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Abstract

The distribution of the Kolmogorov-Smirnov (K-S) test statistic has been widely stud-
ied under the assumption that the underlying theoretical cdf, F (x), is continuous. How-
ever, there are many real-life applications in which fitting discrete or mixed distributions
is required. Nevertheless, due to inherent difficulties, the distribution of the K-S statistic
when F (x) has jump discontinuities has been studied to a much lesser extent and no exact
and efficient computational methods have been proposed in the literature.

In this paper, we provide a fast and accurate method to compute the (complementary)
cdf of the K-S statistic when F (x) is discontinuous, and thus obtain exact p values of
the K-S test. Our approach is to express the complementary cdf through the rectangle
probability for uniform order statistics, and to compute it using Fast Fourier Transform
(FFT). Secondly, we provide a C++ and an R implementation of the proposed method,
which fills in the existing gap in statistical software. We give also a useful extension of
the Schmid’s asymptotic formula for the distribution of the K-S statistic, relaxing his
requirement for F (x) to be increasing between jumps and thus allowing for any general
mixed or purely discrete F (x). The numerical performance of the proposed FFT-based
method, implemented both in C++ and in the R package KSgeneral, available from https:

//CRAN.R-project.org/package=KSgeneral, is illustrated when F (x) is mixed, purely
discrete, and continuous. The performance of the general asymptotic formula is also
studied.

Keywords: Kolmogorov-Smirnov test statistic, discontinuous (discrete or mixed) distribution,
Fast Fourier Transform, double boundary non-crossing, rectangle probability for uniform order
statistics.

1. Introduction

The two-sided Kolmogorov-Smirnov (K-S) statistic is one of the most popular goodness-
of-fit test statistics that is used to measure how well the distribution of a random sample
{X1, ..., Xn} agrees with a theoretical distribution. It is defined as

Dn = sup
x
|Fn(x)− F (x)| , (1)

where n is the sample size, Fn(x) denotes the empirical (cumulative) distribution function
(edf) of {X1, ..., Xn}, and F (x) denotes the cumulative distribution function (cdf) of a pre-
specified theoretical distribution under the null hypothesis (H0) that the sample {X1, ..., Xn}

https://CRAN.R-project.org/package=KSgeneral
https://CRAN.R-project.org/package=KSgeneral
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comes from F (x).

Many authors have studied the distribution of Dn, i.e., its cdf P(Dn ≤ q|H0), q ∈ [0, 1] under
the assumption that F (x) is continuous. Kolmogorov (1933), Smirnov (1939), Feller (1948),
Doob (1949), and Smirnov (1948) considered the limiting distribution of Dn. Massey (1951)
showed that the exact distribution of Dn is independent of F (x) if F (x) is continuous, and
provided a table for exact critical levels of the K-S test corresponding to certain significance
levels for sample sizes n ≤ 35. Durbin (1968) studied the probability that the edf of an ordered
sample of n independent observations from the uniform (0, 1) distribution lies between two
parallel straight lines. He also obtained the exact distribution of Dn for F (x) continuous,
when the two parallel straight lines are ny = a + nx and ny = −a + nx. Durbin (1968)
also noted the important link between this probability and the double-boundary non-crossing
probability for a Poisson process that is easier to compute. Epanechnikov (1968), Steck
(1971), Noé (1972), Niederhausen (1981) obtained the exact distribution of Dn when F (x) is
continuous, by studying the probability that the order statistics of n uniform [0, 1] random
variables all lie within an n-dimensional rectangle. For brevity, we will further refer to this
probability as the rectangle probability for uniform order statistics. Numerically computing
the distribution of Dn when F (x) is continuous is not easy and has been recently considered
by Marsaglia, Tsang, and Wang (2003), Simard and L’Ecuyer (2011), Carvalho (2015), among
others. Details related to these works and further references are provided in Section 3.3.

While performing K-S tests when F (x) is continuous is widely applicable, there are many
real-life applications, e.g., in biology, physics, engineering, finance, and insurance, in which
fitting discrete or mixed distributions, i.e., with multiple jumps and continuous segments,
to large samples of data is required. For example, Calabrese and Zenga (2010) modeled
the bank loan recovery rates using mixed random variables, since empirical data suggest
that loans are either not repaid at all (recovery rate = 0), partially repaid (recovery rate
between 0 and 1), or fully repaid (recovery rate = 1). This leads to considering a mixed
cdf F (x) with jumps at 0 and 1 and a continuous segment in between. It is important to
accurately model bank loan recovery rates, because this is required by the Basel II solvency
framework. Mixed distributions with multiple jumps arise also in reinsurance, in relation to
fitting claim amount data in multi-layer excess-of-loss treaties. We consider such an example
in Section 3.1. Furthermore, numerous risk modeling applications in (general) insurance, e.g.,
car insurance and catastrophe insurance, require fitting appropriate discrete distributions to
claim numbers data. The need to fit discrete distributions to data naturally arises also in
almost any field of research in science and economics. In all such cases, the underlying cdf F (x)
has discontinuities at some points and it is important to be able to perform goodness-of-fit
tests, such as the chi-squared test and the K-S test. As demonstrated by Pettitt and Stephens
(1977), the K-S test for discrete distributions can have greater power than the chi-squared
test. On the other hand, Noether (1963), Slakter (1965), and Walsh (1963) showed that
conducting a discontinuous K-S test is more conservative than conducting a continuous K-S
test in terms of accepting/rejecting the null hypothesis. Thus, as we illustrate in Section 3.1,
a null hypothesis that a sample comes from a discontinuous distribution will be accepted more
often if one uses the continuous K-S test, as opposed to using the discontinuous K-S test. It
should also be noted that the sample size in many applications can be substantial. Therefore,
it is important to accurately and efficiently perform K-S tests for F (x) with discontinuities,
when sample sizes are large. For the purpose, one needs to be able to efficiently and accurately
compute probabilities of the type, P(Dn ≥ q), known as the complementary cdf, for any values
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of n and q, q ∈ [0, 1]. Addressing this problem is the main objective of this paper.

The distribution of the K-S test statistic Dn in this more general case, when F (x) may
have jump discontinuities (including purely discrete F (x)), has been studied to a much lesser
extent. In an early paper, Schmid (1958) found the limiting distribution of Dn when F (x)
has countable number of jumps and is increasing between the jumps. Carnal (1962) has
generalized Schmid (1958)’s formula by allowing constant segments between jumps. Conover
(1972) provided an approach to finding the exact critical level for the one-sided K-S test
statistics D−n = supx(F (x) − Fn(x)) and D+

n = supx(Fn(x) − F (x)) for discontinuous F (x).
Approximated critical levels for the two-sided K-S test statistic Dn were also provided. Gleser
(1985) studied the exact power of two-sided K-S tests. He showed that existing algorithms
designed for K-S tests with continuous F (x) could be used (after some necessary adjustments)
for K-S tests when F (x) is discontinuous. Specifically, Gleser (1985) showed that the power
of the K-S test when F (x) has jump discontinuities could still be expressed as a rectangle
probability with respect to uniform order statistics, but with modified non-linear boundaries.
Therefore, the determinantal and recurrence formulae for the latter rectangle probability due
to Steck (1971), Noé (1972) and Niederhausen (1981) could be applied in order to obtain the
exact distribution of Dn when F (x) is discontinuous. However, implementing these results is
computationally expensive, especially when the sample size is large, and may lead to numerical
instabilities, as noted by some authors and also illustrated in Section 3.2.

In summary, computing the distribution of Dn when F (x) is discontinuous is even harder and
much less explored than in the continuous case. To the best of our knowledge, no methods
have been proposed in the literature to compute the exact distribution of Dn when F (x) is
mixed. Looking at the statistical software literature, all major packages implement the K-S
test only when F (x) is continuous, see for example, the ks.test function of the package stats
(R Core Team 2016) and ks.test.imp of the package kolmim (Carvalho 2015) in R (R Core
Team 2016), SPSS (IBM Corp. 2013), the ksmirnov function in Stata (StataCorp. 2013),
the kstest function in MATLAB (The MathWorks Inc. 2012), the KolmogorovSmirnovTest

function in Mathematica (Wolfram Research Inc. 2015).

There is one exception, Arnold and Emerson (2011) provide the R function ks.test as part of
the package dgof that calculates exact p values of the K-S test assuming F (x) is purely discrete.
In ks.test, a one-sided K-S p value is calculated by combining the approaches of Conover
(1972) and Niederhausen (1981), while two-sided K-S p values are calculated by combining the
approaches of Gleser (1985) and Niederhausen (1981). However, the ks.test function due to
Arnold and Emerson (2011) only provides exact p values for sample sizes less than or equal to
30, since as noted by the authors, when the sample size is large, numerical instabilities may
occur. In the latter case, Arnold and Emerson (2011) suggest using simulation to approximate
p values, which as we show in Section 3.2, is rather slow and inaccurate.

Our aim in this paper is two-fold. The first goal is to provide a fast and accurate method
to compute P(Dn ≥ q) when F (x) is discontinuous (i.e., mixed or purely discrete), and thus
obtain exact p values of the K-S test for any (small or large) sample size n, and any q ∈ [0, 1],
possibly close to 1. Our second goal is to give the C++ code and an R package KSgeneral,
based on the C++ code that implements this fast and accurate method, which we believe fills
in the gap in the existing statistical software. As we will see, the proposed method is also
applicable and highly competitive when F (x) is continuous. The approach we take, described
in Section 2.1, is to express P(Dn ≥ q) as an appropriate rectangle probability for uniform
order statistics, as noted by Gleser (1985), and to compute the latter probability using the
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Fast Fourier Transform (FFT) method. FFT has been recently utilized by Moscovich and
Nadler (2017) to calculate this rectangle probability when F (x) is continuous. Furthermore,
in Section 2.2, we provide a useful extension (cf., (15) and (20)) of Schmid (1958)’s asymptotic
formula, relaxing his requirement for F (x) to be increasing between jumps and thus allowing
for any general mixed or purely discrete F (x). Similar formula has been obtained by Car-
nal (1962), but the embedded implicit index structure makes its numerical implementation
prohibitive. In Section 3, we illustrate the C++ and the R implementation as the package
KSgeneral of the proposed FFT-based method. In particular, in Section 3.1, we study its
numerical properties based on some mixed (inflated) distributions and also illustrate the per-
formance of the general asymptotic formula (15). We show in Section 3.2 that when F (x) is
purely discrete, our approach to computing P(Dn ≥ q), based on FFT and the asymptotic
formula (22), outperforms in terms of speed and accuracy the R function of Arnold and Emer-
son (2011), especially for large sample sizes. Finally, in Section 3.3, we consider the case of
continuous F (x) and compare with the state-of-the-art procedures of Simard and L’Ecuyer
(2011) and Carvalho (2015).

2. Distribution of Dn when F (x) is discontinuous

It is well known that the distribution of Dn does not depend on F (x) when the latter cdf is
continuous. To see this, note that

Dn = sup
−∞<x<∞

|Fn(x)− F (x)| = sup
0≤t≤1

∣∣Fn(F−1(t))− F (F−1(t))
∣∣ ,

= sup
0≤t≤1

∣∣Fn(F−1(t))− t
∣∣ = sup

0≤t≤1
|Un(t)− t| ,

(2)

where F−1(t) ≡ inf{x : F (x) ≥ t}, t ∈ [0, 1], and Un(t) is the empirical cdf of the uni-
form random sample {Ui = F (Xi), i = 1, ..., n}. In this section, we relax the assumption of
continuity of F (x) and assume that F (x) is non-decreasing and right-continuous, with count-
able (possibly infinite) number of jumps. From the right-continuity of F (x), it follows that
F (F−1(t)) ≥ t and F−1(F (x)) ≤ x and hence, the distribution-free property, illustrated by
(2) is no longer valid. Therefore, it becomes difficult to compute the exact and asymptotic
distributions of Dn. This problem is addressed in the next two sections.

2.1. The exact distribution of Dn

Our approach to computing the exact distribution of Dn is based on the following four major
steps:

Step 1. It is not difficult to show (see Appendix A) that the complementary cdf P(Dn ≥
q), q ∈ [0, 1], can be expressed in terms of a rectangle probability for the vector of n
uniform order statistics as

P(Dn ≥ q) = 1− P
(
Ai ≤ U(i) ≤ Bi, 1 ≤ i ≤ n

)
, (3)
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where

Ai = lim
ε↓0

F
((
F−1

( i
n
− q + ε

))
−
)
,

F (x−) = lim
z↑x

F (z) = P(X < x),

Bi = lim
ε↓0

F
(
F−1

( i− 1

n
+ q − ε

))
, i = 1, 2, ..., n,

(4)

and where U(i), i = 1, ..., n, are the order statistics of n i.i.d. uniform (0, 1) random
variables Ui, i = 1, 2, ..., n.

Step 2. Express the rectangle probability on the right hand side of (3) in terms of the
double-boundary non-crossing probability with respect to the empirical process ηn(t) =
nUn(t) =

∑n
i=1 1(Ui ≤ t), 0 ≤ t ≤ 1, where Un(t) is the edf of the sample {U1, ..., Un}.

In particular, it can be directly verified that (3) can be rewritten as

P(Dn ≥ q) = 1− P
(
Ai ≤ U(i) ≤ Bi, 1 ≤ i ≤ n

)
,

= 1− P (g(t) ≤ ηn(t) ≤ h(t), ∀ 0 ≤ t ≤ 1) ,
(5)

where the upper and lower boundary functions h(t), g(t) are defined as

h(t) =
n∑
i=1

1(Ai<t), g(t) =
n∑
i=1

1(Bi≤t). (6)

Let us note that h(t) and g(t) are correspondingly left and right continuous functions
which equivalently satisfy the following conditions

sup{t ∈ [0, 1] : h(t) < i} = Ai, and inf{t ∈ [0, 1] : g(t) > i− 1} = Bi, (7)

with Ai, Bi defined in (4)1. The last equality in (5) is illustrated in Figure 1, where
one can see that considering the rectangle probability with respect to the uniform or-
der statistics, P

(
Ai ≤ U(i) ≤ Bi, 1 ≤ i ≤ n

)
is equivalent to considering the non-exit

probability, P (g(t) ≤ ηn(t) ≤ h(t),∀ 0 ≤ t ≤ 1).

Step 3. Use the fact that the process ηn(t), t ∈ [0, 1], has the same distribution as the
conditional distribution of a Poisson process (PP) with intensity n, denoted by ξn(t) :
[0, 1] 7→ {0, 1, 2...}, given ξn(1) = n, (see e.g., Shorack and Wellner 2009, Chapter 8,
Proposition 2.2). Therefore, the non-crossing probability in (5) can be re-expressed as

P(g(t) ≤ ηn(t) ≤ h(t), ∀ 0 ≤ t ≤ 1)

= P(g(t) ≤ ξn(t) ≤ h(t)|ξn(1) = n,∀ 0 ≤ t ≤ 1)

=
P(g(t) ≤ ξn(t) ≤ h(t) and ξn(1) = n, ∀ 0 ≤ t ≤ 1)

P(ξn(1) = n)
=

Q(1, n)

e−nnn/n!
,

(8)

where ξn(1) follows a Poisson(n) distribution and Q(1, n) is defined as in (9). It is
not difficult to see that in order to compute the non-crossing probability P(g(t) ≤
ξn(t) ≤ h(t) and ξn(1) = n, ∀ 0 ≤ t ≤ 1) on the right-hand-side of (8), defined on a
continuum of times t ∈ [0, 1], it suffices to consider the events of non-crossing only over

1An expression similar to (5) for the case of P(Dn > q) has been obtained by Gleser (1985) (cf., Theorem
2 therein).
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Figure 1: Illustration of the fact that the non-exit probability, P
(
Ai ≤ U(i) ≤ Bi, 1 ≤ i ≤ n

)
is equivalent to the non-exit probability, P (g(t) ≤ ηn(t) ≤ h(t),∀ 0 ≤ t ≤ 1), where g(t) and
h(t) are defined as in (6) using F (x) given in (23) (cf., Example 2.8), with n = 5.

some fixed times, 0 = t0 < t1 < t2 < ... < tN = 1, which are the ordered set of all
distinct points in {1, Ai, Bi, i = 1, ..., n}, where Ai and Bi are specified in (4) (and 7).
Based on this discretization, similarly as done by Khmaladze and Shinjikashvili (2001)
and Moscovich and Nadler (2017) in the continuous case, the non-crossing probability
in (8) can be calculated by solving recursively an appropriate system of Chapman-
Kolmogorov forward equations2. In order to introduce these equations, for any s ∈ [0, 1]
and m ∈ {0, 1, 2, ..., }, let

Q(s,m) = P(g(t) ≤ ξn(t) ≤ h(t), ∀t ∈ [0, s] and ξn(s) = m), (9)

where g(s) ≤ m ≤ h(s) and Q(0, 0) = P(g(0) ≤ 0 ≤ h(0)) = 1 by assumption. For any
j ∈ {0, 1, ..., N − 1} and any m ∈ {0, 1, 2, ...}, the Chapman-Kolmogorov equations are

Q(tj+1,m) =


∑

g(tj)≤l≤m

Q(tj , l)P(Yj = m− l), if g(tj+1) ≤ m ≤ h(tj+1),

0, otherwise,

(10)

where Yj denotes a Poisson random variable with parameter n(tj+1− tj). The required
non-crossing probability is obtained by computing Q(1, n) following (10). This is illus-
trated by Figure 2, where g(t) and h(t) are obtained based on (6), with F (x) defined
in (23) as part of Example 2.8. The black dots illustrate the mesh of points (tj+1,m),
j = 0, 1, ..., 6, m = 0, 1, 2, ..., 5, at which non-crossing of the trajectory of ξn(t) with the
boundaries g(t), h(t) may occur and the corresponding probabilities, Q(tj+1,m) need
to be computed, following (10).

2Both Khmaladze and Shinjikashvili (2001) and Moscovich and Nadler (2017) assume F (x) is continuous
and consider strict inequalities in (8) i.e., they do not allow the process to touch the boundaries.
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As shown by Khmaladze and Shinjikashvili (2001), the recurrent computation following
(10) requires total running time of order at most O(n3). In the next step we employ
FFT in order to improve this rate.

t1 t2 t3 t4 t5 t6 t7=1

t

1

2

3

4

5

h(t)

g(t)

ξn(t)

Figure 2: Illustration of a trajectory of the Poisson process ξn(t) staying in the corridor
between the boundaries h(t) and g(t) defined as in (6) using F (x) given in (23) (cf., Exam-
ple 2.8). The black dots illustrate the mesh of points (tj+1,m), j = 0, 1, ..., 6, m = 0, 1, 2, ..., 5,
at which non-crossing of the trajectory of ξn(t) with the boundaries g(t), h(t) may occur and
the corresponding probabilities, Q(tj+1,m) need to be computed, following (10).

Step 4. Apply FFT to compute the truncated linear convolution of the vectors Qtj =
(Q(tj , 0), Q(tj , 1), ..., Q(tj , n)) and πn(tj+1−tj) = (P(Yj = 0),P(Yj = 1), ...,P(Yj = n)) in
order to solve (10), as proposed by Moscovich and Nadler (2017), see Section 2 therein.
As shown by these authors, the total running time of this method is of order at most
O(n2 log n), which is faster than O(n3) especially for large n.

In summary, our approach to computing the exact P(Dn ≥ q) when F (x) is discontinuous is
outlined in the following procedure.

Procedure Exact-KS-FFT

(i) Specify a discontinuous cdf F (x), a sample size n, and a quantile q.

(ii) As detailed in Step 1, compute Ai and Bi for i = 1, ..., n, based on (4), where the
limites are coded using a very small ε, e.g., ε = 10−10.

(iii) As detailed in Step 2, compute the upper and lower boundaries g(t), h(t) using
(6).

(iv) Following Steps 3 and 4, apply FFT to compute Q(1, n) defined in (10). Hence,
calculate the double-boundary non-crossing probability with respect to the PP
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on the right-hand-side of (8) and respectively obtain the double-boundary non-
crossing probability with respect to ηn(t) on the left-hand-side of (8).

(v) Finally, compute the exact P(Dn ≥ q) using (5) (cf., Steps 2 and 3).

Remark 2.1. Let us note that P(Dn ≥ q), 0 ≤ q ≤ 1, can directly be computed using (3)
and (4), applying the determinantal formula for the rectangle probability in (3), due to Steck
(1971), or the recurrence formula of Niederhausen (1981). However, such computations are
slow, and may become unstable for sample sizes n ≥ 100, as shown in Section 3.2, Example 3.5.
We also note that P(Dn ≥ q) is the p value corresponding to a fixed critical level q ∈ [0, 1].
Thus, if q = dn, where dn is the value of the KS test statistic computed based on a sample
{x1, ..., xn}, then the corresponding exact p value, P(Dn ≥ dn) can be obtained through (3)
and (4).

Remark 2.2. We have described the Procedure Exact-KS-FFT for computing the com-
plementary cdf of the two-sided K-S statistic, Dn, defined in (1). It should be noted that by se-
lecting the lower boundary g(t) ≡ 0, ∀t, and the upper boundary h(t) as specified in (6) one can
compute the complementary cdf for the one-sided K-S statistic D+

n = supx(Fn(x)−F (x)). By
selecting the upper boundary h(t) ≡ n,∀t, and the lower boundary g(t) as specified in (6), one
can compute the complementary cdf for the one-sided K-S statistic D−n = supx(F (x)−Fn(x))
(see e.g., Gleser 1985). For the sake of consistency, in what follows, we illustrate the proposed
FFT-based method for the two-sided version of the K-S statistic.

As noted and also demonstrated in Section 3, the proposed FFT-based method for computing
exact P(Dn ≥ q) is highly numerically efficient and could be easily applied to sample sizes n
up to hundreds of thousands (see also Moscovich and Nadler 2017). Nevertheless, it is still
beneficial to know the asymptotic distribution of Dn as n → ∞, since as demonstrated in
Section 3, it can be efficiently applied to approximate P(Dn ≥ q) for large and even moderate
sample sizes and hypothesized distributions with small number of jumps. The asymptotic
distribution of Dn will be considered in the next section.

2.2. The asymptotic distribution of Dn

Schmid (1958) has studied the asymptotic distribution of the form

Φ(λ) = lim
n→∞

P(Dn < λn−
1
2 ) = lim

n→∞
P( sup
−∞<x<∞

|Fn(x)− F (x)| < λn−
1
2 ), (11)

where n denotes the sample size, and F (x) is a cdf with countable number of jumps J , at
x = xl, l = 1, 2, ..., J and increasing continuous segments between the jumps. Let F (xl−) =
f2l−1, F (xl) = f2l, l = 1, 2, ..., J , with f0 = 0, f2J+1 ≡ 1, and f2l < f2l+1, l = 0, ..., J . Under
these assumptions on F (x), Theorem 1 of Schmid (1958) states that

Φ(λ) =
∞∑

j1=−∞
· · ·

∞∑
jJ+1=−∞

(−1)j1+···+jJ+1

×c
∫ λ

−λ
· · ·
∫ λ

−λ
exp

[
− 1

2

J∑
l=1

(z2l − z2l−1)2

f2l − f2l−1
− 1

2

J∑
l=0

(z2l+1 − (−1)jl+1z2l − 2λjl+1)
2

f2l+1 − f2l

]
dz1 · · · dz2J ,

(12)
where

z0 = z2J+1 = 0, and c = (2π)−J
2J+1∏
j=1

(fj − fj−1)−1/2.
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In view of (12), when the sample size n is large, the limiting P(Dn ≥ q) for mixed F (x) can
be calculated as

lim
n→∞

P(Dn ≥ q) = 1− Φ(λ), (13)

where Φ(λ) is expressed as in (12), and λ = qn
1
2 . However, Schmid’s formula cannot be

applied if the condition f2l < f2l+1, l = 0, ..., J is not satisfied, since there will be division by
0 in the second denominator in (12). Therefore, (12) is not applicable if F (x) has constant
segments between (some of) the jumps, as is the case when F (x) is purely discrete, or if F (x)
starts (ends) with a jump at 0 (at 1), as is the case for zero-inflated (mixed) distributions.
Carnal (1962) has generalized Schmid (1958)’s formula to the case of arbitrary discontinuous
F (x) with finite number of jumps (cf., expression 5.1 therein). However, there is notational
ambiguity (e.g., in the fourth summation in 5.1) and because the embedded index structure is
rather implicit, it is not straightforward to implement formula (5.1) numerically. Therefore,
in what follows, we will derive an alternative formula for Φ(λ), for any discontinuous F (x)
with finite number of jumps (see Proposition 2.3). The latter formula may look cumbersome,
but as we will see, it is notationally explicit and therefore easier to implement numerically.
In addition, we believe that the clearer and more intuitive proof of Proposition 2.3 will facil-
itate better understanding of the structure underlying (15). However, one should note that
Formula (15) (respectively 20 and 22) is only practically implementable for small/moderate
number of jumps, J , in the null distribution, as otherwise the multidimensional integration
becomes infeasible.

It is not difficult to see that any jump structure in F (x) can be represented through only two
different types of continuous segments of F (x) followed by jumps. The first one is a segment
of F (x) increasing on [xl−1, xl−], i.e., f2l−2 < f2l−1, followed by a jump at xl, and the second
one is a constant segment of F (x) on [xl−1, xl−], i.e., f2l−2 = f2l−1, followed by a jump at
xl. We will refer to these two types of segments as “increasing-jump” segment and “flat-jump”
segment, respectively.

We will use the notation ν1, ν2, ... to denote the sizes of groups of consecutive increasing-jump
segments, i.e., νi denotes the number of consecutive jumps, preceded by an increasing segment,
in the ith group. Similarly, by ωk, k = 1, 2, ..., we denote the number of consecutive jumps
preceded by a flat segment, in the kth group. Without loss of generality, we assume that there
are m groups of increasing-jump and flat-jump segments, i.e., ν1, ..., νm and ω1, ..., ωm, and
that these groups of jumps points, xl, appear in the cdf in the following order:

{x1, ..., xν1 , xν1+1, ..., xν1+ω1 , xν1+ω1+1, ..., xν1+ω1+ν2 , xν1+ω1+ν2+1, ..., xν1+ω1+ν2+ω2 , ...,
xν1+ω1+···+ωm−1+1, ..., xν1+ω1+···+ωm−1+νm , xν1+ω1+···+ωm−1+νm+1, ..., xν1+ω1+···+ωm−1+νm+ωm},

(14)
where ν1 + ω1 + · · ·+ νm + ωm = J is the total number of jumps in F (x), and

ν1 ≥ 0;ω1 ≥ 0; ν1 + ω1 > 0; νl > 0, 2 ≤ l ≤ m;ωl > 0, 2 ≤ l ≤ m− 1;ωm ≥ 0; νm + ωm > 0.

It can be seen that (14) covers any possible order of the jumps of different type in F (x) as
illustrated on some examples below (see e.g., Corollary 2.6 and Example 2.8). Under these
general assumptions on F (x), in the following proposition we give a formula for Φ(λ) which
generalizes (12).
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Proposition 2.3. Assuming that a cdf F (x) has the structure of jumps as in (14) and that
f2J = f2J+1 ≡ 1, we have

Φ(λ) =

∞∑
j1=−∞

· · ·
∞∑

jvm=−∞

(
(−1)j1+···+jvm

)
c

∫ λ

−λ
· · ·
∫ λ

−λ
exp{ψ}dz1 · · · dz2vm+wm−1, (15)

where

c =
∏m
i=1

( νi∏
l=1

(
f2(vi−1+wi−1+l)−1 − f2(vi−1+wi−1+l)−2

)−1/2(
f2(vi−1+wi−1+l) − f2(vi−1+wi−1+l)−1

)−1/2)
×
( ωi∏
l=1

(
f2(vi+wi−1+l) − f2(vi+wi−1+l)−1

)−1/2)
(2π)−

2vm+wm−1
2 ,

(16)
and

ψ = −1
2

∑m
i=1

{ νi∑
l=1

[(z2(vi−1+l)+wi−1
− z2(vi−1+l)+wi−1−1

)2
f2(vi−1+wi−1+l) − f2(vi−1+wi−1+l)−1

+

(
z2(vi−1+l)+wi−1−1 − (−1)

j(vi−1+l)z2(vi−1+l)+wi−1−2 − 2λj(vi−1+l)

)2
f2(vi−1+wi−1+l)−1 − f2(vi−1+wi−1+l)−2

]
+

ωi∑
l=1

[(z2vi+wi−1+l − z2vi+wi−1+l−1
)2

f2(vi+wi−1+l) − f2(vi+wi−1+l)−1

]}
,

(17)

with ν0 = ω0 = 0; v0 = w0 = 0; vi =
∑i

k=1 νk;wi =
∑i

k=1 ωk, vm + wm = J, and z0 =
z2vm+wm = 0.

Proof: The reasoning in the proof follows that of Schmid (1958) with some necessary ad-
justments to account for the fact that f2l ≤ f2l+1 as opposed to f2l < f2l+1, l = 0, ..., J . So,
here we only give details related to those parts of the proof which are affected by the relaxed
assumption on F (x). Thus, following Schmid (1958), page 1014, denote by I the union of the
closed intervals [f2l, f2l+1], l = 0, ..., J and let Mn be the set of integers j such that j/n ∈ I,

Mn = {k0 = 0, ..., k1; k2, k2 + 1, ..., k3; ...; k2J , k2J + 1, ..., k2J+1 = n},

where ki is such that ki/n → fi, as n → ∞. Note that if f2l = f2l+1 i.e., if we have a
constant segment in the cdf F (x), then k2l ≡ k2l+1 and both are included in the set Mn.
Now, as demonstrated by Schmid (1958) (see expressions 20, 21 therein), the probability
P0n := P(Dn < λn−1/2) in (11), can be calculated as

P0n =
n!en

nn
R0n,

where
Rik2l+1

=
∑

|j|<λN1/2

Rjk2lP[Dik2l+1
|Dik2l ], l = 0, ..., J, (18)

and

Rik2l =
∑

|j|<λN1/2

Rjk2l−1

(k2l − k2l−1)i−j+k2l−k2l−1

(i− j + k2l − k2l−1)!ek2l−k2l−1
, l = 0, ..., J, (19)
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and R00 = 1, Ri0 = 0 for i 6= 0. Note that recursion (19) is related to the lth jump in F (x),
whereas recursion (18) is related to the continuous (increasing or flat) segment on [xl, xl+1−]
in F (x). The events Dik are specified in details in Schmid (1958) (see page 1016), but what
is important here is to observe that when k2l = k2l+1 in Mn, P[Dik2l+1

|Dik2l ] = 1(i=j). Thus,
for a constant segment on [xl, xl+1−] in F (x), we have Rik2l+1

= Rik2l and so, recursion
(18) is obsolete. Therefore, asymptotically, when k2l = k2l+1, we only need to consider the
convergence of recursion (19) for a flat-jump segment in F (x), whereas for increasing-jump
segment, both recursions (18) and (19) generate terms in the resulting expression, in particular
(16) and (17). Now, applying the asymptotic arguments outlined on page 1018 of Schmid
(1958), one easily obtains formula (15). 2

Let us note that Proposition 2.3 does not cover the case when f2J < f2J+1 ≡ 1. This case is
addressed in the following proposition, which follows by similar reasoning.

Proposition 2.4. Assuming that a cdf F (x) has the structure of jumps as in (14) and that
f2J < f2J+1 ≡ 1, vm + wm = J , we have

Φ(λ) =

∞∑
j1=−∞

· · ·
∞∑

jvm=−∞

∞∑
jvm+1=−∞

(
(−1)j1+···+jvm+jvm+1

)
c′
∫ λ

−λ
· · ·
∫ λ

−λ
exp{ψ′}dz1 · · · dz2vm+wm ,

(20)
where

c′ = c(f2J+1 − f2J)−1/2(2π)−1/2, and ψ′ = ψ +
(−(−1)jvm+1z2vm+wm − 2λjvm+1)

2

f2J+1 − f2J
, (21)

with c and ψ in (21) defined in (16), (17), noting that z2vm+wm 6= 0.

Remark 2.5. Let us note that (12) is a special case of (20) when m = 1, ω1 ≡ w1 = 0, ν1 ≡
v1 = J .

Corollary 2.6. When F (x) is purely discrete with J jumps, the limiting distribution Φ(λ) in
(15) becomes

Φ(λ) = (2π)−
J−1
2

J∏
l=1

(f2l−f2l−1)−
1
2

∫ λ

−λ
· · ·
∫ λ

−λ
exp

[
−1

2

( J∑
l=1

(zl − zl−1)2

f2l − f2l−1

)]
dz1···dzJ−1, (22)

where z0 = zJ = 0.

Proof: Since the jump structure in this case includes only one group of flat-jump segments of
size J , the first group of increasing-jump segments in (14) is empty, i.e., m = 1, ν1 ≡ v1 = 0,
ω1 ≡ w1 = J , and by convention,

∏ν1=0
l=1 (·) = 1,

∑ν1=0
l=1 (·) = 0. Substituting these in (15),

(16), and (17), we have

c = (2π)−
J−1
2

J∏
l=1

(f2l − f2l−1)−
1
2 , ψ = −1

2

( J∑
l=1

(zl − zl−1)2

f2l − f2l−1

)
,

and (15) becomes (22). 2

Remark 2.7. It should be noted that (22) is the formula for the distribution of an (J −
1) dimensional Brownian Bridge between −λ and λ. The Brownian Bridge interpretation
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has been used by Wood and Altavela (1978) to compute via Monte Carlo simulation the
asymptotic distribution of Dn, without relating the interpretation to an explicit expression
such as (22).

Next, we give an illustrative example on how to use the asymptotic distribution formula (15)
given by Proposition 2.3, for mixed F (x). Similarly, one can employ expressions (20) and
(22) on appropriate specific examples.

Example 2.8. Consider a random variable X with cdf

F (x) =


0 if x < 0,
0.2 + x if 0 ≤ x < 0.2,
0.5 if 0.2 ≤ x < 0.8,
x− 0.1 if 0.8 ≤ x < 1,
1 if x ≥ 1.

(23)

Clearly, F (x) is a cdf with four jumps, i.e., J = 4, at x1 = 0, x2 = 0.2, x3 = 0.8, x4 = 1.0,
and f0 = f1 = 0, f2 = 0.2, f3 = 0.4, f4 = f5 = 0.5, f6 = 0.7, f7 = 0.9, f8 = f9 = 1. Since
the jump structure of F (x) in (23) is flat-jump, increasing-jump, flat-jump, increasing-jump
segments, the first set of increasing-jump segments and the last set of flat-jump segments in
(14) should be omitted. Therefore, m = 3, ν1 = 0, ω1 = 1, ν2 = 1, ω2 = 1, ν3 = 1, ω3 = 0,
and v0 = 0, v1 = 0, v2 = 1, v3 = 2, w0 = 0, w1 = 1, w2 = 2, w3 = 2. Substituting these in
(15), (16), and (17), we obtain

Φ(λ) =

∞∑
j1=−∞

∞∑
j2=−∞

c(−1)j1+j2
∫ λ

−λ
· · ·
∫ λ

−λ
exp{ψ}dz1 · · · dz5, (24)

where

c = (2π)−
5
2 (f2 − f1)−1/2(f3 − f2)−1/2(f4 − f3)−1/2(f6 − f5)−1/2(f7 − f6)−1/2(f8 − f7)−1/2,

and

ψ = −1

2

( z21
f2 − f1

+
(z2 − (−1)j1z1 − 2λj1)

2

f3 − f2
+

(z3 − z2)2

f4 − f3
+

(z4 − z3)2

f6 − f5
+

(z5 − (−1)j2z4 − 2λj2)
2

f7 − f6
+

z25
f8 − f7

)
.

3. Software implementation and numerical analysis

In this section, we introduce the C++ and the R implementation of the proposed FFT-
based method for computing P(Dn ≥ q), described in Section 2.1 and study its numerical
properties. In the sequel, we will refer to it as the Exact-KS-FFT method. The method is
implemented in the R package KSgeneral which can be downloaded from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=KSgeneral. In order
to build the KSgeneral package from source, a C++ compiler is required. The latter is
contained in the Windows program Rtools (R Core Team 2016), or under MacOS in Xcode,
downloadable from the App Store. The package KSgeneral uses Rcpp in R, and utilizes the
C++ code that efficiently computes P(Dn ≥ q) using the Exact-KS-FFT method (see the
Replication Material to this paper available online). Since the latter requires computation of

https://CRAN.R-project.org/package=KSgeneral
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FFT, the FFTW3 library developed by Frigo and Johnson (2005) needs to be installed from
http://www.fftw.org/index.html. It should be noted that both the Rtools and FFTW3
should be installed in the system PATH.

In this section, we also study the asymptotic formulae (15) and (22) given in Section 2.2, which
have been implemented in Mathematica 10. For the purpose, in the next Sections 3.1 and 3.2,
we compute the complementary cdf, P(Dn ≥ q), for different values of n and q, and also
compute related p values when F (x) is mixed and discrete, respectively. Then, in Section 3.3
we consider P(Dn < q) and P(Dn ≥ q) in the case of continuous F (x). For the examples given
in all three Sections 3.1, 3.2, 3.3 (and in the replication material), we give the lines of code
that should be executed in C++ or R using KSgeneral. Furthermore, in the case when F (x)
is mixed (cf., Section 3.1), we compare the exact probabilities P(Dn ≥ q), q ∈ [0, 1], obtained
using the Exact-KS-FFT approach with those obtained using the asymptotic formula (15). In
addition, when F (x) is purely discrete (cf., Section 3.2), we also compare with the results of
the Brownian Bridge simulation-based algorithm of Wood and Altavela (1978). When F (x)
is continuous, in Section 3.3, Appendix B, Appendix C, and Appendix D, we compare the
accuracy and speed of the Exact-KS-FFT method to the results obtained from the R program
of Carvalho (2015), and the C program due to Simard and L’Ecuyer (2011). The reported
CPU times are obtained running the related C++ code on a machine with an 2.5GHz Intel
Core i5 processor with 4GB RAM, running Mac OS X Yosemite.

3.1. Complementary cdf of Dn when F (x) is mixed

In order to illustrate the performance of the Exact-KS-FFT method of Section 2.1, we consider
first the following example from excess-of-loss reinsurance.

Example 3.1. Consider an excess-of-loss reinsurance contract with a retention level M and
a limiting level L, where 0 < M < L are positive constants. Under such a contract, given a
loss amount random variable X with a continuous cdf FX(·) on [0,+∞), the insurer and the
reinsurer pay correspondingly the amounts Z and Y , where

Z =


X if X ≤M,
M if M < X ≤ L,
M +X − L if L < X,

and Y =


0 if X ≤M,
X −M if M < X ≤ L,
L−M if L < X.

Clearly, both Z and Y are mixed random variables with correspondingly, one and two jumps
in their cdfs. For illustrative purposes, assume that the cdf of Y , FY (y) is of the form

FY (y) =


0 if y < 0,
1− 0.5e−y if 0 ≤ y < log 2.5,
1 if y ≥ log 2.5,

(25)

where M = log 2, L = log 5, FX(x) = 1 − e−x. Assuming Dn in (1) is defined with respect
to FY (y), i.e., F (x) ≡ FY (y) in (1), we have computed exact probabilities P(Dn ≥ q), for
different values of n and q, applying the Exact-KS-FFT method and also, the asymptotic
formula (15). In order to apply (15), one should note that FY (y) has two jumps, (i.e.,
J = 2) at x1 = 0, x2 = log 2.5, and f0 = f1 = 0, f2 = 0.5, f3 = 0.8, f4 = f5 = 1. Since
the jump structure of FY (·) in (25) is flat-jump, increasing-jump segments, the first set of
increasing-jump segments and the last set of flat-jump segments in (14) should be omitted.

http://www.fftw.org/index.html
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Therefore, one should apply formula (15) with m = 2, ν1 = 0, ω1 = 1, ν2 = 1, ω2 = 0, and
v0 = 0, v1 = 0, v2 = 1, w0 = 0, w1 = 1, w2 = 1.

The results for P(Dn ≥ q) calculated using the proposed FFT-based method and the asymp-
totic formula (15), for different values of n, q, and respectively λ = qn1/2, are shown in Table
1. For example, to obtain the probability P(Dn ≥ q) using C++, for n = 25, q = 0.60
as shown in the column Exact-KS-FFT of Table 1, according to step (i) of the Procedure
Exact-KS-FFT, we first define the mixed cdf in (25) in the file “crossprob.cc” using the
following code.

vector <double> MixDF (vector <double> obs){

vector <double> observed = obs;

set<double> s;

for (int i = 0; i < obs.size(); ++i){

s.insert(obs[i]);

}

obs.assign(s.begin(), s.end());

vector <double> DF(obs.size());

/* The distribution in the reinsurance example in (25) */

for (int i = 0; i < obs.size(); ++i){

if (obs[i] < 0.0){

DF[i] = 0.0;

}

else if (obs[i] < log(2.5)){

DF[i] = 1 - 0.5 * exp(-1.0 * obs[i]);

}

else

{

DF[i] = 1.0;

}

}

return DF;

}

Also, since the mixed cdf in (25) has jumps at y = 0 and y = log 2.5, we need to specify
this by inputting vector_input3 = {0.0, log(2.5)}; to the int main() function in the
file “crossprob.cc”.

Next, we first run make in one of the command line tools (e.g., bash) to build the pro-
gram for the Exact-KS-FFT method developed in this paper, based on the code provided
by Moscovich and Nadler (2017). Then, in the command line tool, we run the following
line ./bin/crossprob ecdf 25 Boundary_Crossing_Time.txt, where 25 is the input for
the sample size. We will have the following screen prompts.

Please enter the distribution type: 1 for Continuous Distribution,

2 for Discontinuous Distributions:

We enter 2 since the cdf in (25) is not continuous.

2
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Then, we can choose whether to calculate the K-S complementary cdf, P(Dn ≥ q), or the
p value, P(Dn ≥ dn) corresponding to a value dn computed based on a user provided data
sample.

Please enter the objective: 1 for K-S Complementary Distribution,

2 for P-Values:

Since we want to obtain the probability P(Dn ≥ q), for n = 25, q = 0.6, we will enter 1.

1

Here, we enter the sample size n and the quantile q.

Please enter the sample size and quantile:

25

0.6

Probability: 0.0000000019082332

Time taken: 0.0000720000000000

Now, steps (ii), (iii), (iv) and (v) of the Procedure Exact-KS-FFT are performed. The
result for P(Dn ≥ q), for n = 25, q = 0.60, is 1.90823 × 10−9 as shown in the column
Exact-KS-FFT of Table 1. The corresponding computation time is also printed.

Remark 3.2. Note that the distribution of the K-S test statistic Dn depends on the hy-
pothesized distribution F (x) when F (x) is not continuous. Hence, to obtain P(Dn ≥ q) for
different mixed F (x), the users should: 1) define the mixed cdf in the file “crossprob.cc” each
time, and 2) in the file “crossprob.cc”, define the vector containing points where F (x) has
jumps, vector_input3.

In order to compute P(Dn ≥ q), when F (x) is mixed using the R package KSgeneral,
one needs to input mixed_ks_c_cdf(q, n, jump_points, Mixed_dist, ..., tol = 1e -

10), where jump_points is a numeric vector of the x coordinates of the jumps of F (x),
Mixed_dist specifies the mixed cdf F (x), possibly followed by a list of parameters ... speci-
fying F (x), and tol is the value of ε that is used to compute the values Ai and Bi, i = 1, ..., n,
as detailed in Equations (4) in Step 1 of Section 2.1. By default, tol = 1e - 10. Note that a
value NA or 0 will lead to an error. For instance, if one wants to use the R package KSgeneral
to compute P(Dn ≥ q), when F (x) is the mixed cdf specified in Example 3.1 by Equation (25),
with n = 25, q = 0.1, one needs to run the following code in order to obtain the corresponding
result, as shown in Table 1 for n = 25, q = 0.1.

R> Mixed_cdf_example <- function(x)

+ {

+ result <- 0

+ if (x < 0){

+ result <- 0

+ }

+ else if (x == 0){
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+ result <- 0.5

+ }

+ else if (x < log(2.5)){

+ result <- 1 - 0.5 * exp(-x)

+ }

+ else{

+ result <- 1

+ }

+

+ return (result)

+ }

R> mixed_ks_c_cdf(0.1, 25, c(0, log(2.5)), Mixed_cdf_example)

[1] 0.76768489

From Table 1, one can first see that the Exact-KS-FFT method effectively computes P(Dn ≥
q) for small, medium and large sample sizes n and various levels q, and gives exact probabil-
ities in the range of 10−10 to 1. It should be noted though that the method could become
numerically unstable (producing negative values) when calculating probabilities of 10−11 or
smaller. Similar issue has been observed by Simard and L’Ecuyer (2011) in the case of con-
tinuous F (x). The column “Rel.err. (%)” quantifies the relative error of the asymptotic value
(for fixed λ) compared to the exact values in the fourth column (for various combinations of
n and q resulting in the same λ). Furthermore, we see that when the sample size n is large,
results using formula (15) approximate closely the exact P(Dn ≥ q), except when P(Dn ≥ q)
is nearly zero (when λ = 2, 3 in Table 1). Also, asymptotic Formula (15) gives better ap-
proximations to the exact values of P(Dn ≥ q) as q decreases, or equivalently, as P(Dn ≥ q)
increases. Moreover, as λ decreases, values obtained from asymptotic formula (15) become
better approximations to the exact P(Dn ≥ q). Let us recall however that Formula (15) (re-
spectively 20 and 22) is only practically implementable for small/moderate number of jumps,
J , in the null distribution (which is the case with 25 illustrated in Table 1), as otherwise the
multidimensional integration becomes infeasible.

In addition, as mentioned in Section 1, a null hypothesis that a sample comes from a dis-
continuous distribution will be accepted more often if one uses the continuous K-S test, as
opposed to using the discontinuous K-S test. To illustrate this, assume that a random sample
of size n = 25 follows F (x) ≡ FY (y) in (25) under H0, and that the K-S test statistic for the
sample is dn = 0.25. Then, the exact p value of the test is P(Dn ≥ 0.25|H0) = 0.04496610
and, with a significance level of 5%, one should reject H0. On the other hand, a p value
calculated using the complementary cdf of the distribution-free continuous K-S test statistic
Dn (i.e., when F (x) in (1) is continuous) is 0.07360597 > 0.05. Therefore, based on the latter
p value, one will not reject H0. Similar situations are illustrated in Table 2 for larger sam-
ple sizes and different values of the test statistic Dn, where one can see that the differences
between the values in the last two columns are higher than 58% (our experience shows that
these are typically in the range 50% - 65%) and do not decrease with n. To the best of our
knowledge, the K-S test in softwares such as R, SPSS, Stata, MATLAB, Mathematica is based
on the distribution-free continuous K-S test statistic and the discontinuous (mixed and purely
discrete) version is not implemented due to the lack of efficient and robust method such as
the Exact-KS-FFT method we propose here.
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λ n q Exact-KS-FFT Asympt. (15) Rel.err. (%)
3 25 0.60 1.90823× 10−9 (0.000) 1.72031× 10−8 801.52

100 0.30 9.49583× 10−9 (0.000) (5155.54) 81.17
400 0.15 1.41586× 10−8 (0.015) 21.50

2500 0.06 1.62830× 10−8 (0.202) 5.65
10000 0.03 1.67952× 10−8 (2.932) 2.43
40000 0.015 1.69539× 10−8 (59.86) 1.49
90000 0.01 1.70076× 10−8 (351.9) 1.16

250000 0.006 1.74648× 10−8 (3524) 1.43
2 25 0.4 2.13209× 10−4 (0.000) 3.98459× 10−4 86.89

100 0.2 3.27304× 10−4 (0.000) (1.17) 21.74
400 0.1 3.66979× 10−4 (0.015) 8.58

2500 0.04 3.86968× 10−4 (0.195) 2.97
10000 0.02 3.92912× 10−4 (2.707) 1.41
40000 0.01 3.95740× 10−4 (57.14) 0.69
90000 1/150 3.96661× 10−4 (341.3) 0.45

250000 0.004 3.97390× 10−4 (3465) 0.27
1 25 0.2 0.151510006 (0.000) 0.174525238 15.19

100 0.1 0.164499986 (0.000) (0.73) 6.09
400 0.05 0.169049900 (0.015) 3.24

2500 0.02 0.172221536 (0.171) 1.34
10000 0.01 0.173354312 (2.511) 0.68
40000 0.005 0.173934996 (54.94) 0.34
90000 1/300 0.174130680 (330.3) 0.23

250000 0.002 0.174287993 (3423) 0.14
0.5 25 0.1 0.767684886 (0.000) 0.801033877 4.35

100 0.05 0.782681427 (0.000) (5.63) 2.35
400 0.025 0.790339869 (0.015) 1.35

2500 0.01 0.796406211 (0.156) 0.58
10000 0.005 0.798664879 (2.441) 0.30
40000 0.0025 0.799837547 (54.27) 0.15
90000 1/600 0.800234794 (326.5) 0.12

250000 0.001 0.800554870 (3410) 0.06
0.2 25 0.04 0.999798067 (0.000) 0.999961812 0.016

100 0.02 0.999888190 (0.000) (5.03) 0.007
400 0.01 0.999925985 (0.015) 0.004

2500 0.004 0.999948507 (0.156) 0.001
10000 0.002 0.999955380 (2.364) 0.001
40000 0.001 0.999958655 (53.62) 0.000
90000 1/1500 0.999959721 (324.4) 0.000

250000 0.0004 0.999960564 (3383) 0.000
0.15 25 0.03 0.999998692 (0.000) 0.999999978 0.000

100 0.015 0.999999682 (0.000) (0.51) 0.000
400 0.0075 0.999999905 (0.015) 0.000

2500 0.003 0.999999956 (0.156) 0.000
10000 0.0015 0.999999969 (2.355) 0.000
40000 0.00075 0.999999974 (53.45) 0.000
90000 0.0005 0.999999975 (324.7) 0.000

250000 0.0003 0.999999977 (3372) 0.000

Table 1: Exact and asymptotic values of P(Dn ≥ q) obtained via the Exact-KS-FFT method
and the asymptotic formula (15),when λ = qn1/2 = 3, 2, 1, 0.5, 0.2 and 0.15, respectively,
when the underlying cdf F (x) follows FY (y) in (25). Numbers in () are run times in seconds.
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n Dn = dn Discontinuous K-S p values Continuous K-S p values

25 0.25 0.04496610 0.07360597
100 0.13 0.03913182 0.06209234
400 0.065 0.04090172 0.06511744

2500 0.026 0.04200207 0.06690821
10000 0.013 0.04237475 0.06750119
40000 0.0065 0.04256212 0.06779695

Table 2: Discontinuous and continuous K-S p values under null hypothesis H0 : F (x) ≡ FY (y),
obtained via the Exact-KS-FFT method.

Example 3.3. Another possible application of K-S tests on mixed distributions appears in
testing the goodness-of-fit in zero-inflated or/and one-inflated models. Many real data con-
tain zeros and ones, i.e., have masses at zero and one, and therefore zero- and one-inflated
distributions need to be applied. For example, Ospina and Ferrari (2010) have used the zero-
and-one-inflated beta distribution to model the proportion of inhabitants living within a 200
kilometer wide costal strip in 232 countries in the year 2000, denoted as Y . The data for years
1990, 2000 and 2010 are supplied by the Columbia University Centre for International Earth
Science Information Network, see CIESIN (2012), and are available at http://sedac.ciesin.
columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3. The zero-
and-one-inflated beta distribution considered by Ospina and Ferrari (2010) is of the following
form

GY (y;α, γ, µ, φ) = αBernoulli(y; γ) + (1− α)F (y;µ, φ), 0 ≤ y ≤ 1,

where Bernoulli(·; γ) denotes the cdf of a Bernoulli random variable with parameter γ, 0 <
γ < 1, and F (·;µ, φ) denotes the cdf of a Beta random variable with parameters µ, 0 < µ < 1,
and φ > 0. Hence, the zero-and-one-inflated distribution can be seen as a mixture of a
(discrete) Bernoulli distribution and a (continuous) Beta distribution, with weights α and
(1− α), respectively, 0 < α < 1.

According to Ospina and Ferrari (2010), the random variable Y has the following distribution

GY (y) =


0 if y < 0,
0.1141 + 0.4795FY (y;µ, φ) if 0 ≤ y < 1,
1 if y ≥ 1,

where FY (y;µ, φ) has a density function

fY (y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1,

with µ and φ estimated as µ = 0.6189, φ = 0.6615 based on the population data in 2000, and
Γ(·) is the gamma function. Then, we can examine the goodness-of-fit of the distribution to
the population data in 2010, denoted by Ỹ , hypothesizing that Ỹ has the same distribution
as GY (y). Using (1) with F (x) ≡ GY (y) and Fn(x) ≡ Gn(y), where Gn(y) is the edf of Ỹ
computed from the population data in 2010, we obtain the K-S test statistic dn = 0.09047.
Using the Exact-KS-FFT method, we compute a p value of 0.03403 < 0.05. Alternatively,
applying the asymptotic formula (15), we obtain a p value of 0.03641, which is reasonably
accurate, given the sample size of 232. Therefore, the K-S test indicates that the zero-and-one-
inflated beta distribution estimated using population data in 2000 does not fit the population

http://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3
http://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3
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data in 2010 at a significance level of 5%, providing evidence for a change in the proportion
of inhabitants in the decade.

In order to perform the one-sample two-sided K-S test, when F (x) is mixed, one needs to input
the code mixed_ks_test(x, jump_points, Mixed_dist, ..., tol = 1e - 10), where x

is a numeric vector of data sample values, and where other arguments are defined similarly as
in the function mixed_ks_c_cdf(). For instance, if one wants to use the R package KSgeneral
to calculate the p value for the K-S test, when F (x) follows a zero-and-one-inflated beta
distribution as in Example 3.3, with a sample of size n = 232, one should run the following R
code.

R> data("Population_Data")

R> mu <- 0.6189

R> phi <- 0.6615

R> a <- mu * phi

R> b <- (1 - mu) * phi

R> Mixed_cdf_example <- function(x)

+ {

+ result <- 0

+ if (x < 0){

+ result <- 0

+ }

+ else if (x == 0){

+ result <- 0.1141

+ }

+ else if (x < 1){

+ result <- 0.1141 + 0.4795 * pbeta(x, a, b)

+ }

+ else{

+ result <- 1

+ }

+

+ return (result)

+ }

R> ksgeneral::mixed_ks_test(Population_Data, c(0, 1), Mixed_cdf_example)

One-sample Kolmogorov-Smirnov test

data: Population

D = 0.0904737, p-value = 0.034025

alternative hypothesis: two-sided

In the next section, assuming F (x) is purely discrete, we apply the FFT-based methodology
and the asymptotic formula (22) (cf., Corollary 2.6) to compute correspondingly, exact and
approximate values of P(Dn ≥ q).

3.2. Complementary cdf of Dn when F (x) is purely discrete
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There is an abundance of real-life applications in which purely discrete distributions are
used to model count data, such as: Number of claims to an insurance company, number of
jumps in stock returns, number of trades on the stock exchange, number of manufacturing
defects, number of diseased species and plants in biology and agricultural research, and many
other count data applications. In all such cases, examining the goodness-of-fit of the model
requires computing p values or P(Dn ≥ q) for various of n and q. As an illustration, using
the proposed FFT-based method, we will compute exact probabilities P(Dn ≥ q) when the
underlying F (x) follows Binomial(r, π) distribution (see Example 3.4) and when it follows a
discrete uniform distribution (see Example 3.5). In Example 3.4, we compare these Exact-KS-
FFT probabilities with approximate ones obtained using the asymptotic distribution of Dn,
given by (22), and using the asymptotic Monte Carlo simulation-based method of Wood and
Altavela (1978). In Example 3.5, we compare the Exact-KS-FFT results with those obtained
using the R function ks.test of Arnold and Emerson (2011). The latter is a revised version
of the same function from the recommended package stats.

Wood and Altavela (1978)’s approach utilizes the connection between the asymptotic dis-
tribution of Dn and a multi-variate Brownian Bridge (cf., Remark 2.7), and they directly
simulate the latter, thus avoiding the necessity to derive and evaluate an explicit expression
such as (22). Following the Wood and Altavela (1978)’s method, one should simulate from
the (J − 1)-variate normal random vector (Z1, Z2, ..., ZJ−1), where

E(Zi) = 0, E(Zi, Zk) = min(f2i, f2k)− f2if2k, i, k = 1, ..., J − 1, (26)

and estimate the probability in Φ(λ) in (11) as∑N
i=1 1{(Z1,Z2,...,ZJ−1)∈[−λ,λ]J−1}

N
,

where N is the number of simulations, 1{·} is an indicator function, and [−λ, λ]J−1 is the
J − 1 dimensional hypercube. The authors further suggest a continuity correction for λ in
(11), as λ = qn1/2−0.5n−1/2. In the remainder of this section, we will refer to this method as
W&A(a) method and to its version without the continuity correction, as W&A(b) method.

Example 3.4. Assume that F (x) in (1) is Binomial(r, π) with r = 3, 7, 15 (i.e., with J =
r + 1 number of jumps), and π = 0.5. In Tables 3, 4, and 5, for different values of n,
q, and respectively λ = qn1/2, we give the exact P(Dn ≥ q) obtained with the Exact-KS-
FFT method, and compare with the asymptotic probabilities obtained using (22) (combined
with (13)), and using the Wood and Altavela (1978) simulation-based approach. We have
coded both the W&A(a) and W&A(b) versions in R as part of the KSgeneral R package
and have simulated 1000000 realizations of the random vector (Z1, Z2, ..., ZJ−1). As before,
the numbers in parentheses show the computation (run) times, in seconds. Let us note that
the multidimensional numerical integration in (22) becomes unstable as the number of jumps,
J = r+1, in F (x) increases, and so we only use W&A(a) and W&A(b) to obtain approximate
asymptotic probabilities in the case of r = 15 and π = 0.5 (see Table 5).

In order to compute P(Dn ≥ q), when F (x) is purely discrete using the R package KSgen-
eral, one needs to input disc_ks_c_cdf(q, n, y, ..., exact = NULL, tol = 1e - 08,

sim.size = 1e + 06, num.sim = 10), where y specifies the purely discrete cdf F (x), pos-
sibly followed by a list of parameters ... specifying F (x), the input parameter exact is
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a logical variable specifying whether one wants to compute exact values for P(Dn ≥ q) us-
ing the FFT-based method, exact = TRUE or wants to compute the approximate values for
P(Dn ≥ q) using the simulation-based algorithm of Wood and Altavela (1978), in which case
exact = FALSE. When exact = NULL and n <= 100000, the exact P(Dn ≥ q) will be com-
puted using the FFT-based method. The input parameter tol is the value of ε that is used to
compute the values Ai and Bi, i = 1, ..., n, as detailed in Equations (4) in Step 1 of Section 2.1.
By default, tol = 1e - 08. Note that a value of NA or 0 will lead to an error. The input
parameter sim.size is the required number of simulated trajectories in order to produce one
Monte Carlo estimate (one MC run) of the asymptotic p value using the algorithm of Wood
and Altavela (1978). By default, sim.size = 1e + 06. The input parameter num.sim is the
number of MC runs, each producing one estimate (based on sim.size number of trajectories),
which are then averaged in order to produce the final estimate for the asymptotic p value.
This is done in order to reduce the variance of the final estimate. By default, num.sim =

10. For instance, if one wants to use the R package KSgeneral to compute the exact value
for P(Dn ≥ q), when F (x) follows a Binomial(3, 0.5) distribution as in Example 3.4, with
n = 400, q = 0.05, one should run the following R code and obtain the corresponding result
as shown in the column Exact-KS-FFT of Table 3.

R> binom_3 <- stepfun(c(0 : 3), c(0, pbinom(0 : 3, 3, 0.5)))

R> disc_ks_c_cdf(0.05, 400, binom_3)

[1] 0.05611849

On the other hand, if one wants to use the simulation-based method of Wood and Altavela
(1978) in order to approximate the asymptotic value for P(Dn ≥ q), when F (x) follows a
Binomial(3, 0.5) distribution, with n = 400, q = 0.05, one should use the W&A (a) method,
by running the following R code and obtain the corresponding result as shown in the column
W&A(a) of Table 3.

R> binom_3 <- stepfun(c(0 : 3), c(0, pbinom(0 : 3, 3, 0.5)))

R> disc_ks_c_cdf(0.05, 400, binom_3, exact = FALSE, tol = 1e-08,

+ sim.size = 1e+06, num.sim = 10)

[1] 0.0561864

Looking at Tables 3, 4, and 5, one can see that the Exact-KS-FFT method effectively computes
P(Dn ≥ q) for small, medium and large sample sizes n and various levels q, and gives exact
probabilities in the range 10−12 to 1. We also see that when the sample size n is large, results
using formula (22) approximate closely the exact P(Dn ≥ q), except when P(Dn ≥ q) is
nearly zero (when λ = 2, 3 in Tables 3 and 4). Similarly to the mixed F (x) case, asymptotic
formula (22) gives better approximations to the exact values of P(Dn ≥ q) as q decreases,
or equivalently, as P(Dn ≥ q) increases. Moreover, as λ decreases, values obtained from
asymptotic formula (22) become better approximations to the exact P(Dn ≥ q). One can
further observe that asymptotic formula (22) and W&A(b) method provide similar results. In
particular, as the number of jumps in F (x) increases, results obtained from these two methods
almost coincide. In addition, when the number of jumps in F (x) is small (in our case J = 4 or
8), we see that values obtained from W&A(a) method provide more accurate approximations
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to the exact probabilities. On the other hand, when the number of jumps in F (x) is large
(in our case J = 16), values obtained from W&A(b) method give closer approximations. In
comparison with the Exact-KS-FFT method, W&A(a) and W&A(b) deviate stronger from
the exact probabilities for moderate values of λ, e.g., λ = 0.5, 1, and this is more pronounced
for small sample sizes, see n ≤ 400.

With regards to computation time, looking at Tables 3, 4, and 5, for fixed sample size n and
number of jumps J , as λ decreases, the computation time for the Exact-KS-FFT method,
W&A(a) method and W&A(b) method decreases. Furthermore, when the sample size n and
q are fixed, as the number of jumps in F (x), J , increases, the computation time for the
Exact-KS-FFT method decreases, whereas the computation time for W&A(a) and W&A(b)
methods increases. And, as expected, when the sample size n increases, the Exact-KS-FFT
method becomes more time-consuming.
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Example 3.5. Next, we consider another illustrative example where we compare the per-
formance of the proposed Exact-KS-FFT method with the R function ks.test from the
package dgof (Arnold and Emerson 2011). Hypothesizing that the underlying F (x) in (1)
follows a discrete uniform distribution on [1, 10], we have simulated random samples of size
n, 25 ≤ n ≤ 100000, from the discrete uniform distribution on [1, 10] and have performed K-S
tests on the simulated samples. In Table 6, we compute p values corresponding to different
values of the test statistic Dn for the simulated samples of size n.

n Dn = dn Exact-KS-FFT ks.test ks.test(simulation) W&A(a)
25 0.2 0.1523 (0.0000) 0.1523 (0.007) 0.1465 (0.79) 0.1910 (12.63)
30 0.2 0.1133 (0.0000) 0.1133 (0.007) 0.125 (0.84) 0.1194 (12.73)
50 0.22 0.007164 (0.0000) 0.007167 (0.014) 0.007 (1.10) 0.0078223 (13.36)

100 0.2 0.00021 (0.0000) NU 0.0002 (4.10) 0.0002277 (13.80)
1000 0.02 0.5424 (0.0150) NU 0.5385 (8.35) 0.5429 (11.08)
5000 0.0094 0.4779 (0.2340) NU 0.509 (68.37) 0.4781 (10.92)

10000 0.0065 0.4975 (0.8890) NU 0.4985 (123.98) 0.4977 (11.08)
100000 0.00241 0.3343 (118.85) NU - - 0.3344 (11.80)

Table 6: p values obtained via the Exact-KS-FFT method, the R function ks.test, and
W&A(a) method, when the underlying cdf F (x) follows a discrete uniform distribution on
[1, 10]. Numbers in () are run times in seconds.

In order to perform the one-sample two-sided K-S test, when F (x) is purely discrete, one needs
to input the disc_ks_test(x, y, ..., exact = NULL, tol = 1e - 08, sim.size = 1e

+ 06, num.sim = 10), where x is a numeric vector of data sample values, and where other
arguments are defined similarly as in the function disc_ks_c_cdf(). For instance, in order
to calculate the p value for the K-S test, when F (x) follows a Uniform[1, 10] distribution as
in Example 3.5, with a sample size n = 1000, one should run the following R code.

R> x4 <- sample(1 : 10, 1000, replace = TRUE)

R> disc_ks_test(x4, ecdf(1 : 10), exact = TRUE)

One-sample Kolmogorov-Smirnov test

data: x4

D = 0.01, p-value = 0.97023

alternative hypothesis: two-sided

As can be seen from Table 6, the Exact-KS-FFT method produces exact p values for all
sample sizes 25 ≤ n ≤ 100000, whereas the function ks.test becomes numerically unstable
(NU) for n ≥ 100, as noted also by Arnold and Emerson (2011). To avoid instability, for
large n ks.test allows for estimating p values via simulation, which may be insufficiently
accurate or prohibitively time consuming, depending on the choice of the number of sim-
ulations (cf., the column ks.test(simulation) in Table 6 where the number of simulations
is 2000). In contrast to the ks.test function, using the Exact-KS-FFT method, one ob-
tains the exact p value 0.3343 for sample size n = 100000 in less than 2 minutes without
any simulation. Moreover, note that the p values in the column ks.test(simulation) in
Table 6 are based on the suggested default number of 2000 replicates (i.e., obtained by im-
plementing the R code dgof::ks.test(x, ecdf(1 : 10), simulated.p.value = TRUE,
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B = 2000)). Thus, each estimated p value is likely to be different if we run another simu-
lation and the relative error will also vary substantially, as we demonstrate in Table 7. To
reduce the variation of the simulated p values, one may wish to increase the number of simu-
lations but that will increase even more the computation time and make it prohibitive even
for n > 1000. In addition, mainly due to the way it has been implemented, for n > 1000 the
number of simulations cannot be significantly increased, e.g., go beyond 4000 replicates.

F (x) n, q Exact-KS-FFT ks.test(simulation) Rel.err.

0 100%
Binomial(3, 0.5) 10000, 0.02 0.0000659 0.0005 658%

0 100%

0.050 10.9%
Binomial(3, 0.5) 400, 0.05 0.05612 0.061 8.7%

0.069 22.9%

0.0760 7.14%
Binomial(7, 0.5) 10000, 0.01 0.07093 0.0895 26.2%

0.0745 5.03%

0.0825 10.1%
Binomial(7, 0.5) 400, 0.05 0.07490 0.0910 21.5%

0.0885 18.2%

Table 7: Differences between the exact and simulated values of P(Dn ≥ q) obtained via the
Exact-KS-FFT method and the R function ks.test, respectively, for certain n > 100 and q,
when the underlying F (x) follows Binomial(3, 0.5) or Binomial(7, 0.5) distribution.

As can be seen from Table 7 (which extends Tables 3 and 4) and as also supported by many
additional calculations we have run, even for n ≤ 10000 the accuracy of the R function
dgof::ks.test may vary substantially for p values in the (rather important) range (0, 0.1).

For small, moderate to large sample sizes (e.g., 25 ≤ n ≤ 10000), looking at the column
W&A(a) of Table 6, one can see that the alternative MC simulation-based W&A(a) method
produces less accurate results and can be significantly slower than the Exact-KS-FFT method.
W&A(a) performs better in terms of the trade-off between accuracy and speed for very large
sample sizes, e.g., n = 100000.

To conclude, the proposed method outperforms the R function ks.test from the package
dgof in all of the tested cases. When the number of jumps in the underlying F (x) is small,
the asymptotic p value obtained from (22) may not be a good estimate unless sample sizes
are very large (e.g., ≥ 40000). Whereas when the number of jumps in F (x) is large, one may
use the limiting p values to approximate the exact ones for large samples. In the next section,
we turn our attention to the case of K-S tests with continuous null distributions, which has
been widely studied in the literature and for which very efficient numerical procedures have
been recently developed.

3.3. (Complementary)cdf of Dn when F (x) is continuous

Our purpose in this section is to illustrate the numerical performance of the proposed FFT-
based approach of Section 2.1 and compare it with the state-of-the-art routines of Simard and
L’Ecuyer (2011) and Carvalho (2015) developed especially for the case when the underlying
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cdf, F (x), is strictly continuous. These authors have summarized and enhanced further the
most accurate and efficient methods for computing the distribution of Dn for F (x) continuous,
developed earlier in a series of papers e.g., by Durbin (1968), Durbin (1973), Pomeranz (1974),
Ruben and Gambino (1982), Marsaglia et al. (2003) and Brown and Harvey (2008). For
comparison and further details on the implementations of these methods in various statistical
softwares, we refer to Simard and L’Ecuyer (2011) and Brown and Harvey (2007). In their
recent paper, Simard and L’Ecuyer (2011) have combined into one state-of-the-art program
different exact methods to compute the distribution of Dn for different combinations of n
and q, based on the relative efficiency and accuracy of the methods. Moreover, for certain
combinations of n and q, where the implementations of the exact methods break down (due
to cancellation errors, loss of precision and/or prohibitive running time), e.g., for very large
n or when the cdf of Dn is close to one, Simard and L’Ecuyer (2011) incorporate in their
program various asymptotic formulae for the limiting distribution of Dn. We refer the reader
to Section 4 in Simard and L’Ecuyer (2011) for further details. More recently, Carvalho (2015),
by avoiding the direct calculation of powers of matrices as required by the approach of Durbin
(1973), developed the R package kolmim with function pkolmim that produces results with
similar accuracy as those obtained by the routine of Marsaglia et al. (2003), but much faster.
However, the related R function becomes too slow when n > 10000 as the running time is
proportional to n3 on average. We will show this in Appendix D.

Let us reemphasize that the proposed FFT-based method developed in Section 2.1 is general
and thus, applicable also for the case when F (x) is continuous. Hypothesizing on a continuous
distribution F (x) leads to certain simplifications. In particular, (3) of Step 1 simplifies to

P(Dn ≥ q) = 1− P

(
i

n
− q ≤ U(i) ≤

i− 1

n
+ q, 1 ≤ i ≤ n

)
, (27)

which confirms that the distribution of Dn no longer depends on F (x). Also, (5) of Step
2 simplifies to (27) since the boundaries in (6) become g(t) = nt − nq and h(t) = nt + nq,
q ≥ 0 as shown by Durbin (1968). This special case of the proposed FFT-based method has
been considered by Moscovich and Nadler (2017) in the general context of computing the
probability of non-crossing an upper and lower boundaries by a PP.

Similarly to Simard and L’Ecuyer (2011) (see Sections 4 and 5 therein), we consider three
regions of n, (i) n ≤ 140, (ii) 140 < n ≤ 105, and (iii) n > 105, forming various sub-regions
with respect to q, as specified in Appendix B and Appendix C. Within these sub-regions
Simard and L’Ecuyer (2011) use different methods to compute the distribution of Dn. We
have performed a thorough numerical comparison across these regions with details given in
Appendix B and Appendix C, and can report that, with only a few exceptions, the Exact-
KS-FFT method returns values that are of at least the same precision as those obtained from
the R or C program.

4. Conclusions

We have provided a fast and accurate method to compute P(Dn ≥ q) when F (x) is arbitrary,
discontinuous (i.e., mixed or purely discrete) or continuous. The approach we take is to ex-
press P(Dn ≥ q) as an appropriate rectangle probability for uniform order statistics and to
compute the latter probability using the FFT method. We demonstrate that the proposed



Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan 29

Exact-KS-FFT method is numerically efficient and robust when hypothesizing on either dis-
continuous or continuous F (x). In particular, when F (x) is purely discrete the proposed
method outperforms in terms of speed and accuracy the R function of Arnold and Emerson
(2011), especially for large sample sizes. Furthermore, in the case of continuous F (x) the
Exact-KS-FFT method represents a viable alternative to the state-of-the-art methods of Car-
valho (2015) and Simard and L’Ecuyer (2011) as it returns values that are of at least the
same precision. In the case when F (x) is mixed, to the best of our knowledge no alternative
methods have been proposed in the literature to compute the exact distribution of Dn.

In this paper, we have also derived a useful extension of Schmid (1958)’s asymptotic formula,
relaxing his requirement for F (x) to be increasing between jumps and thus allowing for any
general mixed or purely discrete F (x). As demonstrated numerically, the extended asymptotic
formula provides reasonably close approximations to the exact values of P(Dn ≥ q) and can
successfully be used for small to moderate number of jumps in F (x) and large sample sizes.

As part of a separate ongoing research, we have also demonstrated that the FFT-based method
can be successfully applied to compute the complementary cdf of the weighted version of the
K-S test statistic

Kn = sup
x

√
n|Fn(x)− F (x)|

√
ψ[F (x)],

where ψ(t) ≥ 0,∀t ∈ [0, 1] is a weight function, first considered by Anderson and Darling
(1952). The result of this additional research will appear elsewhere. Finally, as noted in
Remark 4.3, the complementary cdfs P(Dn ≥ q) and P(Dn > q) are non-increasing functions
with jumps at some values of q. Characterizing in detail the distribution of Dn, in particular
the points of discontinuity, in relation to F (x) is also a subject of ongoing research.
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A. Expressing P(Dn > q) and P(Dn ≥ q) in terms of a rectangle probability
with respect to the uniform order statistics

Lemma 4.1. The following holds true

P(Dn > q) = 1− P(Ãi ≤ U(i) ≤ B̃i, 1 ≤ i ≤ n),

where Ãi = F
((
F−1( in−q)

)
−
)

and B̃i = F
(
F−1

(
( i−1n +q)+

))
and F−1(y+) = limε↓0 F

−1(y+

ε).

Proof: We have

P(Dn > q) = P( sup
−∞<x<∞

|Fn(x)− F (x)| > q)

= 1− P( sup
−∞<x<∞

|Fn(x)− F (x)| ≤ q)

= 1− P(|Fn(x)− F (x)| ≤ q, for all x)

= 1− P(−q ≤ Fn(x)− F (x) ≤ q, for all x)

= 1− P(F (x)− q ≤ Fn(x) ≤ F (x) + q, for all x)

= 1− P
(
F (X(i)−)− q ≤ Fn(X(i−1)) and Fn(X(i)) ≤ F (X(i)) + q, for 1 ≤ i ≤ n

)
= 1− P

(
F (X(i)−) ≤ i− 1

n
+ q and

i

n
− q ≤ F (X(i)), for 1 ≤ i ≤ n

)
= P

(
F (X(i)−) >

i− 1

n
+ q or

i

n
− q > F (X(i)), for some 1 ≤ i ≤ n

)
= P

(
F−1

(( i− 1

n
+ q
)

+
)
< X(i) or F−1

( i
n
− q
)
> X(i) for some 1 ≤ i ≤ n

)
,

where in the last equality we have applied that u < F (x−) if and only if F−1(u+) < x and
that x < F−1(u) if and only if F (x) < u (see e.g., Lemma 1 (iii) and (v) of Gleser (1985)).
Therefore, we now have

P(Dn > q) = 1− P

(
F−1

( i
n
− q
)
≤ X(i) ≤ F−1

(( i− 1

n
+ q
)

+
)

for 1 ≤ i ≤ n

)

= 1− P

(
F
((
F−1

( i
n
− q
))
−
)
≤ U(i) ≤ F

(
F−1

(( i− 1

n
+ q
)

+
))

for 1 ≤ i ≤ n

)
,

(28)
where in the last equality we have applied Lemma 1 of Dimitrova, Ignatov, and Kaishev
(2017). The statement now follows noting that one can rewrite the last equality in terms of
Ãi and B̃i. 2

Remark 4.2. The fact that the non-crossing probability

P(F (x)− q ≤ Fn(x) ≤ F (x) + q, for all x)

= P

(
F−1

( i
n
− q
)
≤ X(i) ≤ F−1

(( i− 1

n
+ q
)

+
)

for 1 ≤ i ≤ n

)
shown in the proof of Lemma 4.1 is illustrated in Figure 3 with F (x) (the green piecewise
linear function) defined in (23) (cf., Example 2.8), for n = 5.
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Remark 4.3. The statement of Lemma 4.1 holds true also for P(Dn ≥ q), as stated in
(3), with Ai and Bi defined as in (4). The proof is similar but more involved than that of
Lemma 4.1 and is therefore omitted. It should also be noted that the complementary cdfs
P(Dn ≥ q) and P(Dn > q) are non-increasing functions with jumps at some values of q. In
fact, these two functions coincide, except at the jumps where P(Dn ≥ q) is left-continuous
and P(Dn > q) is right-continuous. This is a consequence of the fact that the pairs Ai, Bi
and Ãi, B̃i coincide except at their points of discontinuity, where Ai, Bi are correspondingly
right- and left- continuous, whereas Ãi, B̃i are correspondingly left- and right- continuous.

Remark 4.4. Let us note that the result of Lemma 4.1 coincides with Theorem 1 of Gleser
(1985).

X(1) X(2) X(3) X(4) X(5)

x

F(0)-q

q

F(0)+q

1/5

2/5

3/5

4/5

1

F(x)

Fn(x)

H(x)=F(x)+q

G(x)=F(x)-q

Figure 3: Illustration of the equivalence of P(F (x) − q ≤ Fn(x) ≤ F (x) + q, for all x) to

P
(
F−1( in − q) ≤ X(i) ≤ F−1

(
( i−1n + q) +

)
for 1 ≤ i ≤ n

)
(cf., Remark 4.2), for F (x) defined

as in (23) with n = 5.

B. Computing the cdf of Dn when F (x) is continuous: numerical analysis
and comparisons

In this appendix, we compute the values of the cdf P(Dn ≤ q) for different n and q using the
Exact-KS-FFT method and compare the results to those obtained with the C program due to
Simard and L’Ecuyer (2011) and R function pkolmim from the package kolmim by Carvalho
(2015), which is claimed to be highly efficient and precise. Hence, we calculate an absolute
error as the absolute difference between our results and the R outputs, from which we can
infer the number of decimal digits of precision of our results.

In order to compute P(Dn ≤ q), when F (x) is continuous using the R package KSgeneral,
one needs to input cont_ks_cdf(q, n). For example, in order to compute the value for
P(Dn ≤ q), when F (x) is continuous, for n = 40, nq2 = 0.76, one should run the following
R code and obtain the corresponding result as shown in Table 10 for n = 40 in the column
Exact-KS-FFT.
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R> cont_ks_cdf(sqrt(0.76/40), 40)

[1] 0.6032371

Simard and L’Ecuyer (2011) consider the following regions: 1) n ≤ 140 and q ≤ 1/n; 2)
n ≤ 140 and q ≥ 1− 1/n; 3) n ≤ 140 and 1/n < nq2 < 0.754693; 4) n ≤ 140 and 0.754693 ≤
nq2 < 4; 5) n ≤ 140 and 4 ≤ nq2 < 18; 6) n ≤ 140 and nq2 ≥ 18; 7) 140 < n ≤ 105 and
nq3/2 < 1.4; 8) 140 < n ≤ 105 and nq3/2 ≥ 1.4; and 9) n > 105 where they use different
methods to compute the distribution of Dn (cf., Simard and L’Ecuyer 2011, Section 4).

Following the segmentation of regions, we have computed the distribution of Dn with the
proposed FFT-based method and can report that for regions 1), 2), 3), 4), 7), our approach
gives results that are of at least the same precision as those obtained from the R or C program.
In regions 5) and 6), when n ≤ 140 and nq2 > 12, our approach may be unsuitable due to
numerical instabilities which may occur.

More specifically, when 1) n ≤ 140 and q ≤ 1/n, or when 2) n ≤ 140 and q ≥ 1−1/n, Simard
and L’Ecuyer (2011) use the Ruben and Gambino (1982) formula to calculate the distribution
of Dn, returning results with at least 13 decimal digits of precision. As can be seen from Table
8, in these regions our method gives results that are of similar accuracy as those from the
pkolmim or the C program of Simard and L’Ecuyer (2011).

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 2.320196159531E-08 2.320196159531E-08 2.320196159531E-08 9.9262E-23
40 6.749093037884E-17 6.749093037884E-17 6.749093037884E-17 1.7010E-30
60 1.702549809333E-25 1.702549809333E-25 1.702549809333E-25 3.0076E-39
80 4.050687717856E-34 4.050687717855E-34 4.050687717855E-34 3.2928E-47

100 9.332621544394E-43 9.332621544394E-43 9.332621544394E-43 3.4092E-56
120 2.106901932614E-51 2.106901932614E-51 2.106901932614E-51 2.5994E-64
140 4.690131222300E-60 4.690131222299E-60 4.690131222299E-60 1.0004E-72

Table 8: Values of P(Dn ≤ q) for q = 1/n.

When 3) n ≤ 140 and 1/n < nq2 < 0.754693, Simard and L’Ecuyer (2011) use the Durbin
matrix algorithm to calculate the distribution of Dn, returning results with at least 13 decimal
digits of precision. As can be seen from Table 9, in this region our method gives results of at
least the same accuracy.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.6089841201379 0.6089841201379 0.6089841201379 2.9936E-15
40 0.5951497241008 0.5951497241008 0.5951497241008 1.9984E-15
60 0.5888010590107 0.5888010590107 0.5888010590107 1.9984E-15
80 0.5849488429478 0.5849488429478 0.5849488429478 4.7962E-14

100 0.5822897960080 0.5822897960080 0.5822897960080 2.2093E-14
120 0.5803108927579 0.5803108927579 0.5803108927579 7.2053E-14
140 0.5787632928760 0.5787632928760 0.5787632928760 1.0991E-14

Table 9: Values of P(Dn ≤ q) for nq2 = 0.75.
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When 4) n ≤ 140 and 0.754693 ≤ nq2 < 4, Simard and L’Ecuyer (2011) use the Pomeranz
(1974) method to calculate the distribution of Dn, returning results with at least 13 decimal
digits of precision. In this region, again our method gives results of at least the same accuracy
as shown in Tables 10 and 11 for nq2 = 0.76 and nq2 = 3.9, respectively.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.6169412955836 0.6169412955835 0.6169412955835 2.9976E-15
40 0.6032370735674 0.6032370735674 0.6032370735674 7.9936E-15
60 0.5969494784897 0.5969494784898 0.5969494784897 9.9920E-16
80 0.5931349807275 0.5931349807274 0.5931349807274 4.2966E-14

100 0.5905022875562 0.5905022875562 0.5905022875562 3.0087E-14
120 0.5885431553286 0.5885431553286 0.5885431553285 6.0063E-14
140 0.5870111081551 0.5870111081552 0.5870111081551 1.3989E-14

Table 10: Values of P(Dn ≤ q) for nq2 = 0.76.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.9995468293485 0.9995468293485 0.9995468293485 4.9960E-15
40 0.9994205337332 0.9994205337332 0.9994205337332 1.7097E-14
60 0.9993680770022 0.9993680770022 0.9993680770022 1.2990E-14
80 0.9993382289964 0.9993382289964 0.9993382289964 7.4940E-14

100 0.9993185558110 0.9993185558110 0.9993185558110 3.9968E-14
120 0.9993044245859 0.9993044245858 0.9993044245857 1.1902E-13
140 0.9992936831012 0.9992936831013 0.9992936831012 1.9096E-14

Table 11: Values of P(Dn ≤ q) for nq2 = 3.9.

When 5) n ≤ 140 and 4 ≤ nq2 < 18, Simard and L’Ecuyer (2011) first use the Miller (1956)
approximation to estimate P(Dn ≥ q), and then calculate the distribution of Dn by P(Dn ≤
q) = 1− P(Dn ≥ q). The authors claim that the approximated values of P(Dn ≤ q) have 14
decimal digits of precision. As illustrated in Tables 12 and 13 for nq2 = 4.1 and nq2 = 12,
our method gives results of at least the same accuracy when n ≤ 140 and 4 ≤ nq2 ≤ 12.
For n ≤ 140 and 12 < nq2 < 18, since our implementation uses floating numbers in C++,
numerical instabilities may occur.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.99970981546296 0.99970981546295 0.99970981546295 5.3291E-15
40 0.99962025405236 0.99962025405235 0.99962025405235 1.6209E-14
60 0.99958292108831 0.99958292108830 0.99958292108830 1.6764E-14
80 0.99956168530875 0.99956168530868 0.99956168530868 7.5717E-14

100 0.99954770168480 0.99954770168484 0.99954770168484 4.3188E-14
120 0.99953766763972 0.99953766763961 0.99953766763961 1.1346E-13
140 0.99953004813548 0.99953004813546 0.99953004813546 1.8430E-14

Table 12: Values of P(Dn ≤ q) for nq2 = 4.1.

When 6) n ≤ 140 and nq2 ≥ 18, P(Dn ≥ q) < 5 × 10−16. Equivalently, P(Dn ≤ q) =
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n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.99999999999963 0.99999999999962 0.99999999999962 7.5495E-15
40 0.99999999999135 0.99999999999134 0.99999999999134 1.5210E-14
60 0.99999999998168 0.99999999998167 0.99999999998167 1.3656E-14
80 0.99999999997415 0.99999999997407 0.99999999997407 7.6827E-14

100 0.99999999996823 0.99999999996827 0.99999999996827 3.8192E-14
120 0.99999999996388 0.99999999996376 0.99999999996376 1.1702E-13
140 0.99999999996020 0.99999999996017 0.99999999996017 2.3981E-14

Table 13: Values of P(Dn ≤ q) for nq2 = 12.

1 − P(Dn ≥ q) > 1 − 5 × 10−16. Hence, returning P(Dn ≤ q) = 1 will give results with 15
decimal digits of precision.

When 7) 140 < n ≤ 105 and nq3/2 < 1.4, Simard and L’Ecuyer (2011) use the Durbin matrix
algorithm to obtain the exact distribution of Dn, returning probabilities with at least 13
decimal digits of precision. As illustrated in Table 14, our method returns values of at least
the same accuracy.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

140 6.378698330645E-02 6.378698330644E-02 6.378698330644E-02 9,9920E-16
200 3.847020660831E-02 3.847020660831E-02 3.847020660831E-02 4.9960E-16
500 7.365490405433E-03 7.365490405433E-03 7.365490405433E-03 3.9899E-17

1000 1.383862966203E-03 1.383862966202E-03 1.383862966202E-03 3.7015E-16
2000 1.629201120187E-04 1.629201120188E-04 1.629201120188E-04 1.5501E-16
5000 3.811342214264E-06 3.811342214276E-06 3.811342214276E-06 1.1910E-17

10000 8.999089573402E-08 8.999089573401E-08 8.999089573401E-08 1.2308E-20
100000 5.388085736386E-17 5.388085736343E-17 5.388085736345E-17 4.0739E-28

Table 14: Values of P(Dn ≤ q) for nq3/2 = 1.3.

In region 8), when 140 < n ≤ 105, nq3/2 ≥ 1.4, and nq2 ≤ 18, Simard and L’Ecuyer (2011)
apply the Pelz and Good (1976) approximation that gives five decimal digits of precision for
values of P(Dn ≤ q). In contrast, when 140 < n ≤ 105, nq3/2 ≥ 1.4, and nq2 ≤ 10, our
approach gives results with at least 11 decimal digits of precision even though it is using
floating numbers in calculation. The results when nq3/2 = 1.4 and when nq2 = 10 are shown
in Tables 15 and 16, respectively. However, in region 8), when 140 < n ≤ 105, nq3/2 ≥ 1.4,
and nq2 > 10, our approach may be unsuitable due to numerical instabilities. In particular,
it will return results with at least 11 decimal digits of precision, but the resulting values of
P(Dn ≤ q) may not be decreasing in n, due to the errors in calculations with floating numbers.
When 140 < n ≤ 105 and nq2 ≥ 18, returning P(Dn ≤ q) = 1 will give results with 15 decimal
digits of precision.

Finally, in region 9), Simard and L’Ecuyer (2011) apply the Pelz and Good (1976) approxi-
mation to obtain values of P(Dn ≤ q) when nq2 < 18, and set P(Dn ≤ q) = 1 when nq2 ≥ 18.
As illustrated in Table 17 for n = 100001, our approach tends to be more accurate when
P(Dn ≤ q) is very small. However, Pelz and Good (1976) approximation may provide higher
accuracy when P(Dn ≤ q) tends to one.
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n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

140 9.0262329475006E-02 9.025921823E-02 9.0262329475004E-02 1.9013E-15
500 1.3024254002106E-02 1.302426466E-02 1.3024254002106E-02 4.0072E-16

1000 2.8949372516988E-03 2.89496818E-03 2.8949372516981E-03 6.7004E-16
5000 1.4235508314598E-05 1.42356151E-05 1.4235508314645E-05 4.7100E-17

10000 4.8334541076751E-07 4.83345438E-08 4.8334541076707E-07 4.3506E-19
50000 3.7148003980197E-12 3.71479094E-12 3.7147909440549E-12 9.4540E-18

100000 2.2123605255202E-15 2.21229903E-15 2.2123605254766E-15 4.3560E-26

Table 15: Values of P(Dn ≤ q) for nq3/2 = 1.4.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

141 0.99999999743970 0.99999999743965 0.99999999743964 5.6066E-14
500 0.99999999654196 0.99999999654197 0.99999999654196 9.9920E-16

1000 0.99999999629650 0.99999999629831 0.99999999629630 1.9806E-13
5000 0.99999999602730 0.99999999603085 0.99999999603074 3.4379E-12

10000 0.99999999597940 0.99999999597986 0.99999999597981 4.1001E-13
50000 0.99999999592690 0.99999999591965 0.99999999591967 7.2330E-12

100000 0.99999999592133 0.99999999590672 0.99999999590684 1.4486E-11

Table 16: Values of P(Dn ≤ q) for nq2 = 10.

q Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.
1

10
√
n

2.350089150939E-52 2.269812367E-52 2.350089151281E-52 3.4177E-62
1

8
√
n

1.969026572915E-33 1.962478061E-33 1.969026573193E-33 2.7816E-43
1

6
√
n

1.018454527586E-18 1.018350563E-18 1.018454527742E-18 1.5595E-28
1

4
√
n

2.907074248741E-08 2.9070737934E-08 2.907074249157E-08 4.1588E-18
1

2
√
n

3.639199759592E-02 3.639199759592E-02 3.639199760172E-02 5.7979E-12
1√
n

7.305646850557E-01 7.305646847185E-01 7.305646847159E-01 3.3980E-10
2√
n

9.993319331457E-01 9.993319333086E-01 9.993319333086E-01 1.6290E-10

Table 17: Values of P(Dn ≤ q) for n = 100001.
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To conclude, apart from the regions where n ≤ 140 and 12 < nq2 < 18; or 140 < n ≤ 105,
nq3/2 ≥ 1.4, and 10 < nq2 < 18; or nq2 ≥ 18, the Exact-KS-FFT method returns values of
P(Dn ≤ q) that are at least as accurate as those obtained by Simard and L’Ecuyer (2011).
This is shown in Figure 4. Moreover, for n > 105, the proposed method may be accurate
when P(Dn ≤ q) is very small.

Figure 4: Approximate regions where the Exact-KS-FFT method returns P(Dn ≤ q) efficiently
and accurately.

C. Computing the complementary cdf when F (x) is continuous: numerical
analysis and comparisons

It is well known that

Dn = sup
x
|Fn(x)− F (x)| −→ 0 a.s.,

as n→∞. Hence, when n is very large, P(Dn ≤ q) is close to one. Also, it can be seen that
Dn ∈ [0, 1], so P(Dn ≤ q) is close to one when q is close to one. In these cases, cancellation
errors may occur when trying to numerically compute the p value

P(Dn ≥ q) = 1− P(Dn ≤ q). (29)

Similarly to previous section, we compute the values of P(Dn ≥ q) for different n and q using
the Exact-KS-FFT method and compare the results to those obtained with the R program of
Carvalho (2015), and the C program due to Simard and L’Ecuyer (2011).

In order to compute P(Dn ≥ q), when F (x) is continuous using the R package KSgeneral,
one needs to input cont_ks_c_cdf(q, n). For instance, in order to compute the value for
P(Dn ≥ q), for n = 141, nq2 = 2.1, one should run the following R code and obtain the
corresponding result as shown in Table 19 for n = 141 in the column Exact-KS-FFT.

R> cont_ks_c_cdf(sqrt(2.1/141), 141)

[1] 0.02743689
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Simard and L’Ecuyer (2011) consider the following regions: 1) n ≤ 140 and nq2 < 4; 2)
n ≤ 140 and nq2 ≥ 4; 3) n > 140 and nq2 < 2.2; and 4) n > 140 and nq2 ≥ 2.2 where they
use different methods to compute the complementary cdf of Dn (cf., Simard and L’Ecuyer
2011, Section 5).

Following the segmentation of regions, we have computed the complementary cdf of Dn with
the proposed FFT-based method. Consequently, we can report that for region 1), our ap-
proach gives results that are of at least the same accuracy as those obtained from the R or
C program. In region 2), P(Dn ≤ q) is close to one and our method may be unsuitable due
to cancellation errors which may occur when calculating the complementary cdf via (29). A
comparison for nq2 = 4 is shown in Table 18.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 3.627396978E-04 3.627396978E-04 3.627396978E-04 5.0590E-15
40 4.691487961E-04 4.691487961E-04 4.691487961E-04 1.5461E-14
60 5.134182982E-04 5.134182982E-04 5.134182982E-04 1.3937E-14
80 5.386021475E-04 5.386021476E-04 5.386021476E-04 7.4480E-14

100 5.551927328E-04 5.551927328E-04 5.551927328E-04 3.9403E-14
120 5.671032850E-04 5.671032851E-04 5.671032851E-04 1.0974E-13
140 5.761521040E-04 5.761521040E-04 5.761521040E-04 1.0433E-14

Table 18: Values of P(Dn ≥ q) for nq2 = 4.

In region 3), when 140 < n ≤ 105 and nq2 < 2.2, Simard and L’Ecuyer (2011) use the
Pelz and Good (1976) approximation and apply (29) to calculate the complementary cdf,
returning results with at least five decimal digits of precision. Our approach also applies (29),
but returns results with at least nine decimal digits of precision. A comparison for nq2 = 2.1
is given in Table 19.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

141 0.02743688914 0.02743688914 0.02743688914 5.0990E-13
500 0.02866250067 0.02866250067 0.02866250073 5.9554E-11

1000 0.02905830855 0.02905830855 0.02905830828 2.6492E-10
5000 0.02957796836 0.02957796836 0.02957796797 3.9119E-10

10000 0.02969964497 0.02969964497 0.02969964418 7.9672E-10
50000 0.02986114255 0.02986114255 0.02986114263 7.2066E-11

100000 0.02989926133 0.02989926162 0.02989926162 2.8962E-10

Table 19: Values of P(Dn ≥ q) for nq2 = 2.1.

In region 4), when 140 < n ≤ 105 and nq2 ≥ 2.2, Simard and L’Ecuyer (2011) use the
Miller (1956) approximation and obtain complementary cdf with at least six decimal digits
of precision. In this region, the proposed FFT-based method may give more accurate results
when 140 < n ≤ 105 and 2.2 ≤ nq2 ≤ 7. For example, for nq2 = 2.2 and nq2 = 7, Tables
20 and 21 show that the Exact-KS-FFT method returns complementary cdf with at least 10
decimal digits of precision. When 140 < n ≤ 105 and nq2 > 7, our method may be unsuitable
due to cancellation errors as previously discussed.

Finally, when n > 105 and nq2 < 370, Simard and L’Ecuyer (2011) use the Miller (1956)
approximation and obtain complementary cdf with a few correct decimal digits. These authors
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n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

141 0.02239633302 0.0223963592 0.02239633302 5.2000E-14
500 0.02343606481 0.0234361007 0.02343606481 2.6201E-14

1000 0.02377033994 0.0237703789 0.02377033994 2.0260E-13
10000 0.02431016270 0.0243102062 0.02431016270 1.3636E-12

100000 0.02447768608 0.0244777310 0.02447768610 1.8812E-11

Table 20: Values of P(Dn ≥ q) for nq2 = 2.2.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

141 1.2484862E-06 1.2484863E-06 1.2484863E-06 5.7535E-14
500 1.4796907E-06 1.4796906E-06 1.4796907E-06 2.1112E-14

1000 1.5434598E-06 1.5434599E-06 1.5434600E-06 1.9722E-13
10000 1.6309268E-06 1.6309265E-06 1.6309266E-06 1.9895E-13

100000 1.6534902E-06 1.6534983E-06 1.6534982E-06 7.9321E-12

Table 21: Values of P(Dn ≥ q) for nq2 = 7.

have shown that complementary cdf can be set to be zero when nq2 ≥ 370. Recall that in Table
17, we have shown that the Exact-KS-FFT method tends to be more accurate when P(Dn ≤ q)
is very small, or when q is small. In this case, we can apply (29) to calculate the complementary
cdf, without incurring large cancellation errors. More specifically, when n > 105 and nq2 ≤ 3,
the Exact-KS-FFT method returns complementary cdf with at least seven decimal digits of
precision as demonstrated in Table 22. The accuracy of course deteriorates when n > 105

and 3 < nq2 < 370.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

100001 4.939303411E-03 4.939303336E-03 4.939303263053E-03 1.4795E-10
200000 4.944654927E-03 4.944654662E-03 4.944654584319E-03 3.4268E-10
300000 4.947020044E-03 4.947020013E-03 4.947019946709E-03 9.7291E-11

Table 22: Values of P(Dn ≥ q) for nq2 = 3.

To summarize, apart from the regions where n ≤ 140 and nq2 ≥ 4; or n ≤ 140 and q ≥ 1−1/n;
or 140 < n ≤ 105 and nq2 > 7, the Exact-KS-FFT method returns values of the probability
P(Dn ≥ q) that are at least as accurate as those obtained by Simard and L’Ecuyer (2011).
This is shown in Figure 5. Moreover, when n > 105 and nq2 ≤ 3, the proposed approach may
be more accurate than Simard and L’Ecuyer (2011) method.

D. Speed comparison

Tables 23, 24 and 25 report the CPU times to compute P(Dn ≥ q) 100 times, for selected
values of n and λ. Note that Carvalho (2015) procedure cannot be used with the chosen values
of q and n = 100000 as it is prohibitively slow. As expected, Simard and L’Ecuyer (2011)
C program which combines the most efficient methods for computing the distribution of Dn

for F (x) continuous, is the fastest among the three procedures. However, the Exact-KS-FFT



42 Computing the Two-Sided K-S Distribution

Figure 5: Approximate regions where the Exact-KS-FFT method returns P(Dn ≥ q) efficiently
and accurately

method proves to be a viable alternative especially given its generality and applicability to
the case of discontinuous F (x).

n\λ 0.25 0.5 1 2 3 4

10 0.00034 0.00059 0.00065 0.00069 0.00087 0.00014
100 0.00524 0.01318 0.01835 0.03242 0.04765 0.00107
140 0.00615 0.01915 0.03474 0.06172 0.08618 0.11874
141 0.00673 0.01955 0.03529 0.06657 0.09285 0.11886

1000 0.15040 0.00013 0.00014 0.00019 0.00894 0.00894
10000 0.00013 0.00014 0.00012 0.00015 0.08124 0.08080

100000 0.00014 0.00015 0.00014 0.00019 0.78912 0.75099

Table 23: CPU time (seconds) to compute P(Dn ≥ q) 100 times with the Simard and L’Ecuyer
(2011) C program.

n\λ 0.25 0.5 1 2 3 4

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 0.0150 0.0150 0.0150 0.0380 0.0380 0.0550
140 0.0150 0.0150 0.0310 0.0620 0.0780 0.1090
141 0.0150 0.0150 0.0310 0.0620 0.0780 0.1090

1000 0.1400 0.2960 0.6550 1.1700 1.9340 2.2990
10000 5.6310 8.5320 19.500 45.100 52.890 94.700

100000 182.29 333.31 672.16 1466.6 2503.3 3211.7

Table 24: CPU time (seconds) to compute P(Dn ≥ q) 100 times with the Exact-KS-FFT
method.
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n\λ 0.25 0.5 1 2 3 4

10 0.001 0.001 0.001 0.001 0.001 0.001
100 0.003 0.004 0.006 0.009 0.013 0.017
140 0.004 0.006 0.009 0.014 0.020 0.023
141 0.004 0.006 0.009 0.014 0.020 0.024

1000 0.086 0.155 0.268 0.499 0.747 1.066
10000 6.250 13.16 40.22 97.18 145.5 188.4

100000 na na na na na na

Table 25: CPU time (seconds) to compute P(Dn ≥ q) 100 times with the Carvalho (2015) R
program.
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