
Evaluating Kolmogorov’s Distribution

George Marsaglia∗

The Florida State University
Wai Wan Tsang†

Jingbo Wang
The University of Hong Kong

Abstract

Kolmogorov’s goodness-of-fit measure, Dn, for a sample CDF has consistently been set aside for methods
such as the D+

n or D−
n of Smirnov, primarily, it seems, because of the difficulty of computing the distribution

of Dn. As far as we know, no easy way to compute that distribution has ever been provided in the 70+ years
since Kolmogorov’s fundamental paper. We provide one here, a C procedure that provides Pr(Dn < d) with
13-15 digit accuracy for n ranging from 2 to at least 16000. We assess the (rather slow) approach to limiting
form, and because computing time can become excessive for probabilities>.999 with n’s of several thousand,
we provide a quick approximation that gives accuracy to the 7th digit for such cases.

1 Introduction

For an ordered set x1 < · · · < xn of purported uniform [0,1) variates, Kolmogorov [5] suggested

Dn = max(x1− 0

n
, x2− 1

n
, . . . , xn− n−1

n
,

1

n
−x1,

2

n
−x2, . . . ,

n

n
−xn)

as a goodness-of-fit measure. The distribution of Dn is difficult. It has been discussed extensively in the
literature, but to date no easily-applied method has been made available. We offer one here. The alternatives
proposed by Smirnov, either D+

n , the maximum of the first half of the above list, or D−
n , the maximum of the

second half, have a common, easier, distribution. They are widely used, particularly in statistical computing,
because of Knuth’s recommended use of K+

n =
√

nD+
n and K−

n =
√

nD−
n on the grounds that they “seem

most convenient for computer use”,[4] p57.
Concerning the distribution of Dn, Drew, Glen and Leemis report in a recent article that after an extensive

review, “There appears to be no source that produces exact distribution functions for any distribution where
n > 3 in the literature”,[2] p3. They then undertake to provide such by extending Birnbaum’s development
[1] of Pr(Dn < d) as a spline function: polynomials of degree n between knots at 1

2n
, 2

2n
, . . . , 1, using multiple

integrals. They succeed in reducing the required successive integrations of Birnbaum’s method—for example
from 444540 to 800 when n = 10—and provide the polynomials to n = 6 with a comment that they had found
all such polynomials up to n = 30, available on request at www.math.wm.edu/∼leemis. (Our request yielded
“Access not authorized” and an email request went unanswered.)

We provide here a relatively small C procedure, K(n,d), that will provide Pr(Dn < d) with far greater
precision than is needed in practice. The method expresses d in the form d = (k − h)/n with k a positive
integer and 0 ≤ h < 1. The C procedure K(n,d) uses numerical values for h, but with just the symbol h,
one can, for example in Maple or Mathematica, easily derive polynomials in h that, with the substitution
h = k − nd, yield the polynomials that make up the CDF between knots 1

2n
, 2

2n
, . . . , 1.

2 Evaluating Pr(Dn < d)

The method we use is based on a succession of developments that started with Kolmogorov’s viewing the
steps of the sample CDF as a Poisson process and culminated in the masterful treatment by Durbin [3]. His
monograph summarizes and extends the results of numerous authors who had made progress on the problem
in the years 1933-73. The result is a method that expresses the required probability as a certain element in
the nth power of an easily formed matrix. History of the development is available through the monograph’s
136 references.

∗Professor Emeritus
†Research supported by the Hong Kong Research Grants Council, Grant HKU 7046/02E.

1

We want to evaluate Pr(Dn < d). Write

d =
k − h

n
with k a positive integer and 0 ≤ h < 1.

Then

Pr(Dn ≤ d) =
n!

nn
tkk, where tkk is the k, k element of the matrix T = Hn,

and H is an m × m matrix, m = 2k − 1, whose general form is easily inferred from this particular case when
m = 6 and h ≤ 1/2:

























(1 − h1)/1! 1 0 0 0 0

(1 − h2)/2! 1/1! 1 0 0 0

(1 − h3)/3! 1/2! 1/1! 1 0 0

(1 − h4)/4! 1/3! 1/2! 1/1! 1 0

(1 − h5)/5! 1/4! 1/3! 1/2! 1/1! 1

(1 − 2h6)/6! (1 − h5)/5! (1 − h4)/4! (1 − h3)/3! (1 − h2)/2! (1 − h1)/1!

























The above example is for 0 ≤ h ≤ 1/2. For 1/2 < h < 1 the bottom left element of the matrix should be
(1− 2hm +(2h− 1)m)/m!, so that (1− 2hm +max(0, 2h− 1)m)/m! is the general form of that corner element.
The bottom row of the matrix reflects the first column in reverse order. Aside from the first column and last
row, the i, jth element is 1/(i − j + 1)! if i − j + 1 ≥ 0, else 0.

Example: Suppose n = 10 and we want Pr(D10 ≤ .274). Express d = .274 as .274 = 3−h
10

, so that
k = 3, m = 2k − 1 = 5 and h = .36. Our 5 × 5 matrix H is



















(1 − h) 1 0 0 0

(1 − h2)/2 1 1 0 0

(1 − h3)/6 1/2 1 1 0

(1 − h4)/24 1/6 1/2 1 1

(1 − 2h5)/120 (1 − h4)/24 (1 − h3)/6 (1 − h2)/2 (1 − h)



















If we express h = .36 as a floating point number, then the 3,3 element of 10!
1010 H10 yields, (using the C proc

below):
Pr(D10 ≤ .274) = .6284796154565043

On the otherhand, expressing h = 274
1000

as a rational, and assuming we have rational arithmetic, the 3,3
element of 10!

1010 H10 yields

Pr(D10 ≤ 274

1000
) =

599364867645744586275603

953674316406250000000000
= .628479615456504275298526691328 · · · ,

confirming the accuracy of the floating point calculation.
Finally, if we merely use the symbol h and have symbolic programming such as with Maple or Mathematica,

we find that the 3,3 element of H10 is

26

225
h10 − 34

27
h9 +

719

90
h8 − 88

3
h7 +

589

15
h6 − 10306

225
h5 +

1055

4
h4 − 66653

360
h3 − 59687

144
h2 − 687251

720
h +

28947001

14400
.

Subsituting 3 − 10d for h, then multiplying by 10!/1010 gives Pr(Dn < d) for 5/20 < d < 6/20:

419328 d10 − 801024 d9 +
3771936

5
d8 − 11684736

25
d7 +

24769584

125
d6 − 32213664

625
d5

+
3604041

625
d4 +

5313231

12500
d3 − 7515459

50000
d2 +

25247817

2500000
d − 15369417

100000000
.

If you wanted, for example, such a polynomial for 4/20 < d < 5/20, (that is, 4/20 < (k − h)/10 < 5/20, so
that k = 3 and 1/2 < h < 1), you could change the lower left element of H to (1− 2h5 + (2h − 1)5)/5!. Then
the 3,3 element of H10 yields

−2

9
h10 +

98

27
h9 − 439

18
h8 +

1076

9
h7 − 15821

36
h6 +

32731

36
h5 − 41105

48
h4 +

10607

18
h3 − 52255

72
h2 − 7984

9
h +

288593

144
.

Replacing h by 3 − 10d and multiplying by 10!/1010 then yields Pr(Dn < d) for 4/20 < d < 5/20:

−806400 d10 + 1102080 d9 − 594720 d8 +
177408

5
d7 +

3421908

25
d6 − 9773694

125
d5

+
47717019

2500
d4 − 13212297

6250
d3 +

1035279

12500
d2 +

848673

625000
d − 88389

781250
.

2

3 Limiting Forms

The limiting form for the distribution function of Kolmogorov’s Dn is

lim
n→∞

Pr(
√

nDn ≤ x) = L(x) = 1 − 2

∞
∑

i=1

(−1)i−1e−2i2x2

=

√
2π

x

∞
∑

i=1

e−(2i−1)2π2/(8x2),

the first representation given by Kolmogorov, the second coming from a standard relation for theta functions
and better suited for small x. The moments come from easily-integrated terms of xL′(x) and x2L′(x).

The mean and variance of
√

nDn approach

µ =
√

π/2 ln(2) = .8687311605 · · · and σ2 = π2/12 − µ2 = .0677732044 · · · , σ = .2603328723 · · · ,

Since the mean and standard deviation of Dn are, roughly, .8687/
√

n and .26/
√

n, we may compare distribu-
tions and their approaches to limiting form by plotting Pr(Dn ≤ x/

√
n)−L(x) for, say, n = 64, 256, 1024, 4096,

with x over an effective range for L(x), say .2 < x < 2.5, (-2.6 to 6.3 sigmas). Such plots are in Figure 1.
Approach to the limit is rather slow, with maximum error of about .278/

√
n near the 33rd percentile.

0

0.01

0.02

0.03

1 2

Figure 1: Error plots: Pr(Dn < x/
√

n) − L(x) for n = 64, 256, 1024, 4096.

Our development of this procedure for Kolmogorov’s Dn was motivated by requests for its inclusion in the
Diehard Battery of Tests of Randomness [6], which considers KS tests a generic class including Kolomogorov’s
Dn, Smirnov’s D+

n , D−
n or the Cramer-von Mises class, particularly the Anderson-Darling

An = −n − 1

n
[ln(x1z1) + 3 ln(x2z2) + 5 ln(x3z3) + · · · + (2n − 1) ln(xnzn)] with zi = 1 − xn+1−i.

That An is the current favorite for Diehard, but new versions will include both An and Dn.
In practice (at least in our practice), we have a randomly produced Dn which we wish to convert to a

uniform (0,1) variate (p-value) by means of the probability transformation p = K(n, Dn). The C procedure
below lets us do this very accurately, as well as quickly—except for p’s near 1 and n’s several thousand.

In the following examples, we cite values and timings from the C proc below, as well as (20-digit) ac-
curacies provided by a much slower Maple proc. For the C proc, K(2000, .04) = 0.9967694319171325
(.99676943191713676985) takes about 1 second, K(2000, .06) = 0.9999989395692991 (.99999893956930568118)
takes 4-5 seconds, but K(16000, .016) = 0.9994523491380971 (0.99945234913828052085) takes around 100 sec-
onds, and for n > 4000, getting probabilities such as .999999 can take many minutes.

If K(n, Dn) is used in the Diehard tests, we might encounter some bad RNGs that return values up to 10
σ’s from the mean, for which conversion to a p-value by means of K(n, Dn) might require minutes . For that
reason, we include an optional line in the C program:
s=d*d*n; if(s>7.24||(s>3.76&&n>99)) return 1.-2.*exp(-(2.000071+.331/sqrt(n)+1.409/n)*s);

(As d
√

n exceeds about 1.94, K(n, d) will exceed .999 and is approximately 1−2e−2nd2

, which can be improved

to 1 − 2e−(2.000071+.331/
√

n+1.409/n)nd2

, with maximum error less than .0000005.)
Use of that line provides more than adequate accuracy for K(n, d) > .999 and n ≥ 100, (roughly d

√
n >

1.94), as well as protection from possible long computing time for any n when K(n, d) > .999999, (roughly,
d
√

n > 2.69). That extra line can be commented out for users who need the full 13-15 digit accuracy at the
extreme right (and are willing to contend with potentially long running times). The extreme left causes no
problems.

In computing Hn, the required number of matrix multiplications is only blog2(n)c plus the number of
1’s in the binary representation of n. A straightforward implementation encounters floating point exponent

3

overflow around n = 714. Detailed inspection shows that the elements of Hn grow quickly as n increases.
Their magnitudes are not too diversified though, with largest values around the center of the matrix. To
maintain floating point exponents within their allowable range, we keep a special matrix exponent. When the
k, k element of a current matrix becomes greater than 10140, we divide every element by 10140 and increase
the matrix exponent by 140. The final matrix exponent is used to adjust the value of n!

nn
tk,k, where T = Hn.

The following C program contains the procedure K(n,d), as well as supporting procedures for multiplying
and exponentiating matrices. It is in compact form to save space. To use K(n,d) you need only add a main pro-
gram to a cut-and-paste version of the code listed below. Then make calls to K(n,d) from an int main(){ }.
You should also lead with the usual #include <stdio.h>,#include <math.h> and #include <stdlib.h>.

4 The C program for K(n, d) = Pr(Dn < d)
void mMultiply(double *A,double *B,double *C,int m)

{ int i,j,k; double s;

for(i=0;i<m;i++) for(j=0; j<m; j++)

{s=0.; for(k=0;k<m;k++) s+=A[i*m+k]*B[k*m+j]; C[i*m+j]=s;}

}

void mPower(double *A,int eA,double *V,int *eV,int m,int n)

{ double *B;int eB,i;

if(n==1) {for(i=0;i<m*m;i++) V[i]=A[i];*eV=eA; return;}

mPower(A,eA,V,eV,m,n/2);

B=(double*)malloc((m*m)*sizeof(double));

mMultiply(V,V,B,m); eB=2*(*eV);

if(n%2==0){for(i=0;i<m*m;i++) V[i]=B[i]; *eV=eB;}

else {mMultiply(A,B,V,m); *eV=eA+eB;}

if(V[(m/2)*m+(m/2)]>1e140) {for(i=0;i<m*m;i++) V[i]=V[i]*1e-140;*eV+=140;}

free(B);

}

double K(int n,double d)

{ int k,m,i,j,g,eH,eQ;

double h,s,*H,*Q;

//OMIT NEXT LINE IF YOU REQUIRE >7 DIGIT ACCURACY IN THE RIGHT TAIL

s=d*d*n; if(s>7.24||(s>3.76&&n>99)) return 1-2*exp(-(2.000071+.331/sqrt(n)+1.409/n)*s);

k=(int)(n*d)+1; m=2*k-1; h=k-n*d;

H=(double*)malloc((m*m)*sizeof(double));

Q=(double*)malloc((m*m)*sizeof(double));

for(i=0;i<m;i++) for(j=0;j<m;j++)

if(i-j+1<0) H[i*m+j]=0; else H[i*m+j]=1;

for(i=0;i<m;i++) {H[i*m]-=pow(h,i+1); H[(m-1)*m+i]-=pow(h,(m-i));}

H[(m-1)*m]+=(2*h-1>0?pow(2*h-1,m):0);

for(i=0;i<m;i++) for(j=0;j<m;j++)

if(i-j+1>0) for(g=1;g<=i-j+1;g++) H[i*m+j]/=g;

eH=0; mPower(H,eH,Q,&eQ,m,n);

s=Q[(k-1)*m+k-1];

for(i=1;i<=n;i++) {s=s*i/n; if(s<1e-140) {s*=1e140; eQ-=140;}}

s*=pow(10.,eQ); free(H); free(Q); return s;

}

References
[1] Birnbaum, Z.W., Numerical tabulation of the distribution of Kolmogorov’s statistic for finite sample size,
J. Amer. Statist. Assoc. 47 (1952), 425-441.

[2] Drew, J.H., Glen, A.G. and Leemis, L.M., Computing the cumulative distribution function
of the Kolmogorov-Smirnov statistic, Computational Statistics and Data Analysis 34 (2000) 1-15.

[3] Durbin, J., Distribution Theory for Tests Based on The Sample Distribution Function,
Society for Industrial & Applied Mathematics, Philadelphia, 1972.

[4] Knuth, D.E., The Art of Computer Programming, Volume 2/ Seminumerical Algorithms, 3rd Edition,
Addison Wesley, Reading Mass, 1998.

[5] Kolmogorov, A., Sulla determinazione empirica di una legge di distributione,
Giornale dell’ Istituto Italiano degli Attuari 4 (1933), 83–91.

[6] Marsaglia, G. The Marsaglia Random Number CDROM, with The Diehard Battery of Tests of Randomness,
produced under a grant from NSF at Florida State Univ., 1995. http://stat.fsu.edu/pub/diehard/ or
http://www.csis.hku.hk/∼diehard/ for latest version of the Diehard tests.

4

