturated arcs leading from nodes of the first class to nodes of the second.
The nodes in the first class can all be reached from the source along un-
saturated chains. This set was determined by the nodes in the subtree of
positive arc capacities Fig. 19-1.Vd,. Hence, the nodes of the first class are
0,2, 3,1, 4 and the cut is made up of arcs (3 — 5) and (4 — 5) as shown in
Fig. 19-1.V1L.
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19-2. THE TREE METHOD FOR SOLVING MAXIMAL
-FLOW PROBLEMS

This technique [Dantzig and Fulkerson, 1956-1; Fulkerson and Dantzig,
1955-1] is identical in principle with the one used earlier for solving capaci-
tated transportation problems. We shall, however, illustrate a variation of it
again giving a network interpretation for the maximal flow problem. Suppose
we have the network in Fig. 19-2-Ia, with source 4, destination B, and arc

Ar

SIS
"\"

Figure 19-2-Ia. A max-flow example: The flow at start of cycle 0 is zero.

capacities as indicated ; these are assumed equal in both directions. To start,
select two subtrees! of arcs—one, 7', branching out from the source 4, the
other, T'g, branching out from the destination, B, so that every intermediate
node is reached by just one of the trees. For example, 7'z might contain no
arcs, and 7', might be made up of AC,CD, DE, EF (see Fig. 19-2.-1Ib). Notice

Figure 19-2.Ib. Heavy arcs form cycle 0 basis: The incremental chain
flow is 6, = 10.

that, since the network is connected, it is always possible to select two such

trees. Next, introduce any arc which leads from 7, to T'p. There will be

1 Tt is clear that, in a connected network with equal arc capacities in either direction,
arcs may be removed until a tree is left. There is then a unique chain joining 4 and B.
Elimination of any are of this chain gives two trees of the kind described.

[398]




19-2. THE TREE METHOD FOR SOLVING MAXIMAL FLOW.PROBLEMS

just one chain from 4 to B; flow as much as possible along this chain. In
the exawple EB, is such an arc, and we have then the flow diagram of
Fig. 19-2-I1a with the arcs AC, CD, DE saturated. Select any one of these

Arc flow

Figure 19-2-I1a. Feasible solution start of cycle 1.

saturated arcs, say AC, and place some identifying mark on it. In Fig.
19-2-ITa we have used a bar (1); this symbol will be used throughout to
designate a subset of the saturated arcs. Now observe that, if the barred
arc is dropped from the picture (Fig. 19-2-IIb), we again have two trees,

Figure 19-2-IIb. Cycle 1 basis: The incremental chain flow is 8, = 10.

)
T 4 consisting of no arcs and Tz = {EB, ED, DC, EF}. If the underlying
basic solutions were nondegenerate, 7', and Ty would always consist of
unsaturated arcs, i.e., we would always have «;; < Z;; < «;;. Again introduce
any unbarred arc leading from T, to Ty, say AF. This creates a flow of 10
units along the chain AF, FE, EB, and saturates each arc of this chain.
Select one of these, say AF and “bar” it. We now have the diagram given
in Fig. 19-2-II1, and we have achieved a flow of 20. Dropping barred arcs
gives the same tree as in Fig. 19-2-IIb. Introduce arc AE from T, to Ty
This leads to a situation we have not met previously, in that the chain thus
constructed, namely AE, EB, cannot take any more flow because EB,
though unbarred, is at its upper limit (the degenerate case). Bar KB and
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Figure 19-2:IVa. Feasible solution start of cyele 3.

Figure 19-2-Va. Foasible solution start of cycle 4.
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leave AE in with a flow of zero, obtaining Fig. 19-2-IVa, with new trees as
shown in Fig. 19-2-IVb. Introduce DB to get the chain AE, ED, DB. This
time we can get an increase even though DZE is saturated, since the flow in
Fig. 19-2-1Va is from D to E. Thus, if the flow from 4 to E is increased by
8, = 0, the flow from D to E must be decreased by 6,, and the flow from
D to B increased by 6,, in order to preserve the conservation equations at
E and D (see Fig. 19-2-IVDb). The largest possible value of 6, is 10, since
the capacity of DB (and of AE) is 10. This cancels the flow from DtoE.
Bar DB and proceed.

Repeated application of this procedure produces the sequence of flows
depicted in Figs. 19-2-Va, b and 19-2-VIa, b.

_ Figure 19-2.VIa. Feasible solution start of cycle 6.

Now in Fig. 19-2-VIb the trees are 7, = {4 D, DC}, Ty = {FB, EF},
and there are no more arcs to introduce from 7', to 7'5. At this stage examine
the barred arcs connecting nodes of 7, to those of Tg. If the flow in each
of these is in the right direction, that is, from 7, to 7', an optimum has
been reached, as we shall prove. If, on the other hand, the flow in one of the
barred arcs which join T 4 to Tp is in the wrong direction, an increase in
total flow may possibly be obtained by decreasing the flow in this arc. To
see this, notice that the arc in question, together with arcs of 7', and 7',
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Figure 19-2.VIb. Feasible solution start of cycle 7.

will form a (unique) chain joining A and B which might look, for example,
like Fig. 19-2-VIL. In this case, the iterative process is continued.

OO0 =0-+0+-0

Figure 19-2.VIL

Proof of the Tree Method: Let us assume, for a general network, that
the iterative process is finite and that the final subtrees, Ty and T, are as
shown in Fig. 19-2-VIII. Join the destination n to the source by a fictitious

(7o) (Ta)

* =0

Figure 19-2.-VIII. With a back flow are, the graph of the basis forms & single tree.

back flow are (n, 0) so that now the subtrees, Ty and T, and the arc (n, 0)
form a single tree in the network. The direction of the arrows on all arcs
corresponds to the direction of positive flow. If the flow is zero, this direction
is undefined and may be arbitrarily chosen. The capacitated transshipment
problem is to maximize the flow, F, along the arc (n, 0). The conditions of
the problem are
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Z@.j:o G=12...n)

j
0y Xy %y
—Zp,g = —F (Mln)

Thus, in this case, ¢, = —1, while all the other c,; are zero.

As shown in § 17-1, the #; corresponding to arcs (i, j) of a tree form a
basic set. The simplex multipliers satisfy the equation, =; —m; = ¢y, for
arcs (4, j), corresponding to basic variables. Since one multiplier may be
arbitrarily chosen, we set 7y = 0. Each node, 7, in the subtree, 7', will then
have a multiplier, ;, of zero, and each node in 7, will have a multiplier of
unity. It is now easy to see that the final solution, z;; = 2%, is optimal,
because all arcs (1, j) connecting 7', to T,, are saturated, i.e., all the corre-
sponding non-basic variables are at their upper bound [z;; = «,;] and have
nonpositive cost factors {¢; — (m; — m;) = —1], while, for all the basic
variables, ¢;; — (m; — m;) = 0. The conditions for optimality of & bounded
variable problem are fulfilled. (See § 18-2-.(6).)

We have assumed a finite number of iterations. It will be noted that
each iteration generates two subtrees which, if joined by the are (n, 0) form
a single tree. Hence, each successive solution corresponds to a basic solution.
Assuming nondegeneracy, there would be a positive increase in flow on each
iteration, hence it would not be possible to repeat a basis. In the case of
degeneracy (which occurred frequently in the example), a randomized rule
of rejection from the basis will insure with probability one against circling
in the algorithm. (See Chapter 10; see also Problem 1 and § 6-1.)

19-3. PROBLEMS

1. Determine a perbﬁrbation scheme for avoiding degeneracy. Using Orden’s
approach (§ 14-4, Problems 14, 15), find a fixed value for ¢ in advance.
Note that it will be necessary to use the equivalence of the capacitated
flow problem with the transportation problem.

2. Solve the problem shown in-Fig. 19-1-III by the Ford-Fulkerson Method,
and the Simplex Method. Compare relative efficiencies.

REFERENCES
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CHAPTER 20

THE PRIMAL-DUAL METHOD FOR
TRANSPORTATION PROBLEMS

20-1. INTRODUCTION

Although the simplex method, as adapted to the transportation array
by the techniques of Chapter 14, has been used successfully to solve large
problems involving hundreds of equations in thousands of unknowns, the
primal-dual transportation method presented in this chapter appears to have
certain advantages. In an informal experiment by Ford, Fulkerson, and the
author, this method has been compared with the simplex procedure in a
number of small problems and was found to take roughly half the effort.
For example, one 20 X 20 optimal assignment for which the simplex method
required well over an hour of hand computation, was accomplished by the
present method in about thirty minutes. With larger problems the advantage
may be greater. However, the experience reported informally to the author
has not been conclusive. )

As in §11-4, the technique keeps the relative cost factors nonnegative
while it works toward feasibility, so that when a feasible solution is obtained
it will already be optimal. Historically, the technique evolved from a com-
binatorial procedure called the “Hungarian Method,” which was designed
by H. Kubhn [1955-1] for solving a specialized assignment problem and is
based on a proof, by a Hungarian mathematician, Egervary {1931-1], for a
linear graph theorem of Konig.

Ford and Fulkerson [1955-1] subsequently discovered a simplified
algorithm for solving maximal flow problems in networks (see Chapter 19).
This algorithm, when applied to the Hitcheock transportation network,
serves as a substitute for part of Kuhn's procedure, enabling an analogous
solution of the transportation problem and the least cost capacitated trans-
shipment problem. A number of other authors have also developed methods
for solving such problems based on Kuhn’s algorithm; notably Munkres
[1957-1] and Flood [1960-1].

The out-of-kilter method of Fulkerson [1961-2] for minimal cost flow
problems generalizes the primal-dual method so that it may be initiated with
an infeasible dual solution as well as an infeasible primal solution. Computer
codes based on this algorithm (developed by Jack D. Little and Richard J.
Clasen of RAND) are being successfully applied in several industries.
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20-2. THE FORD-FULKERSON ALGORITHM

The Hitchcock problem is to find an m X n array, z = (z;;), of
nonnegative numbers, =x;, which minimizes the objective function,

To1 Drey Cii%i;, subject to the constraints,

n

1) Z; = a; t=12,...,m)
2
m
zxﬁ:b" G=12...,n
=]

where a; and b;, specified nonnegative integers, satisfy ST, a; = >7_, b,
(If m = n and all the a; and b; are equal to 1, this reduces to an optimal
assignment problem.)
To describe the process, we will work through an example due to Ford
and Fulkerson [1956-1]:
. Unit Shipping Costs ¢,;

Surpluses Shortages ! (7)
2 a= by =3 1) @ @) @ (3 (6
a, =4 b, =3
ay = b, =6 mi s 3 7 3 8 5
a, =8 b,=2 0) 2|5 6 12 5 7 11
;=1 3] 2 8 3 4 8 2
bg =2 4|9 6 10 5 10 9

The computational procedure carries along the original unit-cost matrix,
(ci;), and also an auxiliary array of the same size, which is the restricted
primal array. Associated with each element, c,;, of the cost matrix will be
prices, u; and v;, such that ¢;; — u; — v, is nonnegative.

Associated with each row of the restricted primal array, at any stage
of the procedure, will be a “surplus,” and with each column a ‘“‘shortage.”
These are the portions of the a; and &, still not allocated to routes.

Determining Nonnegative Values of the Relative Cost Factors, Cips
for Initial Selection of a Restricted Primal Array.

For each row 1, assign the value, u; = min; c,;. Subtract this value from
each entry in the row to form the ith row of the (¢;; — u;) array. Then, for
each column j, assign the value, v; = min, (c;; — ;). Subtract this value
from each element, ¢;; — u,, in the column to form the j*& column of (¢,;)
(which equals (c¢; — u; — v;)), the relative-cost array. For our example,
this prpduces (3), (4), and (5) in turn.
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Cyj u; = an ¢y
3) l ’
5 3 7 3 8 513

(4) !
e 0 4 0 5 2 I
v
0 1 7 0 2 6
0 6 1 2 6 0
4 1 5 0 5 4 |‘
Mincj =v; = 0 0 1 0 2 0
i
Cij = €y — U; — Yy
®)
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For the restricted primal problem, we seek to reduce the shortages
by assigning positive values only to those z,, for which ¢ is zcro. Thus, for
our example, entries must be made only in the squares with inscribed boxes
of (6), since these correspond to the ¢; which are zero in (5).

Step 0: Initiate the Labeling
Start by labeling each row for which a surplus occurs, appending a
minus sign (label) next to the surplus value.

Initial Restricted Primal Array
3 3 6 2 1 2 « Shortages

- O O
4 D E' D each .D c—or(x)-esponds
-0 O o

8~ ]

(6)

Surpluses

Step 1: Searching for a Chain

In each row contsining a minus “label,” append a plus “label” to each
unlabeled inscribed box. If a row contains two or more minus labels, change
all but one to plus, affixing minus to the box whose entry is largest. In each
column containing a plus label, append a minus label to each unlabeled
box containing a non-zero entry. Continue until either (a) a plus label is
entered in a shortage column, in which case proceed to Step 2, or (b) it
becomes impossible, under the rules, to enter any more labels—in which
case proceed to Step 3.

Step 2: Allocating Shortage Along the Chain

Let k represent an amount to be determined, and begin by indicating
that k is to be subtracted from the deficit in the column containing the plus
label which terminated Step 1 according to rule 1(a). The procedure now
consists of either (a) selecting a column where % has previously been sub-
tracted from some entry or from the current shortage, and adding k to just
one of the plus-labeled entries in the column (there is always at least one
such entry), or (b) selecting the row where k has just been added to some
entry, and subtracting k& from the minus-labeled entry or from the minus-
labeled surplus (there is only one minus label in a labeled row).

Continue until k is shown subtracted from some entry in a surplus row.
Now substitute for k the value of the smallest entry which must be reduced
by k and perform the indicated additions and subtractions of k. If a surplus
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remains in any row, crase all the plus and minus labels and return to Step 0.
If no surplus remains, terminate, for feasibility has thus been achieved, and
the set of eniries now constitutes an optimal solution since all the relative cost
factors have been kept nonnegative.

Step 3:  Finding a New Restricted Primal

Let (3, j) € 8 mean that square (i, §) is in a labeled row and an unlabeled
column. Similarly, let (i, j) € S’ mean that square (¢, §) is in an unlabeled row
and a labeled column. (Note that neither S nor S’ contains any labeled
squares.)

Determine a constant, A, and a square (r, s) in S, such that

(7) A=¢,= Min ¢

and new &; values,
¢; — Aif (1,5) €S (Labeled row, unlabeled column)
& ={&; + Aif (4,5) €8 (Unlabeled row, labeled column)
i otherwise

As an alternative method of effecting these changes, we may first adjust the
values of u; to u} = u; + A for rows ¢ with labels and v; to v* = z; — A
in columns with labels. The values of c¥ may then be determmed as

<k
Cis

= ¢y — uy — vf

In the restricted-primal array, correct the positions of the inscribed
boxes to correspond to % = 0. There will be at least one new box in §, for
A = ¢,,. All the boxes in S’ will drop (their entries are zero) and the others
will remain unchanged. Leaving the labels intact, return to Step 1 and
continue the labeling process by scanning those rows where new boxes were
inscribed.

Illustration. In our exa.mple, having appended a minus label to the
surpluses, we begin by scanning row 1 for inscribed boxes and by plus-
labeling the z;, square of (6). Because the second column has surplus, rule
1(a) directs us to Step 2. This results in (8).

3 3~k 6 2 1 2

3—k D+k

(8)

D.,
0O
- [0 O O

‘- O

Setting k = 3, and adjusting the entries decreases the shortage by 3 units
and completes Step 2. We now repeat Step 1 since the problem is still

(k=3)
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infeasible. After several repetitions of the Step 1-Step 2 cycle, the array
appears as in (9) and then as in (10a).

4 1—-%k 2

(3] 4
& M e

(9)

k=1)
] U
7k +k
(10a) (10b)
4 2 Eyj
77,
3 2 | o | 30 3| 2
O //;
O [ 0 1 6/0/0 6
777
O O] o | 6 o//%‘; 0
6 — ] WSO ENR] 0 paXKeakd + A,
—4, (4, =1)

As specified by rule 1(b), because no more plus or minus labels may be
entered, we now proceed to Step 3, again using the array in (6) (which is
repeated as (10b) above). The only labeled entry is in the fourth row and
fourth column; S consists of the double-hatched squares and §' the single-
hatched squares. Now, since the smallest element in the squares of Sis 1,
we subtract A = 1 from the ¢; values of S and add A = 1 to the ¢,; values
of §’. This has the effect of keeping ¢, fixed at zero while reducing the cost
factor, &, to zero, as shown in (11b).

The new restricted primal problem appears in (11a), and the remainder
of the procedure is shown by the subsequent displays.

(11a) (11b)
4 2 Cs
3]- 2X 0 p3XT 1 KK+ A,
(3 o ) :/y{ 6 ?//1// 0| 6
) 674 0 (73] ¢+ | o
O 2] Ol > @2 ° v/
6 — A 2]. % 0 Ke3Xd 0 K2XX238X + A,
—Ay -4, (8, =2)
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4 22—k
(12)
D+’@-k Dw
EIR a-
. (k = 2)
] (2] [
6—k D-Hz @4— D+
(13a) (13b)
4 Sy
O @- Bl | o o@%l 1| o |+4,
(5. al- o3 3 {o + A,
T« Ui
2 874 0 1504710
O @ Q| B2 » 2
4 — 2]. G- O 1o KiIsd o | 0 | 1 |+ 4,
—8; —A; —B; —4; =45 (Ag =
4~k
(14)
O ]
3 O
(k = 4)
4 -k @+ D+k@+ D+
(15a) (15D)
Optimal Assignment Optimal & %
O O] ojolo|1|1]0] 66
(3 O 0o {3/ 5 |3 |01i6]|6
2] 1|90 6|5 |1 2
(2] z O 1o o oo 1|09
vy -1 -3 1 —4 1 -1
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The optimal set of prices, given in (15b), is formed by successively adjusting
the initial values of ; and v;, as given in (3) and (4), by the corresponding
values of + A (if any) given in (10b), (11b), (13b), and (15Db).

Finiteness of the Primal-Dual Transportation Method.

Each application of Step 1 must make either Step 2 or Step 3 possible.
There can be, at most, N = Za; = Xb; applications of Step 2 if a; and b;
are integers, for, in that case, the successive k-parameters are all positive
integers, and the surpluses and shortages are decreased by at least unity
at each application of Step 2.

THEOREM 1: The algorithm will not lead to Step 3 unless shortage columns
(and possibly others) are unlabeled.

This must certainly be true if any column still has shortage, since, if
such a column contained a plus sign, Step 2 (and not Step 3) would have
followed after Step 1, in accordance with rule 1(a); and if such a column
contained a minus sign, this label would always have been preceded by a plus
sign in the same column.

THEOREM 2: There can be, at most, n — 2 applications of Step 3 between
applications of Step 2 (where n is the number of columns).

To see this, note that a boxed entry having a label at the end of Step 1
will remain boxed after Step 3, since the only ¢;; values modified are those
situated in unlabeled rows or columns. In addition, there will be at least .one
new label entered in a previously unlabeled column, s, corresponding to
(r, 8§) €8, such that ,, = A. Since rows of S are labeled (by definition) and
every labeled row contains one minus label, we follow Step 3 by re-applying
Step 1. The rules will, therefore, ascribe a plus label to the z,, square. There
can thus be no more than n — 2 successive returns to Step 3 after Step 1
before a labeling occurs in a shortage column (invoking Step 2).

THEOREM 3: A transportaiion array will be optimized by this Primal-
Dual Method in not more than N(n — 2) cycles, where N = Za; = Xb;, and
n 18 the number of columns.

20-3. PROBLEMS

1. Complete the proof of Theorem 3.

Modify the Primal-Dual Method for tra.nsporta.txon problems to account

for the inadmissibility of some z,;.

3. How does the Primal-Dual Transportation Method relate to the more
general primal-dual algorithm of § 11-4?

4. Show that Steps 1 and 2 constitute special application of the Ford-
Fulkerson Method for achieving maximal flow in a network (see Chapter
19).

5. Explain the Primal-Dual Transportation Method by dlagra.mmmg the
procedure of Steps 1, 2, and 3 as & flow-chart.

1o
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6. How does the magnitude of A affect the amount by which the value of
the dual objective function is changed during an iteration?

7. Show that, instead of starting our process of labeling by appending
minus labels to surplus row, we could start by attaching minus labels to
shortage columns, etc.

8. Show that the progress of the algorithm will be accelerated by double-
labeling, using both of the possible labeling methods, as mentioned in the
last problem, one after the other during a single application of Step 1.

9. Warehouse problem: Suppose a number of commodities + can be pur-
chased (or sold) at prices p,, at the start of period ¢; it costs s;, to store
it for one period. If the capacity, S, of a storage warehouse is fixed, what
is the optimal storage, purchase, sales program? Show that an item is
either used to completely stock a warehouse or, if in stock, is either
completely held or sold out. References: Cahn [1948-1], Charnes and
Cooper [1955-1], Dantzig [1949-1; 1957-3], Prager [1957-1].
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