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 NUMERICAL TABULATION OF THE DISTRIBUTION OF
 KOLMOGOROV'S STATISTIC FOR FINITE

 SAMPLE SIZE

 Z. W. BIRNBAUM*

 University of Washington and Stanford University

 1. Introduction

 LET X be a random variable with the continuous probability dis-
 ljtribution function

 F(x) = Prob {X ! x},

 and let X1, X2, * , XN be a sample of size N for X, ordered so that
 Xi < X2 ?XN. We define the empirical distribution function
 FN(X) by

 0 for x < Xi

 FN (x) for Xi ; x < X+1, j = 1, 2,, * * N - 1
 N

 1 for XvNx.

 The empirical distribution function is a step-function with N jumps,
 each of height I/N, occurring at the points of the sample.

 One would expect that, for N large, FN(x) will very likely be close
 to F(x). In 1933, Kolmogorov [1] introduced the statistic

 DN = least upper bound of I F(x) - FN(X) I

 which measures the greatest absolute discrepancy between F(x) and
 FN(X), and showed that it has the following properties which make it
 particularly useful for judging how "close" FN(X) is to F(x):

 1) the probability distribution of DN depends on N but is inde-
 pendent of F(x) (DN is a "distribution-free" statistic)

 2) for N large, the probability distribution of DN is givlen by the re-
 lationship

 (1.1) lim Prob {DN < b }en 1 - 2 tue (Si1)ieov = L(z).

 The function L(z) has been tabulated by Smirnov [21.1 A new proof

 * Research done under the sponsorship of the Office of Naval Research.
 1 The expression for L(z) in [21 contains a misprint: e-i'll instead of e-202e.
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 of (1.1) has been given recently by Feller [3] and a heuristic outline of a
 proof by Doob [4].

 The asymptotic distribution (1.1) makes it possible to use the sta-
 tistic DN for testing the hypothesis that a large sample was obtained
 from a random variable X with a distribution function F(x) which is
 explicitly given; it also may be used for constructing a "confidence-
 band" about the empirical distribution function FN(X) so that it can
 be asserted on a preassigned probability level that the unknown "true"
 distribution function F(x) is entirely contained in that band. In either
 type of application a difficulty arises due to the fact that the known
 proofs of (1.1) give no indication how large N must be to make this
 approximation sufficiently close for practical use. An obvious way to
 overcome this difficulty is to compute numerically and tabulate the
 probability distribution of DN for finite N up to values for which a
 good agreement is reached with the asymptotic formula (1.1). An
 adaptation of Feller's argument for such a computation was proposed
 in [5].

 Kolmogorov, in his original paper [1], derived a system of recursion
 formulas which make it possible to compute for any finite N the prob-
 abilities

 Prob {DN <-N} for c = 1, 2, *.* *, N.

 These formulas were used to compute Table 1 of the present paper.
 They are reproduced as (A 1.1)-(A 1.4) in the Appendix where the
 theory of the computations is presented.

 Massey [6] obtained a system of recursive formulas, equivalent with
 (A 1.1)-(A 1.4), as well as a procedure for replacing them by a system
 of difference equations. He tabulated Prob {DAr<c/N} for N=5 (5) 80
 and selected values of c < 9; there is, however, no estimate given of the
 error resulting from the large number of computations needed to ob-
 tain every result in this tabulation. A table of 100 a% percentage points
 was also given by Massey [7], for c =.20, .15, .10, .05, .01 and
 N= 1 (1) 35, to two significant digits.

 Table 1 of the present paper contains values of Prob { Dv <c/N},
 computed to five decimals, for N=1 (1) 100 and c=1 (1) 15. The
 method of computation used involves a "truncation" of Kolmogorov's
 recursion formulas (A 1.1)-(A 1.4), and has made it possible to reduce
 the number of computations needed and to obtain estimates of the
 errors due to the truncation and to the accumulated effect of round-offs
 on a digital computing machine.
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 TABULATION OF KOLMOGOROVY S STATISTIC 427

 Table 2 contains the 95% points of the distribution of DN for
 N= 2 (1) 5 (5) 30 (10) 100, and the 99% points for N = 2 (1) 5 (5) 30
 (10) 80, as well as a comparison with the corresponding values ob-
 tained from the asymptotic formula (1.1).

 A comparison of Table 1 with the values tabulated by Massey in [6]
 shows agreement except for a few entries, particularly that for N =5,
 c = 2. Similarly a comparison of Table 2 with Massey's table in [7] dis-
 closes only minor discrepancies, the largest being those at the 95%
 point for N = 25 and at the 99% point for N = 10, 20.

 2. Tabulation of Prob { DN <C/N}

 Table 1 below was computed on the U. S. Bureau of Standards West-
 ern Automatic Computer (SWAC), at the Institute for Numerical
 Analysis.2 The computation was programmed according to formulas
 (A 3.1), (A 3.2), (A 3.3) of the Appendix, modified for a binary com-
 puter; the truncation was performed at r = 12, and the rounding off was
 carried out at '= 35 binary digits, which corresponds to about t = 10.53
 for decimal digits. This should assure everywhere an error less than
 5* 10-6. The final results were rounded off to 5 decimals. An alternative
 set of formulas was used for a check.

 3. Table of 95% and 99% points

 By EN, .95 and EN, .99 we denote the solutions of the equations

 P(DN < eN. .95) = .95

 P(DN < eN. .99) = .99.

 Table 2 contains in columns (2) and (3) values of EN, .9B and EN, .99, to
 4 decimals. Columns (4) and (5) contain the values

 EN. .95 = 1.3581 N-"12 and EN. .99 = 1.6276 N-112

 which are the asymptotic 95%- and 99%-points computed according
 go (1.1). The quotients ZN, .95/EN, .95 and iN, .99/eN, .99 tabulated in
 columns (6) and (7) indicate the manner in which these asymptotic
 values approach the exact values with increasing N. It appears, in par-
 ticular, that the asymptotic values are always greater than the exact
 ones and that for N_?80 the approximation by (1.1) is already quite
 good.

 2 The writer takes this occasion to acknowledge the assistance given him by the Institute for Nu-
 merical Analysis, and to express his gratitude in particular to Dr. F. S. Acton, Dr. Gertrude Blanch, and
 Mrs. Roselyn S. Lipkis for their help and advice.

This content downloaded from 
�������������202.43.95.117 on Tue, 15 Dec 2020 02:24:34 UTC������������� 

All use subject to https://about.jstor.org/terms



 TABLE 1

 Prob IDN <c/lN

 N 1 2 3 4 5 6 7 8 9 10

 c

 1 1.00000 .50000 .22222 .09375 .03840 .01543 .00612 .00240 .00094 .00036
 2 1.00000 .92593 .81250 .69120 .57656 .47446 .38659 .31261 .25128
 3 1.00000 .99219 .96992 .93441 .88937 .83842 .78442 .72946
 4 1.00000 .99936 .99623 .98911 .97741 .96121 .94101
 5 1.00000 .99996 .99960 .99849 .99615 .99222
 6 1.00000 1.00000 .99996 .99982 .99943
 7 1.00000 1.00000 .99998
 8 1.00000

 N 11 12 13 14 15 16 17 18 19 20

 C

 1 .00014 .00005 .00002 .00001 .00000 .00000 .00000 .00000 .00000 .00000
 2 .20100 .16014 .12715 .10066 .07950 .06265 .04927 .03869 .03033 .02374
 3 .67502 .62209 .57136 .52323 .47795 .43564 .39630 .35991 .32636 .29553
 4 .91747 .89126 .86304 .83337 .80275 .77158 .74019 .70887 .67784 .64728
 5 .98648 .97885 .96935 .95807 .94517 .93081 .91517 .89844 .88079 .86237
 6 .99865 .99732 .99530 .99250 .98882 .98425 .97875 .97235 .96506 .95693
 7 .99993 .99979 .99953 .99908 .99837 .99736 .99598 .99419 .99195 .98924
 8 1.00000 .99999 .99997 .99993 .99984 .99968 .99S944 .99907 .99856 .99788
 9 1.00000 1.00000 1.00000 .99999 .99997 .99994 .99989 .99980 .99968
 10 1.00000 1.00000 1.00000 .99999 .99998 .99996
 11 1.00000 1.00000 1.00000

 N 21 22 23 24 25 26 27 28 29 30

 C

 1 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
 2 .01857 .01450 .01132 .00882 .00687 .00535 .00416 .00323 .00251 .00195
 3 .26729 .24147 .21793 .19650 .17702 .15935 .14334 .12885 .11575 .10392
 4 .61733 .58811 .55970 .53216 .50554 .47987 .45517 .43145 .40870 .38693
 5 .84335 .82388 .80401 .78392 .76368 .74338 .72309 .70288 .68280 .66290
 6 .94802 .93837 .92805 .91712 .90565 .89368 .88128 .86851 .85541 .84203
 7 .98605 .98236 .97817 .97349 .96832 .96269 .95661 .95010 .94318 .93588
 8 .99700 .99590 .99456 .99296 .99110 .98895 .98651 .98378 .98076 .97745
 9 .99949 .99924 .99890 .99846 .99792 .99725 .99645 .99551 .99441 .99315
 10 .99993 .99989 .99982 .99973 .99960 .99943 .99921 .99894 .99861 .99821
 11 .99999 .99999 .99998 .99996 .99994 .99990 .99985 .99979 .99971 .99960
 12 1.00000 1.00000 1.00000 1.00000 .99999 .99999 .99998 .99997 .99995 .99992
 13 1.00000 1.00000 1.00000 1.00000 .99999 .99999
 14 1.00000 1.00000

 N 31 32 33 34 35 36 37 38 39 40

 C

 1 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
 2 .00151 .00117 .00091 .00070 .00054 .00042 .00033 .00025 .00020 .00015
 3 .09325 .08363 .07497 .06717 .06016 .05386 .04820 .04312 .03856 .03448
 4 .36612 .34624 .32729 .30923 .29205 .27570 .26018 .24544 .23145 .21819
 5 .64323 .62382 .60470 .58590 .56744 .54934 .53161 .51427 .49733 .48078
 6 .82843 .81463 .80069 .78663 .77250 .75831 .74410 .72990 .71572 .70159
 7 .92822 .92022 .91192 .90332 .89447 .88538 .87608 .86658 .85690 .84707
 8 .97384 .96995 .96578 .96134 .95664 .95168 .94648 .94104 .93539 .92952
 9 .99172 .99012 .98834 .98638 .98423 .98191 .97939 .97670 .97382 .97077
 10 .99773 .99717 .99652 .99578 .99494 .99399 .99294 .99178 .99050 .98910
 11 .99946 .99930 .99910 .99886 .99857 .99824 .99785 .99741 .99692 .99636
 12 .99989 .99985 .99980 .99973 .99965 .99954 .99942 .99928 .99911 .99891
 13 .99998 .99g97 .99996 .99994 .99992 .99990 .90986 .99982 .99977 .99971
 14 1.00000 1.00000 1.00000 .99999 .99999 .99998 .99997 .99996 .99995 .99993
 16 1.00000 1.00000 1.00000 .99999 .99999 .99999 .99999
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 TABLE 1-(Continued)

 N 41 42 43 44 45 46 47 48 49 50

 c

 1 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
 2 .00012 .00009 .00007 .00005 .00004 .00003 .00002 .00002 .00001 .00001
 3 .03081 .02753 .02459 .02196 .01960 .01750 .01561 .01393 .01242 .01108
 4 .20562 .19373 .18247 .17181 .16174 .15222 .14323 .13474 .12672 .11916
 5 .46464 .44891 .43359 .41868 .40418 .39008 .37639 .36310 .35020 .33769
 6 .68752 .67354 .65965 .64588 .63223 .61872 .60536 .59215 .57911 .56623
 7 .83711 .82702 .81684 .80657 .79623 .78583 .77539 .76492 .75442 .74392
 8 .92345 .91719 .91075 .90415 .89739 .89048 .88344 .87628 .86899 .86160
 9 .96754 .96413 .96056 .95682 .95293 .94888 .94467 .94033 .93584 .93122
 10 .98759 .98596 .98421 .98233 .98033 .97822 .97598 .97363 .97115 .96856
 11 .99573 .99504 .99428 .99344 .99253 .99154 .99047 .98933 .98810 .98679
 12 .99868 .99842 .99813 .99779 .99742 .99701 .99655 .99605 .99550 .99490
 13 .99963 .99955 .99945 .99933 .99919 .99904 .99886 .99866 .99844 .99820
 14 .99991 .99988 .99985 .99982 .99977 .99972 .99966 .99959 .99951 .99941
 15 .99998 .99997 .99996 .99995 .99994 .99993 .99991 .99988 .99986 .99983

 N 51 52 53 54 55 56 57 58 59 60

 c

 1 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
 2 .00001 .00001 .00001 .00000 .00000 .00000 .00000 .00000 .00000 .00000
 3 .00988 .00880 .00785 .00699 .00623 .00555 .00494 .00440 .00392 .00349
 4 .11203 .10530 .09896 .09298 .08735 .08205 .07706 .07236 .06793 .06377
 5 .32556 .31381 .30242 .29140 .28073 .27041 .26042 .25077 .24144 .23242
 6 .55353 .54101 .52868 .51654 .50459 .49283 .48128 .46992 .45876 .44780
 7 .73342 .72294 .71247 .70203 .69162 .68126 .67094 .66068 .65049 .64035
 8 .85412 .84654 .83889 .83116 .82337 .81552 .80762 .79968 .79171 .78370
 9 .92648 .92161 .91662 .91152 .90632 .90102 .89562 .89013 .88455 .87889
 10 .96586 .96304 .96011 .95708 .95393 .95069 .94734 .94390 .94036 .93674
 11 .98540 .98392 .98237 .98073 .97900 .97720 .97531 .97334 .97129 .96916
 12 .99425 .99356 .99280 .99200 .99113 .99022 .98924 .98821 .98712 .98598
 13 .99792 .99762 .99729 .99693 .99654 .99611 .99565 .99515 .99462 .99406
 14 .99931 .99919 .99906 .99891 .99875 .99857 .99837 .99815 .99791 .99765
 15 .99979 .99975 .99970 .99964 .99958 .99951 .99943 .99934 .99925 .99914

 N 61 62 63 64 65 66 67 68 69 70

 c

 1 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
 2 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
 3 .00310 .00276 .00246 .00219 .00195 .00173 .00154 .00137 .00122 .00108
 4 .05986 .05617 .05271 .04946 .04640 .04352 .04082 .03828 .03589 .03365
 5 .22371 .21529 .20717 .19933 .19176 .18445 .17741 .17061 .16406 .15774
 6 .43705 .42649 .41614 .40599 .39603 .38628 .37672 .36736 .35819 .34921
 7 .63029 .62030 .61040 .60057 .59083 .58119 .57163 .56217 .55280 .54354
 8 .77567 .76761 .75955 .75148 .74340 .73533 .72726 .71919 .71115 .70311
 9 .87316 .86736 .86150 .85557 .84958 .84355 .83746 .83133 .82516 .81895
 10 .93302 .92921 .92533 .92136 .91731 .91320 .90901 .90475 .90042 .89604
 11 .96695 .96466 .96230 .95986 .95735 .95476 .95211 .94938 .94659 .94373
 12 .98477 .98351 .98218 .98080 .97936 .97786 .97630 .97469 .97301 .97128
 13 .99345 .99281 .99212 .99140 .99063 .98983 .98898 .98809 .98716 .98619
 14- .99737 .99707 .99674 .99639 .99602 .99562 .99519 .99474 .99425 .99374
 15 .99902 .99889 .99874 .998.58 .99841 .99823 .99803 .99781 .99758 .99733
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 TABLE 1-(Continued)

 N 71 72 73 74 75 76 77 78 79 80

 c

 1 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

 2 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

 3 .00096 .00086 .00076 .00068 .00060 .00053 .00047 .00042 .00037 .00033
 4 .03155 .02958 .02772 .02598 .02435 .02282 .02138 .02003 .01877 .01758
 5 .15165 .14578 .14013 .13468 .12943 .12438 .11951 .11482 .11031 .10597

 6 .34043 .33183 .32342 .31519 .30714 .29928 .29159 .28407 .27672 .26955

 7 .53437 .52531 .51635 .50750 .49875 .49011 .48158 .47316 .46485 .45664

 8 .69510 .68712 .67916 .67123 .66333 .65546 .64764 .63985 .63211 .62441

 9 .81271 .80644 .80014 .79382 .78748 .78112 .77475 .76836 .76197 .75557
 10 .89159 .88709 .88253 .87792 .87326 .86856 .86381 .85902 .85419 .84932
 11 .94080 .93781 .93476 .93165 .92848 .92525 .92197 .91864 .91525 .91182
 12 .96950 .96765 .96576 .96380 .96180 .95974 .95762 .95546 .95324 .95098

 13 .98518 .98412 .98302 .98187 .98069 .97946 .97819 .97687 .97552 .97412

 14 .99321 .99264 .99204 .99142 .99076 .99008 .98936 .98861 .98783 .98702

 15 .99707 .99678 .99648 .99616 .99582 .99546 .99508 .99468 .99426 .99382

 N 81 82 83 84 85 86 87 88 89 90

 c

 1 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

 2 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

 3 .00030 .00026 .00023 .00021 .00018 .00016 .00015 .00013 .00011 .00010
 4 .01647 .01542 .01444 .01353 .01267 .01186 .01110 .01040 .00973 .00911

 5 .10178 .09776 .09389 .09017 .08659 .08314 .07983 .07664 .07357 .07063

 6 .26253 .25569 .24900 .24247 .23609 .22986 .22379 .21786 .21207 .20643
 7 .44855 .44056 .43269 .42493 .41727 .40973 .40229 .39497 .38775 .38064
 8 .61675 .60914 .60159 .59408 .58662 .57922 .57188 .56459 .55735 .55018
 9 .74917 .74276 .73636 .72996 .72356 .71717 .71079 .70442 .69806 .69172
 10 .84442 .83949 .83452 .82953 .82451 .81947 .81440 .80932 .80421 .79909
 11 .90833 .90480 .90123 .89761 .89395 .89025 .88651 .88273 .87892 .87507
 12 .94867 .94630 .94390 .94144 .93894 .93640 .93381 .93118 .92851 .92580
 13 .97268 .97119 .96967 .96811 .96650 .96486 .96317 .96145 .95969 .95789

 14 .98618 .98531 .98440 .98346 .98249 .98149 .98046 .97939 .97830 .97717

 15 .99336 .99287 .99237 .99184 .99129 .99071 .99011 .98949 .98884 .98818

 N 91 92 93 94 95 96 97 98 99 100

 1 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

 2 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
 3 .00009 .00008 .00007 .00006 .00006 .00005 .00004 .00004 .00003 .00003
 4 .00853 .00798 .00747 .00699 .00654 .00612 .00573 .00536 .00502 .00469
 5 .06779 .06507 .06245 .05994 .05752 .05520 .05297 .05082 .04876 .04678
 6 .20092 .19555 .19031 .18520 .18022 .17536 .17062 .16600 .16150 .15712
 7 .37364 .36674 .35995 .35327 .34669 .34021 .33384 .32757 .32140 .31533

 8 .54306 .53600 .52901 .52207 .51520 .50839 .50164 .49496 .48834 .48178
 9 .68539 .67908 .67279 .66651 .66026 .65403 .64783 .64165 .63549 .62937
 10 .79395 .78880 .78364 .77847 .77329 .76810 .76291 .75771 .75251 .74731
 11 .87119 .86728 .86334 .85937 .85538 .85136 .84731 .84324 .83915 .83504
 12 .92305 .92026 .91743 .91457 .91167 .90874 .90578 .90278 .89975 .89670

 13 .95605 .95418 .95226 .95032 .94833 .94632 .94426 .94218 .94006 .93791
 14 .97601 .97482 .97359 .97234 .97105 .96974 .96839 .96702 .96561 .96417
 15 .98748 .98677 .98602 .98526 .98447 .98366 .98282 .98196 .98107 .98016

 1
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 TABULATION OF KOLMOGOROV'S STATISTIC 431

 TABLE 2

 95%-POINTS MN..99 AND 99%-POINTS eN..99
 FOR KOLMOGOROV'S STATISTIC

 (1) (2) (3) (4) (5) (6) (7
 _ _ EN, .95 EN. *99

 N EN. .95 EN, .99 EN, .95 EN, .99 ZN, .99
 EN, .9 EN, .99

 2 .8419 .9293 .9612 1.1509 1.142 1.238
 3 .7076 .8290 .7841 .9397 1.108 1.134

 4 .6239 .7341 .6791 .8138 1.088 1.109
 5 .5633 .6685 .6074 .7279 1.078 1.089

 10 .4087 .4864 .4295 .5147 1.051 1.058
 15 .3375 .4042 .3507 .4202 1.039 1.040
 20 .2939 .3524 .3037 .3639 1.033 1.033
 25 .2639 .3165 .2716 .3255 1.029 1.028
 30 .2417 .2898 .2480 .2972 1.026 1.025

 40 .2101 .2521 .2147 .2574 1.022 1.021
 50 .1884 .2260 .1921 .2302 1.019 1.018
 60 .1723 .2067 .1753 .2101 1.018 1.016

 70 .1597 .1917 .1623 .1945 1.016 1.015
 80 .1496 .1795 .1518 .1820 1.015 1.014
 90 .1412 .1432 1.014
 100 .1340 .1358 1.013

 4. Examples

 4.1. Determination of sample size needed.

 4.11. We wish to approximate F(x) empirically by FN(x) so that the
 error is everywhere less than .15, on the 90%O probability level. How
 large must be the sample size N? To answer this question, we find by

 interpolation in Table 1 that P{ D66 <.15 >.900, so that N = 65 is suffi-
 cient.

 4.12. An approximation to F(x) by FN(x) is desired on the 99%
 probability level with an error less than .05 everywhere; what sample

 size is needed? An inspection of Table 1 shows that N must be > 100,
 hence the asymptotic formula (1.1) will be used. The asymptotic 99%
 point, according to Section 3, is 1.6276 N-1'2, hence by setting this
 equal to .05 and solving for N we find N = 1060.

 4.2. Estimating probabilities.

 In Table 3, column (2) contains an ordered sample of a random
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 432 AMERICAN STATISTICAL ASSOCIATION JOURNAL, SEPTEMBER 1952

 variable X, consisting of the values Xi, i= 1, 2, , 40. The values in
 columns (3) and (4) are

 / i\
 L(i) = max (O, - - .2101)

 and

 U(i) = min (1, + .2101)

 for i=0, 1, 2, , 40, where .2101 is the value of E40, .95 from Table 2.
 It can be asserted with probability .95 that the true continuous prob-
 ability distribution function is everywhere contained in the "confidence
 band" defined by

 (4.2) L(i) < F(x) < U(i) for Xi < x ? Xi+1.

 Therefore, any number of statements of the following kinds may be
 made simultaneously on a probability level of at least .95: P t X < .78671
 =PIX<X14j is a number between .1149 and .5351; PI.7867<X
 <1.51371 =P{X14<X<X34j is a number between L(34)-U(14)
 =.0798 and U(34)-L(14) =.8601; PIX> 1.56771=1-P{X<X371 iS
 less than 1 -L(37) =.2851. Each of these statements separately could
 be made on a probability level higher than .95.

 4.3. Testing a completely specified hypothesis.

 We wish to test on the .95 probability level the hypothesis 110 that
 the sample in column (2) of Table 4.2 above was obtained from a nor-
 mal population with expectation 1 and standard deviation 1/A/6; we
 agree to reject Ho if the probability function

 a/6 ex 1 r
 (4.31) Fo(x) - = e-1/2 6(X-l)2dX = J e-U/2du

 is not entirely contained in the confidence band (4.2).
 For this purpose we may use the graphical procedure, in which the

 confidence band (4.2) is plotted, then a large number of values of
 Fo(x) are computed from (4.31) and a graph of Fo(x) is sketched, and
 finally Ho is rejected when this graph reaches or crosses the lower or
 upper boundary of the confidence band. The obvious disadvantage of
 this procedure is that it requires the computation of many values of
 Fo(x).

This content downloaded from 
�������������202.43.95.117 on Tue, 15 Dec 2020 02:24:34 UTC������������� 

All use subject to https://about.jstor.org/terms



 TABULATION OF KOLMOGOROVYS STATISTIC 433

 TABLE 3

 - DATA FOR EXAMPLES IN SECTIONS 4.2 AND 4.3

 (1) (2) (3) (4)
 i Xi L(i) U(i)

 1 .0475 .0000 .2351

 2 .2153 .0000 .2601

 3 .2287 .0000 .2851
 4 .2824 .0000 .3101

 5 .3743 .0000 .3351

 6 .3868 .0000 .3601

 7 .4421 .0000 .3851

 8 .5033 .0000 .4101
 9 .5945 .0149 .4351

 10 .6004 .0399 .4601

 11 .6255 .0649 .4851

 12 .6331 .0899 .5101

 13 .6478 .1149 .5351

 14 .7867 .1399 .5601

 15 .8878 .1649 .5851
 16 .8930 .1899 .6101

 17 .9335 .2149 .6351

 18 .9602 .2399 .6601

 19 1.0448 .2649 .6851
 20 1.0556 .2899 .7101
 21 1.0894 .3149 .7351
 22 1.0999 .3399 .7601
 23 1.1765 .3649 .7851
 24 1.2036 .3899 .8101
 25 1.2344 .4149 .8351

 26 1.2543 .4399 .8601
 27 1.2712 .4649 .8851

 28 1.3507 .4899 .9101
 29 1.3515 .5149 .9351

 30 1.3528 .5399 .9601
 31 1.3774 .5649 .9851

 32 1.4209 .5899 1.0000
 33 1.4304 .6149 1.0000

 34 1.5137 .6399 1.0000
 35 1.5288 .6649 1.0000

 36 1.5291 .6899 1.0000
 37 1.5677 .7149 1.0000
 38 1.7238 .7399 1.0000
 39 1.7919 .7649 1.0000
 40 1.8794 .7899 1.0000
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 Another procedure is based on the fact that Fo(x) can leave the con-
 fidence band (4.2) if and only if it leaves this confidence band at one

 of the sample points Xi, i= 1, , N, that is if at least one of the in-
 equalities

 (4.32) L(i) < Fo(Xi) < U(i- 1), i = 1 2, N

 is violated. It would, therefore, be sufficient to compute Fo(Xi) for all
 sample points Xi, and to reject Ho if at least one of the inequalities
 (4.32) is not satisfied. Even this procedure has the disadvantage that

 it may require the computation of all the L(i), U(i- 1) and F0(X,).
 Compared with the preceding two, the following method saves a

 considerable amount of computation:
 We consider the sample values ordered increasingly, as in column (2)

 of Table 4.2, and compute

 L(1) = .0000, Fo(X1) = .0098, U(0) = .2101.

 Since these three numbers satisfy (4.32), the smallest X, for which
 (4.32) could be violated must be such that either L(i) ? Fo(X1) or
 Fo(X,) _ U(1),thatiseitheri/40-.2101 >.0098orFo(Xi) ?1/40+.2101,
 hence either i>?8.796 or X,i> .7052; this means that either i ?9 or,
 according to column (2) of Table 4.2, i > 14 is the earliest sample value
 to check for (4.32). We compute for i = 9:

 L(9) .0149, Fo(Xs) = .1603) U(8) = .4101.

 Since these three numbers satisfy (4.32), the next smallest Xi for which
 (4.32) could be false must be such that either L(i) >2Fo(Xg) or Fo(Xi)
 > U(9), that is either i/40-.2101 > .1603 orFo(Xi) > 9/40+.2101, hence
 either i ?14.82 or Xi> .9052; this means either i ?15 or, according to
 column (2), i> 17. We therefore compute for i= 15

 L(15) =.1649, Fo(X5s) = .3918, U(14) = .5601

 and note that (4.32) is verified.
 The next smallest Xi for which (4.32) could be false must be such

 that either L(i) ?Fo(X15)=.3918 or Fo(Xi) ? U(15)=.5851, that is
 i > 24.08 or Xi _ 1.0877, hence i > 25 or i > 21. We compute for i = 21

 L(21) = .3149, Fo(X21) = .5867, U(20) = .7101,

 and see that (4.32) is verified.
 Continuing this procedure, we finish up by calculating only the

 values
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 i L(i) U(i -1) Fo(Xi) U(i)

 1 .0000 .2101 .0098 .2351
 9 .0149 .4101 .1603 .4351
 15 .1649 .5601 .3918 .5851
 21 .3149 .7101 .5867 .7351
 27 .4649 .8601 .7468 .8851
 34 .6399 1.0000 .8958 1.0000

 and do not reject Ho since (4.32) is satisfied for all these i. If at some
 step of this procedure (4.32) had not been satisfied, we would have
 rejected Ho and stopped computing. This method appears particularly
 useful for large samples.

 5. Other distribution-free 8tatistics

 5.1. A number of distribution-free statistics have been studied which
 lend themselves for treating problems such as those illustrated in the
 preceding section. Without attempting an enumeration of such sta-
 tistics and the techniques based on them, we should like to mention
 some of the more important among them and compare them briefly
 with Kolmogorov's statistic DN.

 5.2. The Chi-square.

 This well-known and extensively tabulated statistic is being used for
 testing completely specified hypotheses such as the one exemplified in
 4.3. The x2 statistic becomes approximately distribution-free for N-* o
 but is not distribution-free for finite N, and little is known about the
 manner in which its actual distribution for finite N and given F(x) is
 approximated by its limiting distribution. By contrast, DN is a dis-
 tribution-free statistic for finite N and its exact probability distribution
 is tabulated for finite N (Table 1 of this paper) and for the asymptotic
 case [2].

 Not enough is known about the power of either test to justify the
 preference for using the x2 or DN for testing a completely specified hy-
 pothesis. The x2 technique, however, requires grouping of data, while
 in applying DN one uses the individual observations; this suggests that
 the DN test may utilize the information better than the x2 test.

 The x2 statistic has the advantage that it can be used for testing the
 composite hypothesis that F(x) belongs to a parametric family of dis-
 tributions. This is due to the fact that under fairly general assumptions
 it is known how the probability distribution of x2 is approximately
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 affected when parameters are estimated from the sample (loss of one
 degree of freedom for each parameter estimated). No such knowledge is

 available for DN.
 The statistic DN can be used for estimating an unknown F(x) by a

 confidence band as illustrated in 4.2. Confidence regions obtained by
 using the x2 have no simple intuitive meaning.

 5.3. Confidence bands with variable width.

 Wald and Wolfowitz [8] have developed a theory of distribution-free
 confidence bands more general than those defined by DN. These con-
 fidence bands could, in particular, be constructed so that their width
 decreases towards the lower and the upper end of the distribution,

 which would be an improvement on DN. Numerical tabulations, how-

 ever, are not available for this theory, either for finite sample sizes or
 for the asymptotic case.

 5.4. One-sided confidence bands.

 A one-sided confidence band was proposed by Smirnov [91 who also
 gave an asymptotic expression for the corresponding probability dis-
 tribution. The exact probability distribution for finite sample size N
 was derived by Wald and Wolfowitz [8]. An alternative expression for

 the exact probability distribution was proposed by Birnbaum and

 Tingey [10] and was used to tabulate the 10%, 5%, 1 % and .1 % points
 for N = 5, 8, 10, 20, 40, 50. Since for N = 50 Smirnov's asymptotic ex-
 pression is already very good, the probability distribution for one-sided

 confidence bands is at present tabulated well enough for practical use.
 It can be used for a one-sided test of a completely specified hypothesis
 or for estimation of an unknown F(x) by a one-sided confidence con-
 tour.

 5.5. Smirnov's statistic.

 Modifying a statistic proposed by Cram6r and von Mises, Smirnov
 [11] introduced the distribution-free statistic

 , +c

 c= j [Fn(X) - F(x)]2dF(x)

 and derived an asymptotic expression for its probability distribution.
 This statistic could be used for testing completely specified hypotheses.
 No tabulation of its probability distribution is available.3

 8 At the time of the printing of this paper, a table of the limiting distribution of nc,,2 was pub-
 lisbed in T. W Anderson and D. A. Darling, 'Asymptotic Theory of Certain Goodness of Fit' Criteria
 Based on Stochastic Processes,' Annals of Mathematical Statistics, 23 (1952), 193-212.
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 5.6. Sherman's statistic.

 The distribution-free statistic

 1 n+11
 cn = - E F(Xi) - F(Xi-1) - + 1

 2i==1n 1

 where Xo --, X,,"+ = + co, was introduced and studied by Sherman
 [12]. He derived its exact probability distribution for finite sample size
 n, and showed that this distribution is asymptotically normal. No tabu-
 lation is available for finite sample size. For large samples Sherman's
 statistic can be used to test completely specified hypotheses. The calcu-
 lation of con appears more time-taking than the use of DN illustrated in
 4.3. Not enough is known about the power of either test to justify a
 preference for a test based on Kolmogorov's or on Sherman's statistic.
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 APPENDIX

 A 1. Kolmogorov's formulas

 The following recursion formulas for computing Prob { DN <c/N}
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 are those given by Kolmogorov in [1] except for minor changes in nota-
 tion:

 C cl N!
 (A 1.1) Prob = < eNRo,N(C),

 N N N

 where Ri,k(c) is defined for all integers i, all non-negative integers k,
 and c=1, 2, ,N, and

 (A 1.2) Ro,o(c) = 1, Ri,o(c) = 0 for i 5 0

 (A 1.3) R ,k(C) = 0 for | iJ ? c

 2r-1 1

 (A 1.4) R1,k+l(c) = e-1 ' Ri+1_8,k(c) - for I il < c -1.
 s=O

 The change of notations for passing from (A 1.1)-(A 1.4) to Massey's
 formulas in [6] may be summarized in the following "dictionary":

 (A 1.1)-(A 1.4) Massey

 c k

 N n

 k m

 c+i j

 i+c+ 1-s h

 i j-k

 8s j-h+1

 ekRi,k(c) Uj(m)

 A 2. Truncation and truncation error

 In the following all derivations are carried out for c fixed; the argu-
 ment c will, therefore, be omitted.

 We "truncate" the right-hand sums in (A 1.4) by retaining only the
 terms for s=0, 1, * * , r, where r<2c-1, so that the Ri,k(c) are re-
 placed by quantities Si,k defined by the recursive formulas

 (A 2.1) S0o, = 1, Si,o =0 for iO 0

 (A 2.2) Si,k = 0 for I iI > c
 ( 1

 (A 2.3) Si,k+l = for I i ? c - 1.
 ,-0 sl
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 The resulting "truncation error" Ri,k-Si,k satisfies the inequality

 (A 2.4) 0 5 Ri,k - Si,k 1 - (e-t E j3 Mk.
 ov!0

 This inequality follows by induction from (A 1.4), (A 2.3) and the easily
 (again by induction) verified fact that 0< Ri,k(c) < 1.

 Example: for k< 100, r = 12, inequality (A 2.4) yields the upper
 bound for the truncation error: Mk <k 10-10< 10-8.

 A 3. Round-off error

 To perform the computations on a machine with a capacity of t
 decimal digits, we introduce auxiliary numbers r, c(s), and a, defined by

 210-t = ,

 1 t
 (A 3.01) - = 4(s)10-us + E8 = (z aj1-i) 10-"u + Es,

 where

 IE|I < 10-usr and a > 1,
 (A 3.02) e-l = a + E, where | Ej T -.

 Whenever 0< u <1, 0< v <1, and u, v are t-digit numbers, u Xv will
 denote the result of computing the product uv exactly and then round-
 ing off to t digits after the decimal point, so that

 uXv = uv+G, where I G. Tr.

 Whenever 0 <f< 1, we will denote by If} the result of rounding f off to
 t digits after the decimal point so that

 {f} =f+ F, where F| <?r.

 We now calculate the numbers Ti,k defined by the recursive relation-
 ships

 (A 3.1) To,o = 1, Ti,o = 0 for i z 0

 (A 3.2) Ti,k = 0 for I it 2 c

 Ti,k+l { a [Ti+1,k + TX,k

 (A 3.3)

 + E {(Ti+1-8,k X +(8))10-}}
 e-2
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 For the "round-off error" Si,k - Ti,kwe have the inequality

 (A 3.4) | Si,k - Ti,kJ < 1(1 + a + a 2 + + a k-1) Ak

 where

 a =aZcp(s) 1O08
 8=0

 =a Ij E8| + e|E + [a 10 +r-1 +1
 s82 83-2

 and E8, U8, E, are defined by (A 3.01) and (A 3.02). Inequality (A 3.4)
 follows by induction from (A 2.3) and (A 3.3).

 Example: for r = 12, t =10, one obtains from (A 3.4) the estimate

 Ak < 3.33k 10-10, hence for k < 100 the round-off error is always less than
 3.33 10-8.

 A 4. Computation of Table 2

 It is not difficult to show that the probability distribution of DN is
 given by

 / 1 \11l2N+,v p3 /2N+,v

 P DN < ~+v V=N! ... *
 (A 4.1) 2N + = 11/2N-V f2N2V

 (2N-1) /2N+v

 I g(ui, u2, . .. , UN)dUN.. du2duj
 (2N-1) /2N_-v

 for 0 <v < (2N-1)/2N,4 where

 g (i, 21 . I N) 1 f or 0 _< Ul _< U2 <***<UN < 1
 (0 elsewhere.

 For small values of N, (A 4.1) can be evaluated by quadrature. In
 particular one obtains

 2(2v)2 for 0 < v _ 4
 4 3~~~~~~~~~~~

 P (D2 <-+ v) = 1 1 1 3
 -2v2+3v-- for - <v< -,

 8 4 4

 4 It is easily seen that P(DN <u) =0 for 0 :u 1/2N, so that the case -(1/2N) 5v 0 need not be
 considered.
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 1

 6(2v)3 for 0O< v-< 6

 1 1 2
 -12v3 + 8v2 + v- - for - < v 6

 P AD <-+ VA
 \ 6 / 1 1 2 3

 - 4v3 +-v - for -< v <
 3 27 6 6

 25 17 3 5
 -2v3-5V2 + - v- for -< v <--

 6 108 6 6

 Similar expressions have been obtained for N = 4 and 5. For larger N
 the evaluation of (A 4.1) soon seems to become prohibitive.

 For N=2, 3, 4, 5 the values of EN, .95 and EN, .99 given in Table 2
 were obtained by equating the polynomials obtained from (A 4.1) to
 .95 and .99, respectively, and solving the resulting algebraic equations
 of degree N. For N> 10 the tabulated values of EN, .95 and EN, .99 were
 obtained by inverse interpolation from Table 1.
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