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1. INTRODUCTION

The Kolmogorov-Smirnov goodness-of-fit test involves the examination of a ran-

dom sample from an one-dimensional and continuous random variable, in order to

test if the data were really extracted from a hypothesized distribution F0(x). The

test is about the null hypothesis against a generic alternative:

{
H0 : F(x) = F0(x) for every x
H1 : F(x) � F0(x) for some x

(1)

where F(x) is the true cumulative distribution function.
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Abstract The compatibility of a random sample of data with a given distribution can be
checked with a goodness of fit test. Kolmogorov (1933) and Smirnov (1939 A)  proposed the
Dn statistic based on the comparison between the hypothesized distribution function F0(x)
and the empirical distribution function of the sample Sn(x): Dn = sup–∞<x<∞|Sn(x)- F0(x)|.
If F0(x) is continuous and under the null hypothesis, the distribution of Dn is independent
of F0(x), i.e. the test is distribution-free. In this paper we introduced a procedure providing
the exact critical values of the Kolmogorov-Smirnov test for fixed significance levels. These
values are obtained by a modification of the procedure proposed by Feller (1948). In
particular, the distribution function of the test statistic is obtained by the solution of a linear
system of equations whose coefficients are proper marginal and conditional probabilities.
Moreover, a Matlab program provides the computation of the cumulative distribution
function’s value of Dn statistic P(Dn < D) for given values of n and D.
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Let X be the random variable with the continuous cumulative distribution

function

F(x) = Pr(X ≤ x)

and let (x(1),x(2), . . . ,x(n)) be the order statistic of the random sample {xi ∼ IID(F), i =
1,2, . . . ,n}, so that x(1) ≤ x(2) ≤ . . . ≤ x(n).

The empirical distribution function is defined as follows:

Sn(x) =




0 for x < x(1)
k/n for x(k) ≤ x < x(k+1) with k = 1,2, . . . ,n−1.

1 for x ≥ x(n)

(2)

This is a step function with jumps occurring at the sample values.

Glivenko (1933) and Cantelli (1933), applying the strong law of large num-

bers, proved that Sn(x) converges to F0(x) under H0 with probability one as n→∞.

In the same year Kolmogorov (1933) introduced the statistic:

Dn = sup
−∞<x<∞

|Sn(x)−F0(x)| (3)

for which the critical region of size α to reject the null hypothesis in (1) is:

R =
{

Dn : Dn > Dα,n =
dα√

n

}

where dα depends only on α .

Since X is a continuous random variable, Dn depends on the null probabil-

ity integral transformation of the sample values, i.e. F0(xi), and the probability

distribution of Dn is independent of F0(x), thus the test is distribution-free.

For large samples the Author found that Dn has the following limiting dist-
ribution:

lim
n→∞

Pr
(

Dn <
dα√

n

)
= 1−2

∞

∑
k=1

(−1)k−1e−k2d2
α = L(dα). (4)

Moreover, for n ≥ 35, the approximation

Pr
(

Dn <
dα√

n

)
� 1−2e−d2

α (5)

has been found to be close enough to its limit for practical purposes.

Smirnov (1939 A; 1948) proposed an alternative proof for the limiting distri-

bution, and tabulated the values of the function L(dα) in (4). Moreover, the Au-
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As the original proofs of Kolmogorov and Smirnov are very intricated and are based
on different approaches, Feller (1948) presented simplified and unified proofs
based on methods of great generality. See also Kendall & Stuart (1967) for a
description of the procedure.

Doob (1949) proposed a heuristic approach of a proof based on results
concerning the Brownian process and its relation with the Gaussian process.

Besides, a method of evaluating the distribution of Dn for small samples (n ≤
35) was proposed by Massey (1950) who obtained a system of recursive formulas
for computing P(Dn < c/n), equivalent with the formulas (14)-(17) proposed by
Kolmogorov (1933), as well as a procedure for replacing them with a system of
difference equations. A table of percentage points was also given by the same
Author (Massey, 1951) for different values of α and n = 1, 2, …, 35.

Also Birnbaum (1952) has tabulated P(Dn < c/n) for n = 1,2, . . . ,100 and

c = 1,2, . . . ,15 by a method of computation that involves a truncation of Kol-

mogorov’s recursive formulas.

Some years later, Miller (1956) introduced some more extensive tables of the

percentage points of Dn distribution by empirical modification of function (4).
Moreover, for Dn and D+

n Stephens’ modifications (Stephens, 1970) are avail-

able for every n as simple function for the asymptotic percentage points.
For a complete coverage of the history, development, and outstanding prob-

lems related to the Kolmogorov-Smirnov statistic, as well as other statistics based

on the empirical distribution function, other contributions are worth mentioning.

In particular, Darling (1957) made a review of the goodness of fit tests intro-

duced by Kolmogorov-Smirnov and Cramér-von Mises, and Durbin (1973) sum-

marized and extended the results of numerous authors who had made progress on

the problem from 1933 to 1973.

thor (Smirnov, 1939 A, 1944) suggested an asymptotic distribution of the one-si-
ded statistic

D+
n = sup

−∞<x<∞
{Sn(x)−F0(x)} (6)

and another one regarding the maximum difference between the empirical distri-

bution of two samples with the same cumulative distribution function. The proof

is given in Smirnov (1939 B).

2. LITERATURE REVIEW
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D’Agostino & Stephens (1986), in chapter 4 (due to Stephens), presented

a comprehensive coverage on the use of some statistics based on the empirical

distribution function.

Regarding the development of computational procedures, Drew, Glen & Leemis
(2000) presented an algorithm for computing the cumulative distribution function

of the Kolmogorov-Smirnov test statistic with all parameters known, extending

the Birnbaum’s procedure (Birnbaum, 1952) to calculate P(Dn < D) as a spline

function. Moreover, Marsaglia, Tsang & Wang (2003) implemented a C proce-

dure that provided the probability P(Dn < D) with great precision and assessed an

approximation to limiting form.

Finally, if X is a discontinuous random variable, Dn does not depends on

the probability integral transformation of the sample values, and the probability

distribution of Dn depends on F0(x), thus the test is not distribution-free.

More details on the application of the Kolmogorov-Smirnov test for discon-

tinuous distribution functions are given in Kolmogorov (1941), Schmid (1958),

Noether (1963), Conover (1972; 1999), Pettitt & Stephens (1977), Wood & Al-

tavela (1978), Jalla (1979), Marvulli (1980), Facchinetti & Chiodini (2008),

Facchinetti & Osmetti (2009).

3. A PROCEDURE TO CALCULATE THE EXACT CRITICAL VALUES
OF KOLMOGOROV-SMIRNOV TEST

Let X be a Uniform random variable on (0,1). The empirical cumulative distri-
bution function Sn(x) may be displayed on the same graph along with the  hy-
pothesized cumulative distribution function of X , F0(x), as shown in Figure 1.

In the figure the differences

d(x) = Sn(x)−F0(x) =
k
n
− x

correspond to the vertical deviations between the two functions. Consequently,

Dn is the value of the largest absolute vertical difference between them.

Frosini (1978) studied the several related statistics by examining the
differences between the distribution curves, as the graduation curves; the Author
presented an outline concerning inferential applications of goodness of fit
statistics when the null hypothesis is composite and about comparison of powers
of several tests.
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Figure 1: Hypothesized cumulative distribution function F0(x) and empirical cumulative dis-
tribution function Sn(x), for a sample size n = 4

For a fixed value 0 ≤ Dα,n = D ≤ 1, the probability

FDn(D) = Pr(Dn ≤ D)

refers to all samples (x1,x2, . . . ,xn) whose empirical law, for 0≤ x ≤ 1, is included

between the two lines: {
y = x+D upper line r1

y = x−D lower line r2

which are parallel to F0(x) = x.

If the statistic Dn assumes a value outside the region included between these

two lines, the null hypothesis that the true distribution is F0(x) can be rejected at

the α level of significance.

In order to obtain the probability:

1−FDn(D) = Pr{Dn > D} .

we can observe that Dn may be greater than D with respect to the upper or the

lower line. In particular, if for a value x

Sn(x)−F0(x) > D (7)

this inequality holds for all values of x in the interval 1Ik = [x(k),x1k) (where x1k is

the point of intersection of Sn(x) with r1), at whose upper endpoint x1k we have:

Sn(x1k)−F0(x1k) = D. (8)

Figure 1: Hypothesized cumulative distribution function F0(x) and empirical
cumulative distribution function Sn(x), for a sample size n = 4
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Since F0(x) = x, also F0(x1k) = x1k, and the equation (8) becomes:

k
n
− x1k = D.

Consequently the inequality (7) holds if and only if for some k

x(k) < x1k =
k
n
−D

for k = 0,1, . . . ,n and with x(0) = 0.

Similarly, if for a value x:

Sn(x)−F0(x) < −D (9)

this inequality holds for all values of x in the interval 2Ik = (x2k,x(k+1)) (where x2k

is the point of intersection of Sn(x) with r2), at whose lower endpoint x2k we have:

Sn(x2k)−F0(x2k) = −D. (10)

As in this case F0(x2k) = x2k, the equation (10) becomes:

k
n
− x2k = −D.

Thus the inequality (9) holds if and only if for some k

x(k+1) > x2k =
k
n

+D

for k = 0,1, . . . ,n and with x(n+1) = 1.

By denoting the events: {
A1k if Dn > D
A2k if Dn < −D

for k = 0,1, . . . ,n, we observe that the statistic Dn will exceed D if and only if at

least one of the 2n+2 events:

A10,A20,A11,A21,A12,A22, . . . ,A1n,A2n, (11)

occurs.

Actually, the events A10 and A2n are impossible because the overrun of the

two lines cannot occur.
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Thus we have the formal equivalence of events

{Dn > D}⇐⇒
{[

n⋃
k=0

A1k

]
∪

[
n⋃

k=0

A2k

]}
. (12)

We must be aware that the possible events are only those that occur inside the

unit square, i.e. 0 < xik < 1, for i = 1,2 and k = 0,1, . . . ,n. As a consequence, the

following conditions must be satisfied:

• for the upper line: x1k > 0 ⇔ (k−nD)/n > 0 ⇔ k > nD, thus the minimum

value of k is:

m1 = [nD]+1

where [nD] = int(nD), hence k = m1,m1 +1, . . . ,n;

• for the lower line: x2k < 1 ⇔ (k +nD)/n < 1 ⇔ k < n−nD, thus the max-

imum value of k is:

m2 = n− ([nD]+1)

where [nD] = int(nD), hence k = 0,1, . . . ,m2.

Summarizing: {
0 < x1k < 1 ⇔ k = m1,m1 +1, . . . ,n
0 < x2k < 1 ⇔ k = 0,1, . . . ,m2

with m1 +m2 = n.

The events A1k and A2k are defined on the two distinct sets:{
A1k for k = m1,m1 +1, . . . ,n
A2k for k = 0,1, . . . ,m2.

(13)

Since the union extended to impossible events does not alter the final results,

we have the equivalence of the events:

{Dn > D}⇐⇒
{[

n⋃
k=0

A1k

]
∪

[
n⋃

k=0

A2k

]}
⇐⇒

{[
n⋃

k=m1

A1k

]
∪

[
m2⋃

k=0

A2k

]}

(14)

Then it is possible to define the 2n + 2 mutually exclusive events Ur ⊂ A1r

and Vr ⊂ A2r, with r ≤ k such that:

• Ur occurs if A1r is the first event in the sequence (11), for r = 0,1, . . . ,n;
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• Vr occurs if A2r is the first event in the sequence (11), for r = 0,1, . . . ,n;

therefore the event [
n⋃

r=0

Ur

]
∪

[
n⋃

r=0

Vr

]

is equivalent to the one in (14).
The events Ur and Vr are mutually exclusive, hence

Pr{Dn > D} =
n

∑
r=0

[Pr{Ur}+Pr{Vr}] . (15)

From the definitions of A1k, A2k, Ur and Vr the following relations hold:{
Pr{A1k} = ∑k

r=0 [Pr{Ur}Pr{A1k|A1r}+Pr{Vr}Pr{A1k|A2r}]
Pr{A2k} = ∑k

r=0 [Pr{Ur}Pr{A2k|A1r}+Pr{Vr}Pr{A2k|A2r}] (16)

where

• Pr{Atk} for t = 1,2 are the marginal probabilities, i.e. the probabilities of

overtaking one of the two lines r1 or r2;

• Pr{Atk|Asr} for t = s = 1,2 are the conditional probabilities, i.e. the prob-

abilities of overtaking one of the two lines at level k, conditionally on the

same event at level r, with r < k;

• Pr{Ur} and Pr{Vr} are the probabilities that in the sequence (11) the first

event to occur is A1r or A2r, respectively.

The equation (16) defines a system of 2n + 2 linear equations for the 2n + 2

unknowns Pr{Ur} and Pr{Vr}. After solving the system, and substituting into

(15), we can obtain Pr{Dn > D}.

4. MARGINAL AND CONDITIONAL PROBABILITIES

Now we have to compute the marginal and the conditional probabilities.

For the marginal probabilities from (13) we know that:

C1k = Pr{A1k}
{

= 0, for k = 0,1, . . . ,m1 −1

> 0, for k = m1,m1 +1, . . . ,n

and

C2k = Pr{A2k}
{

> 0, for k = 0,1, . . . ,m2

= 0, for k = m2 +1,m2 +2, . . . ,n.
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In particular we see that C1k is the probability that exactly k successes occur

in n Binomial trials with probability

p1k = x1k = F(x1k) =
(

k
n
−D

)
,

thus:

C1k =
n!

k!(n− k)!

(
k−nD

n

)k (
n− k +nD

n

)n−k

for k = m1,m1 +1, . . . ,n.

Similarly C2k is the probability that exactly k successes occur in n Binomial

trials with probability

p2k = x2k = F(x2k) =
(

k
n

+D
)

,

thus:

C2k =
n!

k!(n− k)!

(
k +nD

n

)k (
n− k−nD

n

)n−k

for k = 0,1, . . . ,m2.

We observe that C1k and C2k depend only on k,n and D.

For varying k, C1k and C2k become the elements of the two vectors C1 and

C2 of order (1× (n+1)) which together define the vector C(1×(2n+2)) of marginal

probabilities:

C =
[

C1

C2

]
.

Now we define the conditional events:


A1k|A1r, for k = m1, . . . ,n and r = m1, . . . ,n
A2k|A1r, for k = 0, . . . ,m2 and r = m1, . . . ,n
A1k|A2r, for k = m1, . . . ,n and r = 0, . . . ,m2

A2k|A2r, for k = 0, . . . ,m2 and r = 0, . . . ,m2.

(17)

In order to consider these events as consequent, the following relations can
be verified simultaneously:{

xtk ≥ xsr, for t,s = 1,2
k ≥ r.

Let us consider separately the four events:
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1. t = s = 1 ⇒ A1k|A1r.

The indexes k and r must verify the inequalities:

m1 ≤ r ≤ k ≤ n. (18)

2. t = 2,s = 1 ⇒ A2k|A1r.

The indexes k and r must verify the inequalities:

m1 ≤ r ≤ k ≤ m2. (19)

3. t = 1,s = 2 ⇒ A1k|A2r.

The indexes k and r must verify the inequalities:

r +2nD ≤ k ≤ n (20)

4. t = s = 2 ⇒ A2k|A2r.

The indexes k and r must verify the inequalities:

0 ≤ r ≤ k ≤ m2. (21)

Now we want to evaluate the probabilities of the consequent events Atk|Asr

for (t,s = 1,2).
In particular we see that also these probabilities are defined by a Binomial

expression:

tsbkr = Pr{Atk|Asr} =
(n− r)!

(k− r)!(k−n)!

(
xtk − xsr

1− xsr

)k−r (
1− xtk

1− xsr

)n−k

(22)

for t,s = 1,2 and with respect to (17).

In particular:

1. t = s = 1 ⇒ B11 = (11bkr).
Replacing t = s = 1 in (22) we have that Pr{A1k|A1r} is:

11bkr =
(n− r)!

(k− r)!(n− k)!

(
k− r
n1 − r

)k−r (n1 − k
n1 − r

)n−k

for m1 ≤ r ≤ k ≤ n, with: {
n1 = n(1+D)
n2 = n(1−D).
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As k ≥ r, we obtain a lower triangular matrix of order (n + 1), and in par-

ticular, for k = r the diagonal terms are all equal to one.

From (18) the number of probabilities to be defined is

(n−m1)(n−m1 +1)
2

=
(m2)(m2 +1)

2
.

Thus we have the matrix B11 having the following framework:

Figure 2: Framework of the matrix B11

2. t = 2,s = 1 ⇒ B21 = (21bkr).
Replacing t = 2,s = 1 in (22) we have that Pr{A2k|A1r} is:

21bkr =
(n− r)!

(k− r)!(n− k)!

(
k− r +2nD

n1 − r

)k−r (n2 − k
n1 − r

)n−k

for m1 ≤ r ≤ k ≤ m2 = n−m1.

We obtain a lower triangular matrix of order (n+1), and for (19) the num-

ber of probabilities to be defined is

(m2 −m1 +1)(m2 −m1 +2)
2

=
(n−2m1 +1)(n−2m1 +2)

2
.

Thus we have the matrix B21 having the following framework:

Figure 2: Framework of the matrix B
11
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Figure 3: Framework of the matrix B21

3. t = 1,s = 2 ⇒ B12 = (12bkr).
Replacing t = 1,s = 2 in (22) we have that Pr{A1k|A2r} is:

12bkr =
(n− r)!

(k− r)!(n− k)!

(
k− r−2nD

n2 − r

)k−r (n1 − k
n2 − r

)n−k

for 0 ≤ r ≤ n−2nD and r +2nD ≤ k ≤ n.

We obtain a lower triangular matrix of order (n+1), and for (20) the num-

ber of probabilities to be defined is

(n− l1 +1)(n− l1 +2)
2

,

where l1 = int(2nD+1).
Thus we have the matrix B12 having the following framework:

Figure 3: Framework of the matrix B
21

Figure 4: Framework of the matrix B
12
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4. t = s = 2 ⇒ B22 = (22bkr).
Replacing t = s = 2 in (22) we have that Pr{A2k|A2r} is:

22bkr =
(n− r)!

(k− r)!(n− k)!

(
k− r
n2 − r

)k−r (n2 − k
n2 − r

)n−k

for 0 ≤ r ≤ k ≤ m2.

As k ≥ r, we obtain a lower triangular matrix of order (n+1), and in partic-

ular, for k = r the diagonal terms are all equal to one. For (21) the number

of probabilities to be defined is

(m2)(m2 +1)
2

.

Thus we have the matrix B22 having the following framework:

Figure 5: Framework of the matrix B22

Combining the previous four matrices we have that the matrix B of the con-

ditional probabilities is the square block matrix of order (2n+2):

B =
[

B11 B12

B21 B22

]

with the following framework:

Figure 5: Framework of the matrix B
22
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  n+1 terms    n+1 terms

 n+1 
terms

  n+1 
terms

Figure 6: Framework of the matrix B

5. DISTRIBUTION FUNCTION OF Dn STATISTIC

From above, (16) is a set of 2n+2 linear equations for 2n+2 unknowns:

Wr = Pr{Ur} ;Yr = Pr{Vr} .

For varying r, Wr and Yr constitute the elements of the two vectors:

W = {Wr}
and

Y = {Yr}
which together define the vector

Z =
[

W
Y

]

of order (1× (2n+2)).
Consequently we can rewrite the system (16) as follows:[

C1

C2

]
=

[
B11 B12

B21 B22

]
·
[

W
Y

]

Figure 6: Framework of the matrix B
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or:

C = B ·Z.

As the matrix B is singular, we cannot calculate its inverse B−1, thus the

system is indeterminate. To solve this problem we calculate the Moore-Penrose

pseudo-inverse matrix B+ instead of B−1 (Gentle, 2007).

In this way we calculate the probabilities Wr and Yr such that:

Pr{Dn > D} =
n

∑
r=0

[Pr{Ur}+Pr{Vr}] . (23)

From the previous equation we obtain the values of the distribution function

of the Kolmogorov-Smirnov statistic Dn:

FDn(D) = Pr{Dn ≤ D} . (24)

The cumulative distribution function of Dn is shown for different values of n
in Figure 7.
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 statistic
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For a fixed significance level α , from (24) we calculate the critical values

D∗
α,n of the Kolmogorov-Smirnov test. Table 1 gives many critical values for var-

ious sample sizes and significance levels.

Table 1: Exact critical values of Kolmogorov-Smirnov statistic obtained by the proposed pro-
cedure

Significance level (α)
n 0.001 0.01 0.05 0.10 0.15 0.20
2 0.97764 0.92930 0.84189 0.77639 0.72614 0.68377

3 0.92063 0.82900 0.70760 0.63604 0.59582 0.56481

4 0.85046 0.73421 0.62394 0.56522 0.52476 0.49265

5 0.78137 0.66855 0.56327 0.50945 0.47439 0.44697

6 0.72479 0.61660 0.51926 0.46799 0.43526 0.41035

7 0.67930 0.57580 0.48343 0.43607 0.40497 0.38145

8 0.64098 0.54180 0.45427 0.40962 0.38062 0.35828

9 0.60846 0.51330 0.43001 0.38746 0.36006 0.33907

10 0.58042 0.48895 0.40925 0.36866 0.34250 0.32257

11 0.55588 0.46770 0.39122 0.35242 0.32734 0.30826

12 0.53422 0.44905 0.37543 0.33815 0.31408 0.29573

13 0.51490 0.43246 0.36143 0.32548 0.30233 0.28466

14 0.49753 0.41760 0.34890 0.31417 0.29181 0.27477

15 0.48182 0.40420 0.33760 0.30397 0.28233 0.26585

16 0.46750 0.39200 0.32733 0.29471 0.27372 0.25774

17 0.45440 0.38085 0.31796 0.28627 0.26587 0.25035

18 0.44234 0.37063 0.30936 0.27851 0.25867 0.24356

19 0.43119 0.36116 0.30142 0.27135 0.25202 0.23731

20 0.42085 0.35240 0.29407 0.26473 0.24587 0.23152

25 0.37843 0.31656 0.26404 0.23767 0.22074 0.20786

30 0.34672 0.28988 0.24170 0.21756 0.20207 0.19029

35 0.32187 0.26898 0.22424 0.20184 0.18748 0.17655

For example, in 10% of the random samples of size 15, the maximum ab-

solute deviation between the empirical distribution function and the theoretical

distribution function will be at least 0.30397.

Table 1: Exact critical values of Kolmogorov-Smirnov statistic obtained by the
proposed procedure
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Table 2 gives the critical values dα(n) tabulated by Massey (1951) and inte-

grated by Birnbaum (1952).

Table 2: Critical values of Kolmogorov-Smirnov statistic given by Massey (1951) and inte-
grated by Birnbaum (1952)

Significance level (α)
n 0.01 0.05 0.10 0.15 0.20
2 0.929 0.842 0.776 0.726 0.684

3 0.829 0.708 0.642 0.597 0.565

4 0.734 0.624 0.564 0.525 0.494

5 0.669 0.563 0.510 0.474 0.446

6 0.618 0.521 0.470 0.436 0.410

7 0.577 0.486 0.438 0.405 0.381

8 0.543 0.457 0.411 0.381 0.358

9 0.514 0.432 0.388 0.360 0.339

10 0.486 0.409 0.368 0.342 0.322

11 0.468 0.391 0.352 0.326 0.307

12 0.450 0.375 0.338 0.313 0.295

13 0.433 0.361 0.325 0.302 0.284

14 0.418 0.349 0.314 0.292 0.274

15 0.404 0.338 0.304 0.283 0.266

16 0.391 0.328 0.295 0.274 0.258

17 0.380 0.318 0.286 0.266 0.250

18 0.370 0.309 0.278 0.259 0.244

19 0.361 0.301 0.272 0.252 0.237

20 0.352 0.294 0.264 0.246 0.231

25 0.320 0.264 0.240 0.220 0.210

30 0.290 0.242 0.220 0.200 0.190

35 0.270 0.230 0.210 0.190 0.180

Comparing Table 1 and Table 2 we observe the closeness of the values ob-

tained by the proposed procedure with those given by Massey and Birnbaum.

Table 2: Critical values of Kolmogorov-Smirnov statistic given by Massey (1951)
and integrated by Birnbaum (1952)
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Dα,n −dα(n)
dα(n)

based on the values given by Massey and Birnbaum.

Table 3: Percentage differences Dα,n−dα (n)
dα (n) between critical values in Table 1 and Table 2

Significance level (α)
n 0.01 0.05 0.10 0.15 0.20
2 0.03 -0.01 0.05 0.02 -0.03

3 0.00 -0.06 -0.93 -0.20 -0.03

4 0.03 -0.01 0.22 -0.05 -0.27

5 0.00 0.05 -0.11 0.00 -0.01

6 -0.23 -0.33 -0.43 -0.17 0.09

7 -0.21 -0.53 -0.44 0.00 0.00

8 -0.22 -0.60 -0.34 0.00 0.00

9 -0.14 -0.46 -0.14 0.00 0.00

10 0.61 0.06 0.18 0.15 0.18

11 0.00 0.00 0.00 0.41 0.41

12 -0.21 0.00 0.00 0.35 0.25

13 -0.12 0.00 0.00 0.00 0.23

14 0.00 0.00 0.00 0.00 0.28

15 0.00 0.00 0.00 -0.24 0.00

16 0.26 -0.20 0.00 0.00 0.00

17 0.22 0.00 0.00 0.00 0.00

18 0.17 0.00 0.18 0.00 0.00

19 0.04 0.00 -0.24 0.00 0.00

20 0.11 0.00 0.28 0.00 0.23

25 -1.08 0.02 -0.97 0.34 -1.02

30 0.00 -0.12 -1.11 1.03 0.00

35 -0.38 -2.50 -3.89 -1.33 -1.92

From Table 3 we observe that the minimum and the maximum percentage

differences are respectively −3.88571% (in Table we see the value −3.89% ap-

proximated to two decimal places), and 1.03500% (in Table we see the value

1.03% approximated to two decimal places).

Table 3: Percentage differences Dα,n−dα (n)
dα (n) between critical values in Table 1 and Table 2

6. CONCLUSIONS

To allow a synthetic comparison between the critical values in Tables 1 and 2, Table
3 gives the percentage differences
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Being these percentage differences less of four percentage points, we confirm

that there is no difference in the use of both methodologies for calculating the

critical values of the test.

The values in Table 1 were computed for small sample sizes (n ≤ 35). Those

for n > 35 are obtained from Smirnov’s table (Smirnov, 1948) by relating the val-

ues dα with
√

n, and are reported in Table 4.

Table 4: Asymptotic critical values dα (n > 35) of Kolmogorov-Smirnov statistic given by
Smirnov (1948)

Significance level (α)
n 0 .01 0 .05 0 .10 0 .15 0 .20

> 35 1.63/
√

n 1.36/
√

n 1.22/
√

n 1.14/
√

n 1.07/
√

n

Table 5 gives the critical values
√

nD∗
α,n for large sample sizes n = 50;80;100

obtained by the proposed procedure.

Table 5: Asymptotic critical values
√

nD∗
α,n of Kolmogorov-Smirnov statistic obtained by the

proposed procedure

Significance level (α)
n 0 .01 0 .05 0 .10 0 .15 0 .20
50 1 .59834 1 .33014 1 .19918 1 .11391 1 .04913

80 1 .60532 1 .33806 1 .20453 1 .11902 1 .05408

100 1 .60808 1 .34028 1 .20663 1 .12105 1 .05600

In Tables 4 and 5 we observe that the differences between the values are from
the second decimal place on, and for n→ ∞ the calculated values tend to approach
Smirnov values. Reasonably these differences are due to the different type of ap-
proximation considered.

7. APPENDIX: A MATLAB PROGRAM FOR P(Dn ≤ D)

The following Matlab program contains a procedure that provides the values of
the cumulative distribution function of Dn statistic P(Dn ≤ D), given the values
of n and D. The program is implemented following the procedure described in

this paper as the solution of a linear system of equations whose coefficients are

proper marginal and conditional probabilities.

Smirnov (1948)

proposed procedure
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clear all

% insert values n’ for n and D’ for D

n=n’;

D=D’;

% parameters definition

nD=n*D;

m1=round(n*D+0.5);

m2=round(n-n*D-0.5);

l1=round(2*n*D+0.5);

n1=n*(1+D);

n2=n*(1-D);

% B matrix

B=zeros(2*(n+1));

% B11 matrix

for k=m1+1:n+1

B(k,k)=1;

end

for r=m1:n-1

for k=r+1:n

B(k+1,r+1)=factorial(n-r)/(factorial(k-r)*factorial(n-k))*

(((k-r)/(n1-r))^(k-r))*(((n1-k)/(n1-r))^(n-k));

end

end

% B22 matrix

for k=n+2:n+2+m2

B(k,k)=1;

end

for r=0:m2-1

for k=r+1:m2

B(k+n+2,r+n+2)=factorial(n-r)/(factorial(k-r)*factorial(n-k))*

(((k-r)/(n2-r))^(k-r))*(((n2-k)/(n2-r))^(n-k));

end

end

% B21 matrix

for r=m1:m2

for k=r:m2

B(k+n+2,r+1)=factorial(n-r)/(factorial(k-r)*factorial(n-k))*
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(((k-r+2*nD)/(n1-r))^(k-r))*(((n2-k)/(n1-r))^(n-k));

end

end

% B12 matrix

for r=0:n-l1

for k=l1+r:n

B(k+1,r+n+2)=factorial(n-r)/(factorial(k-r)*factorial(n-k))*

(((k-r-2*nD)/(n2-r))^(k-r))*(((n1-k)/(n2-r))^(n-k));

end

end

% C vector

C=zeros(2*(n+1),1);

% C1 vector

for k=m1:n

C(k+1)=factorial(n)/(factorial(k)*factorial(n-k))*

(((k-nD)/n)^k)*(((n1-k)/n)^(n-k));

end

% C2 vector

for k=0:m2

C(n+2+k)=factorial(n)/(factorial(k)*factorial(n-k))*

(((k+nD)/n)^k)*(((n2-k)/n)^(n-k));

end

% system solution

Binv=pinv(B);

Z=Binv*C;

alpha=sum(Z);

cdf=1-alpha;.
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