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Abstract 

In karst regions, groundwater flow and pollutant transport occur in two modes: 
fast-response flow in cave passages and slow-response flow in the aquifer-matrix. This 
paper presents, computationally efficient numerical model that simulates the behavior of 
the two flow and transport modes. First, the fast-response flow in a network of cave 
passages is mathematically modelled by means of a full unsteady hydrodynamic equation 
and solved numerically using the Preissmann method. The slow-response flow in the 
aquifer-matrix is modelled by an unsteady Darcy equation and solved numerically using a 
fractional-step approach. These two equations are iteratively coupled through an exchange 
term reflecting the water exchange between cave passages and the aquifer-matrix. Next, 
the pollutant transport equations in the network of cave passages is solved using a 
characteristic method and in the aquifer-matrix using a fractional-step approach. These 
two pollutant transport equations are solved iteratively through an exchange term reflecting 
the pollutant exchange between cave passages and the aquifer-matrix. 

INTRODUCTION 

Background 

Karst aquifers, in contrast to aquifers in homogeneous media, are extremely complex 
because of their inhomogeneous permeability. As shown in Figure 1, the relation 
of structures in rock, such as fracture systems and the orientation of cave passages, establishes 
secondary permeability. These fractures or cave passages represent less resistance to water 
flow than does neighboring rock. In contrast to aquifers in homogeneous media, karst 
aquifers, due to their inhomogeneous distribution of permeability, are extremely complex. 

Groundwater flow occurs in two modes: fast-response flow in cave passages and 
slow-response flow in the aquifer-matrix. These two components of groundwater flow are 
extremely different in the effectivity of groundwater transmission and groundwater storage. 
These flow characteristics therefore greatly influence pollutant transport in such a region. 

Although unsaturated cases are common in the real world, understanding the behavior 
of saturated groundwater flow is a very important step toward understanding unsaturated 
cases. Insight from saturated cases can be applied to the study of unsaturated cases. Study 
of the physical behavior of saturated cases is, therefore, the beginning of on-going research 
in groundwater flow in karst regions. 

Objective 

The objective of the present study is to model the behavior of saturated groundwater 
flow and pollutant transport in karst regions. A new approach is introduced in which the 
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"full" hydrodynamic equation in a cave passage network is solved directly. The pollutant 
assumed here is a nonreactive, conservative one, meaning that during transport, its quantity 
does not increase or decrease. As in any study of groundwater flow , little data are 
available. This is understandable due to the difficulties in measuring soil parameters, initial 
and boundary conditions, as well as the high cost involved in obtaining the data. For the 
purpose of the present study, no new field measurements have been performed. The study 
uses data obtained from competent published sources. 

A solution opened joints and bedding planes with seepage water 

B potholes and joints with seepage and stream flow 

• cave with free surface stream, filling in floods 

- permanently water-filled caves 

C solution opened joints and bedding planes permanently water-filled 

or temporarily flooded 

Figure 1. A Karst Hydrologic System Based on the Concept of Independent 
Conduits, after Cavaille (1962) 

It is very important to mention that the present study is part of a larger research 
objective; i.e., the present study serves as the deterministic part of a Monte Carlo simulation 
of water resources in a karst region. Since available observations are limited, system 
parameters (aquifer properties, system geometry, initial and boundary conditions) must be 
generated by statistical techniques. Each realization of the data generated becomes the 
input data for the "deterministic engine" which processes the data to produce one realization 
of output. In a Monte Carlo simulation, hundreds or thousands of realizations of input may 
be generated, each of which produces its corresponding output. These in turn must be 
interpreted by statistical means. In karst regions, the "deterministic engine" will be a 
model that simulates numerically the behavior of groundwater water and pollutant transport 
for unsaturated cases. Since the present study is only capable of handling saturated cases, 
it must be extended to unsaturated cases in order to become the complete "deterministic 
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engine" for the Monte Carlo simulation. 

The topology of cave passages and the boundary of the groundwater flow region are 
inferred from data obtained for karst formations in the Big Spring Basin, a 103 square mile 
groundwater basin located in Clayton County, northeastern Iowa (Hallberg et al., 1989), 
see Figure 2. The topography of the region under study is extracted from the 
USGS (United States Geologic Survey) contour map. Soil parameters, i .e., hydraulic 
conductivity, specific storage, exchange coefficient, dispersion coefficient, and effective 
porosity are based on appropriate published literature. 
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Figure 2. The Big Spring Basin in Clayton County, northeast Iowa, after 
Hallberg et al. ( 1989) 

MODEL DEVELOPMENT 

Introduction 

The present study presents a model to simulate a complex, real-life situation. The 
domain of the model is based on the geometry and topography of the Big Spring Basin, 
depicted in Figure 4. The domain is three-dimensional, and certain topological 
conventions are required to handle it. To this end, a so-called "soil-topology" convention 
has been developed which makes it possible to describe any kind of three-dimensional 
boundary. All numerical approximations of the governing equations are applied within 
this topology. In the present study, the finite-difference method is used to approximate the 
governing equations, and the solution grid is generated to conform as closely as possible to 
the aquifer topography. 
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Governing Equations 

This section describes all the governing equations used in the present study: 
hydrodynamic equations, equations of pollutant transport, and mass exchange equations 
for both the aquifer-matrix and megapore network. 

Hydrodynamic Equation for Aquifer-Matrix 

The governing equation of flow in porous media is derived from the mass conservation 
law applied to a control volume. 

(l) 

where K is hydraulic conductivity (LT -1
) ; h is piezometric head (L); W is volumetric 

source flux (L3 T -1
) ; S is specific storage (L -1

) ; A is cross sectional area of aquifer in each 
direction, in a finite-difference block (L2 

) ; fl is the length of control volume in each 
direction (L); and 

W=w u (2) 

In Eq. (2) w is the source term, volumetric flux per unit volume (T-'); and u is the 
volume of the aquifer in a finite-difference block (L3 

). Volumetric flux, W, is the source 
exchange term between the aquifer-matrix and megapores. 

Figure 4. Southeast View of the Big Spring Basin (Iowa, USA) 
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Pollutant Transport Equation for Aquifer-Matrix 

The governing equation of pollutant transport in porous media is also derived from 
the mass conservation law applied to a control volume. For a nonhomogeneous, anisotropic 
porous medium, the governing equation can be written in terms of concentration (C) as 

(3) 

where U - - Kx ati U - - Ky ati 
x - e ax y- e ay (4) 

In Eq. (3) C is solute concentration (ML-3
); D is the dispersion coefficient (L -cr-1

); 

U is seepage or average pore water velocity (L11
); Cs is solute concentration in the 

sources or sinks (ML-3
); e is effective porosity; and Ux, UY' Uz and W are known quantities 

from the hydrodynamic computation. 

Hydrodynamic Equation for Megapores 

In the present study, the flow is restricted to one-dimensional, incompressible, full­
megapore flow, the principal implication of which is that the discharge in a single megapore 
must at any instant be constant along its length. Of course the discharge may vary from 
one megapore to another along a series of megapores in a network due to external or 
aquifer-matrix inflow. From the law of conservation of momentum, the governing equation 
in any single megapore can be written as 

dQ a/Q2) ati at+ agi}\ + gA (as+ Sr) =0 (5) 

Since Q-:;:. Q(s) along a megapore, Eq. (5) can be rewritten as 

dQ _ (Q )2 dA + gA (ati + Q IQI ) = O 
dt Ads as K2 

(6) 

where t is time; s is the longitudinal megapore coordinate; Q(t) is megapore discharge; 
A(s) is megapore cross-sectional area; h(s,t) is the megapore piezometric head ; Sr(s,t) 

is megapore energy slope(= Q IQ ); K(s) is full-megapore conveyance; and g is gravitational 
K2 

acceleration . In Eq. (6), the four terms are assoc iated with local acceleration, 
advective acceleration, net normal pressure force, and boundary shear force, respectively. 

Pollutant Transport Equation for Megapores 

The governing equation for pollutant transport can be derived from the law of mass 
conservation, with the same assumptions as those used to derive hydrodynamic equation. 
Following the derivation given by Fischer et al. (1979), the pollutant transport equation can 
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be generalized as 

d(AC) + d(AUC) = 
at as as (7) 

Differentiating the left hand side of Eq. (7) and recognizing that ()A+ d(AU) = 0 at as 
from conservation of mass, Eq. (7) can be rewritten as 

(8) 

where U(s,t) is velocity of megapore flow, and e(s) is the megapore dispersion coefficient. 

Mass Exchange Between Aquifer-Matrix and Megapores 

The mass exchange between aquifer and megapores consists of two constituents, 
water discharge and pollutant flux. The water discharge exchange uses the same principle 
used in computing leakage through a semipenneable layer from an overlying (or underlying) 
aquifer into another aquifer with a different piezometric head (see Bear, 1979, page 36). 
Therefore, the amount of mass exchange can be computed as a linear function of the 
difference between the piezometric head inside the megapore and that of the aquifer-matrix 
surrounding the megapore. The equation of water discharge exchange can be written as 

(9) 

where a is the coefficient of exchange (L -1T -1 
); h. is the piezometric head of the aquifer­

matrix (L); and hP is the piezometric head of the megapore (L). 

For the pollutant flux exchange tenn the assumption is that the advective exchange 
term is dominant compared to that of the diffusive one. The equation for the pollutant 
exchange term thus becomes simply the concentration of pollutant in water multiplied by 
its water discharge: 

Ws =Cs W (10) 

where w is as defined in Eq. (9). 

Topological Structure of the Aquifer 

The aquifer is represented by a three-dimensional block of computational grid points, 
referred to herein as aquifer-matrix grid points. The three-dimensional equations for 
aquifer- matrix water and pollutant movement are solved numerically on this computational 
grid. 

Preferential flow paths, such as root-zone macropores or karst megapores, are 
represented as an interconnected network of so-called pipes, within which water and pollutant 
transport are represented as equivalent to flow in full pipes. 
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Exchange of water and pollutant between the aquifer-matrix and megapore passages 
is taken to occur only at aquifer-matrix grid points through which the pipe network passes; 
these intersections are called nodes. Thus, it is presumed that however the pipe network is 
generated (e.g., manually, through stochastic simulation, etc.), it is constrained to pass 
frequently through aquifer-matrix grid points; i.e., that nodes occur as densely as possible. 

Figure 5 is a schematic depiction of a possible simple topological structure. 
The aquifer-matrix grid point coordinates of nodes are shown in parentheses. Nodes l , 6, 
12, 20, and 33 (shown as inverted triangles) represent intersections of the megapore structure 
with the ground surface; i.e., sinkholes. Nodes 5, 8, 16, and 23 are junctions of multiple 
pipe-network flow paths. Nodes 11 , 19, 32, and many others not shown, represent aquifer­
matrix grid points through which pass a single pipe-flow path. 

KEY 
Ground-surface 
sinkhole opening 
Vertical subsurface 
sinkhole shaft 

# Subsurface karst 
flow-path 

~" ~ubs~rface flow-path 
,- JUnCtIOn 

Figure 5. Schematic Representation of the Karst Aquifer 
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General Computational Strategy 

Water and pollutant transport in the aquifer-matrix are essentially diffusive phenomena, 
governed by diffusion mass conservation equations whose dependent variables are heads 
and concentrations, respectively. Water and pollutant transport in the pipe network are 
essentially advective phenomena, governed by energy or momentum and mass conservation 
equations whose dependent variables are water discharges, heads and concentrations. The 
water and pollutant exchange between the aquifer-matrix and pipe network is governed 
essentially by the differences in head and concentration between the two systems at any 
node. Recall that a node is defined as an aquifer-matrix grid point through which the pipe 
network passes. The heads and concentrations of both systems are coupled through the 
water and pollutant exchange. In principle, the entire system of equations - aquifer-matrix 
diffusion and pipe-network energy or momentum and mass conservation - must be solved 
simultaneously. 

This simultaneous solution poses no fundamental conceptual problems. However, its 
practical execution would be extremely demanding of computer resources, especially for 
large and/or complex systems. Therefore, a fractional-step computational strategy is adopted 
whereby, for each of several iterations in a computational time interval, the aquifer-matrix 
and pipe-network equations are solved separately, their exchange-term coupling being 
represented only approximately in each iteration. The details of this procedure are developed 
in following three main sections. The first section describes the numerical solution of the 
governing equation for the aquifer-matrix. The second section explains the numerical 
solution of the governing equation for the pipe network. The last section elaborates the 
numerical procedure for approximating the exchange terms between aquifer-matrix and 
pipe network. 

Numerical Solution for Aquifer-Matrix 

Strategy for Approximate Solution 

The aquifer-matrix algorithm is built on the principle of water and pollutant mass 
conservation at aquifer-matrix elemental control volumes. Aquifer-matrix grid points are 
generated based on the geometry of the Big Spring aquifer (Figure 4). 
Figure 6 shows the schematic representation of the aquifer as adjusted to conform 
with the finite-difference grid. To avoid using excessive computer time and resources, the 
split-direction approach is used. Thus, the governing equations, at any instant, are solved 
successively for each direction of the principal axis in Cartesian coordinate directions 
within the three-dimensional block, as depicted in Figure 6. 

In any computational direction, the algorithm must recognize the boundary of the 
domain. For example, the algorithm must recognize that there is a valley between two 
hills, and computations must be performed on each hill while above the valley, where there 
is no aquifer-matrix, computations must not be performed. The soil-topology consisting of 
118 unique orientations of the aquifer-matrix grid point with respect to the origin of the 
Cartesian coordinate, is used to define such a geometry. One aquifer-matrix grid point 
associates with one unique soil-topology. Therefore, it is possible for several aquifer-matrix 
grid points to have the same soil-topology. 
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Split-Direction Approach for Approximating Hydrodynamic Equations 

This section discusses the finite-difference approximation of Eq. (1). To 

begin with, let us use a; h to denote iU ~ {A,. K,. : ). Eq . (1) can thus be 

rewritten in a general finite-difference form as 

(1-0) 0 ; hn + 9 0 ~ bn+I + (1-0) 0 ~ hn + 9 0 ~ hn+I + 

(1-0) 0 ; bn + 8 0 ; bn+ I - (1-0) W'1 + 8 wn+ l = S___j)_ ( bn+ 1- hn) 
Af 

(11) 

where e ( 0 ~ e ~ 1) is an implicitation factor; i.e., e = 1 -+ "fully implicit" and e = 0 -+ "fully 
explicit." All other symbols have been previously defined. 

4 

2 

11 

73 
8 14 14 

73 

Number denotes 
soil-topology 

11 

73 

14 

19 
14 

Figure 6. Schematic Geometry of the Aquifer after Adjustment to Conform 
with the Finite-Difference Grid 

17 

19 
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The exchange term, w (or W), is the term that actually couples the megapore network 
computation with that of the aquifer-matrix. The aquifer-matrix exchange inflow W'*1 can 
be written as 

(12) 

that is, as some function of the pipe-network nodal head h:h+ 1 and the aquifer-matrix head 

hij~ 1 at the aquifer-matrix grid point associated with node m, at future time t..,._1• 

Now, in general, a Taylor-series expansion of Wo;.1 can be written as 

(13) 

where hm and hiik represent the latest iterative estimates of h~ 1 and ~j~ 1 , and .Aflm and Lihijk 

are unknown corrections to those estimates. For convenience, Lihijk is rewritten as ~bs so 

Eq. (13) becomes 

wn+I = W(h:h+1, hr+l):::: W(hm,hs) + ~~ ~hm + ~~ ~s 
Eq. (14) must be recast to conform with the split-direction approach. The source 

term, W'*1 or wn<-1
, must be split into x-, y-, and z-directions. Thus, Eq. (14) 

becomes 

or 

(14) 

(15) 

where n+ I denotes the end of the current time step; h" is the aquifer piezometric head at the 

end of the previous time step; hx is the aquifer piezometric head at the end of the x­

direction computational step; hY is the aquifer piezometric head at the end of the y­

direction computational step; hn<-1 is the aquifer piezometric head at the end of the z­

direction computational step, which is the same as the aquifer piezometric head at the end 

of the current time step; hm is the latest estimate of the pipe piezometric head; and h:h is the 

pipe piezometric head at the end of the previous time step. 

Now ~ (h0+1 - h") in Eq. (11) can be rewritten as 

_£_(hn+l - hY + hY - hx + hx - h") 
M 
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Substitution of Eqs . (15) and (16) into Eq. (11) yields 

In the fractional-step sense, Eq. (17) can be generalized and written as 

Discretization of Eq. (18) using the Crank-Nicholson (C-N) scheme yields 

(1-0) {A }\n_1 -(A+B) ~n + B hf+1} + 

0 {A }\n_11 -(A+B) hf+1 + B hf:/} -

lwP - eaw (h!1+1_ h!1) - .e._aw<h - hP)= ful(h!1+1_h!1) 
3 ahi "i 1 3 ahm m m M "'i "i 

where hm is the latest estimate of the pipe piezometric head; h~ is the pipe piezometric 
head at the end of the previous time step; A and B are known coefficients 

Further manjpulation and grouping the terms of Eq. (19) yields 

- 0A h!l+I + { e ( A+ B +aw)+ SJL} h!1+1- 0B h!l+I = 
"i -1 ahi M I I+I 

(l - 0){A ~n_ 1 -(A+ B) hf+ B hf+d -

l wP + e aw h!1 _ .e._ aw (h - hP ) + SJL h.n 
3 dhi 1 3 dhm m m M "i 

In matrix form, Eq. (20) can be written as 

[M]{h}={F} 

fori=2, .... , N- l 

(17) 

(19) 

(20) 

(2 1) 

where [M] is a tri -diagonal matrix whose N-2 elements comprise contributions from the 
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left hand side of Eq. (20), and { F} is an N- 2 element vector of known quantities 
from the right hand side of Eq. (20). In Eq. (21), there are N unknowns 
with (N- 2) equations, so two more equations from boundary conditions are needed. 

Split-Direction Approach for Approximating Pollutant Transport Equations 

The governing equation is recast to accommodate the split-direction approach and 
then the C-N scheme is applied to the equation. Equation (3) may be written, for 
the x-direction, as follows: 

Its discretization using the Crank-Nicholson scheme yields 

0 {A CCt1 - (A+B) Cf+I + B Cf:l} + 

(1-0) {A CC1 - (A+B) Cf+ B Cf+1} -

~(Arcr:lur:i' +CJ\ - A1 ) ~n+ 1 ur+ 1 - A, ~~t 1 u~t 1 ) -

0;0) (Ar er+! ur+l + (1\ - A1) ~nur - A1 CC1 u~I ) -

cn+I W!J+l rn W!1 "O (Cjn+I - C
1
!1 ) 

0 S I _ (1- 0) '-S I = 
3 3 M 

(22) 

for i = 2, .. .. , N- 1 (23) 

where A, and A, indicate the area of the right and left sides of a finite-difference block. 
Eq. (23) can be written, in matrix form, as 

[M]{ C} = {F} (24) 

where [M] is a tri-diagonal matrix whose N- 2 elements comprise contributions from the 
left hand side of Eq. (23); {F} is an N-2 element vector of known quantities from 
the right hand side of Eq. (23); and { C} is an N- 2 element vector of unknown 
pollutant concentrations. 

Numerical Solution for Megapores 

The numerical solution for megapores is achieved by first solving the hydrodynamic 
equations and then the pollutant transport equation . For hydrodynamic equations, the 
so-called Preissmann method is used. For pollutant transport, the split-process approach is 
used. First, the pure advection equation is solved by a characteristic method using the 
Holly-Preissmann technique. Second, the pure diffusion equation is solved by the Preissmann 
method. The advantage of solving the pollutant transport equation using the split-process 
approach is that one can then compute any complex network in a downstream-marching 
fashion. That is, the computation starts from the most upstream point in the network and 
proceeds until it reaches the most downstream node. The split approach saves computer 
time since it avoids inverting a large matrix as is done in a direct approach. 
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Approximate Solution of Hydrodynarrtic Equations 

Strategy for Approximate Solution 

The megapore network, on which all megapore computations are carried out in the 
study, is manually generated based on data obtained from the study done by Hallberg et al. 
(1983). The gross megapore layout is presumed to follow gross flow paths from field data. 
The two-dimensional representation of the network is given in Figure 7. All 
horizontal, almost horizontal, and vertical megapores are represented in Figure 7. 

The megapore network algorithm is bujlt on the principle of water mass conservation 
at looped nodes. A looped node is defined herein as a node (i.e., aquifer-matrix grid point 
through which the pipe network passes) which is either 

1. an entrance to or exit from the network, or 

2. a junction of multiple (more than two) flow paths. 

Thus, by this definition, nodes 1, 5, 6, 8, 12, 16, 20, 23, and 33 in Figure 5 
are all looped nodes. Any unique flow path linking two looped nodes is defined herein as 
a link. In connecting two looped nodes, a link may pass through other nodes which are not 
looped; these are called inline nodes. Any two adjacent nodes, be they inline or looped, 
are connected by a segment of a link called a pipe. A link may comprise only one pipe. 
Finally, any pipe can be divided into a series of computational points connected by 
computational reaches. A pipe always has one computational point contiguous with the 
node to whic h it is attached at each end. Figures 8 and 9 summarize 
these definitions. 

Nodal Continuity 

At any node m, and in particular at any looped node, the following statement of water 
continuity (inflow = outflow) must be satisfied at any instant (see Figure 10): 

I,cy;1 + Qb+1 + wg,+1 = 0, m = 1, 2, 3, ... 
lp 

(25) 

where n+ 1 denotes the end of the current time step; <ti;' is discharge entering node m 

from pipe Ip ; Qb+1 is external inflow entering node m; W:t'"1 is inflow entering node m 
from the aquifer-matrix; and summation is over all the pipes attached to node m (one at the 
end of each attached link). 

Now, the external inflow Qgt1 is a known quantity; indeed at boundary nodes, it is 
the sinkhole or other point inflow which drives the system. The pipe inflow can be written 
as 

(26) 
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Figure 7. Schematic Representation of the Megapore Network 
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Figure 8. Megapore Topological Definitions 
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Figure 9. Definition Sketch for Link/Pipe Computation 
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Figure 10. Continuity at a Looped Node 

where Q1p is the latest iterative estimate of QJ;1, and ~Qp is an unknown correction to that 
estimate. 

The aquifer-matrix exchange inflow W~1 can be written as 

(27) 

That is, the aquifer-matrix exchange inflow is represented as a function of the pipe-network 

nodal head hg;-1 and the aquifer-matrix head hijk1 at the aquifer-matrix grid point associated 

with node m. The Taylor-series expansion of Wllrri1 is 

w:b+I = W (h g,+J , h ijk1 
) = W (hm, hijk ) + ~~ Aflm + :i: Aflijk (28) 

where hm and hijk represent the latest iterative estimates of hg,+1 and hij~ 1 , and ~hm and 

~hijk are unknown corrections to those estimates. 

In fractional-step computations, the aquifer-matrix heads hij~ 1 are held fixed during 
the pipe-network computation. Consequently, in Eq. (28), Aflijk = 0, and substitution of 
Eqs. (26) and (28) into Eq. (25) yields 

L{Qp+~Qip)+Q~ 1 +Wm+ ~: ~hm=O, m=l,2, ... 
V m 

(29) 

or L ( Qd + ~Qd) - L ( Qu + ~Qu) + Q gt 1 + Wm + ~: ~hm = 0 , m = I , 2, ... 
in out m 

(30) 
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Equation (30) is not yet in a form which can be used to compute head corrections, 
since ~hm, as well as two or more ~Q1p, are unknowns. The key to the solution algorithm is 
the manipulation of the finite-difference approximations for the pipe-flow equations. These 
can be made to yield linear relations between discharge corrections ~Q1p and nodal head 
corrections ~hnm at looped nodes mm at either end of a link. In particular, for a link whose 
upstream node is denoted u and whose downstream node is denoted d, we can derive the 
following two relations: 

(31) 

(32) 

where ~Qct and ~Q0 are the discharge corrections at the pipe computational points 
contiguous with nodes d and u; ~hct and~" are the head corrections at nodes d and u; and 
Eu, F 

0
, Hu, EE

0
, FF u• and HH

0 
are known coefficients derived in the link forward sweep as 

described below. 

In Eq. (30), the summation over the pipes connected to a node can be thought 
of as a summation over the connected links, as each connected pipe is simply the end of a 
link. Moreover, the summation implies consistent recognition of pipe sign conventions, 
with inflows taken as positive and outflows taken as negative. Substitution of 
Eqs. (31) and (32) into Eq. (30) yields 

LQd+ L ~u - FFu-HHu~hm - LQu -
in in EEu out 

(33) 

'Mm-Fu -Hu~ Qn+t W aw Al. -0 
.L..J p + ID + m + ah LUJm -
~ ~ m 

As seen in Figure 11, in the "in" summation, ~hct represents the current 
node Mm, and ~h. represents the looped node at the other end of the inflow link. Similarly, 
in the "out" summation, ~hu represents the current node ~hm, and ~h ct represents the 
looped node at the other end of the outflow link. Therefore, Eq. (33) can be 
rewritten as 

(
aw ' HHu ' 1 ) ' 1 ' Hu _ ahm - ~ EEu - .L... Eu Mm + ~ EEu Mu + .L... Eu ~hct -

111 out 111 out 
(34) 

- ~(Qd - ~)+L(Qu-~)-Qgt1 -Wm for m=l , 2, ... 
111 out 

Since Eq. (34) can be written for each of M looped nodes, the entire system of linear 
equations is: 

[A]{~hm } = {B} (35) 
where [A] is an M x M coefficient matrix whose elements comprise contributions from the 
left hand side of Eq. (34); {B} is an M-element vector of known quantities from the right 
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hand side of Eq. (34); and {~hm} is the M-element vector of unknown corrections to heads 
at looped nodes. 

Solving Eq. (34) yields the head corrections { ~hm}. Thus the looped nodal heads can 
be corrected immediately. 

dis 
Figure 11. Summation Definition at a Node 

Pipe Flow Dynamics 

u/s 

The coefficients of Eqs. (31) and (32), result from a so-called forward 
sweep in which the appropriate pipe conservation equations are expressed algebraically 
through use of finite-difference approximations . 

Using Preissmann's four-point scheme (Cunge et al., 1980) to discretize Eq. (6) 
for a reach between two computational points i and i+ 1 (see Figure 9) yields 

[ 
An+I An+! AD An ] 

cp,, ~-,+I + (1-<p) "i ~ 'i+I + 

( 
An+l + An+l AD+ An ) ( hn+I hn+I hn h" 

g cp,, -,+I + (1-<p),, ''i+I cp "i - i+I + (1-<p) ., - i+l + 
2 2 & & 

cp ( Qn+I 1Qn+I 1 Qn+l IQn+l i l 1-cp ( Q" IQ"I Q" IQ"I) \ _ 
- + +-- + - 0 
2 K2 K2 2 K2 K2 I i i+I i i+l 

(36) 

where the n and n+ 1 superscripts denote times tn and tn+-1 = tn + ~t; ~s denotes the length of 
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the computational reach; and <p is Preissmann 's time weighting parameter, 0.5 5 <p 5 1.0. It 
should be noted that the full-pipe invariance of Q along the pipe obviates the need for a 
computational point subscript on Q. 

In Eq. (36), all quantities with n+ 1 superscripts are unknown. Since the pipe 
area and conveyance are known quantities for the full-pipe situation, Eq. (36) can 
be written as 

F(Q'1+1, h~+I , h~:11 ) = 0 (37) 

As long as the function F is continuous in the neighborhood of the solution, 
Eq. (37) can be written as the first term of the Taylor-series expansion 

in which Q, hi , and hi+I are the latest available estimate of Q'1+1, l\n+I, and hf:1
1. It is 

understood that the partial derivatives~~' ~~, and ()~~I are evaluated at ( Q'1, l\" , hi+1 ). 

Symbolically, Eq. (38) can be written as 

(39) 

dF dF dF 
where '1i = ()Q' ~ = dhi, Cj = dhi+I, and di= F {Q, hi, hi+I } (40) 

Armed with Eq. (39), one can now proceed with the derivations leading to 
Eqs. (31) and (32) for each link. The general idea is to conduct a fo rward 
sweep from the first (downstream) computational point of the first (downstream) pipe of a 
Link, through successive inline nodes and pipes, to arrive at the last (upstream) pipe of the 
link. The " u" subscript of Eqs. (31) and (32) refers to this last point at the 
end of the forward sweep along a link. For the forward sweep derivations, it is useful to 
use a double subscript (i,lp) to designate point i on pipe lp ; LP denotes the last pipe on the 
Link, and Il(lp) denotes the last point on pipe lp. 

After a forward sweep for a link ends at the last point II(LP) of the last pipe LP, one 
may deduce the following relation 

Mll(LP),LP = E ll(LP),LP ~~ + F ll(LP).LP + H ll(LP),LP MI , I (41) 

Eq. (41) is essentially equivalent to Eq. (32) with "u" denoting the last 
point of the link (II(LP),LP) and "d" denoting the first point (l, 1). From a similar derivation, 
one may deduce the following relation as well: 

Mn(LP),LP = EEH(LP),LP ~Q1 + FFn(LP).LP + HHn(LP).LP M1, 1 (42) 
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It should be noted that this equation is the same as Eq.(31), where "u" denotes 
the last point of the link and "d" denotes the first one, as in Eq. (32). 

All the influence coefficie nts of Eqs. (41) and (42), that is E, F, H, 
EE, FF, and HH, are computed during the forward sweep. Thus, head corrections for all 
looped nodes can be computed using Eq. (35). A "backward sweep," in which the discharge 
correction and the head correction for all computational points in each pipe are computed, 
can now be performed for each link. At the end of a complete sweep, piezometric head 
and discharge of all pipes in a network are updated. One can thus proceed to the next time 
step computation. 

Approximate Solution for Pollutant Transport Equations 

Strategy for Approximate Solution 

Sauvaget (1982) points out that Eq. (7) represents two physical phenomena; 
i.e ., advection and diffusion. The mathematical nature of the advection equation, 
Eq. (43), and the diffusion equation , Eq. (58), in which the diffusion equation 
poses fewer numerical problems than the advection one, justifies the adoption of different 
solution methods. Thus, the solution of Eq. (7) is split into two processes for 
each time step; Eqs. (43) and (58) are solved successively by computational 
schemes that are appropriate to each of them. 

Usseglio-Polatera and Chenin-Mordojovich (1988) show that process-splitting is 
particularly attractive for 2-D and 3-D simulations in water resources. Within each elementary 
fractional step, the cost of using stable implicit procedures or specially adapted schemes is 
small, especially when space-splitting is combined with process-splitting. This combination 
leads to accurate, powerful and cost-effective schemes with no formal limitations. 
Furthermore, this splitting framework makes possible a combination of competing numerical 
techniques (characteristics, finite-differences, finite elements) when these techniques are 
complementary. 

The extension of process-splitting to a megapore network is straightforward; the 
approach permits calculation of pollutant concentration by proceeding from the most upstream 
to the most downstream point in the network. This is done by ( 1) ordering all computational 
points from upstream to downstream and, (2) applying the process-splitting technique at 
each megapore and mass conservation law at each node. Since the approach avoids 
inve1ting a large matrix, overall computer time used in the computations decreases. 

Advection Computation 

The advective process is described by the following equation: 

ac ac ac ac 
A - +AU-= 0 or - +U-=0 at ax at ax (43) 

Since the velocity U is independent of the concentration C, one may write U = .dx. and 
dt 

rewrite Eq. (43) as 
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ac +~ ac = 0 or dC. = 0 (44) 
dt. dt ax dt 

This means that the value of C attached to a fluid volume remains constant during the 
movement along its characteristic line. Now the integration of Eq. (44) along this 
line as depicted in Figure 12 yields 

rn+I - C" 
'-i - ~ 

(45) 

where ~n+I is the pollutant concentration at node i at the current time step, and C~ is the 

pollutant concentration at the foot of the characteristic line at the previous time step. The 
term C~, in the right hand side of Eq. (45), is estimated using the Holly-Preissmann 

third-degree interpolating polynomial as described in the following paragraphs (sec Holly 
et al., 1977). Estimating C~ using the concentration C and gradient concentration CX 

from the two neighboring points of x by constructing the third-order polynomial gives 

in which 

and 

C~ = y(o:) = Ao:3+Bo:2 +Do:+ E 

Xi-k -x U~t-~ c k O:= - = r-
~ ~ 

Cr= U~t 
~ 

is the Courant number and k is the integer part of Cr. 

n+l 

n t ... -~ ...... ... -
i-k-1 i-k 

U6t -~ 

...... _ ... ...... 
...... ...... ...... 

... 

i-1 

U~t 

----
........ ........ ........ 

cn+1 
i 

Figure 12. Characteristic Curve on Advection Grid System 

(46) 

(47) 

(48) 

The four coefficients A, B, D, and E can be evaluated such that the following four 
conditions are satisfied: 
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y(O) = ~~k; y(l) = c~k- i; ddy] = cxr-k ; ddy] = cxr-k-1 (49) 
X a=O X a=I 

Through the chain rule of differentiation, ~~ = ~~ ~ = ~~ ~ which is applied to 

Eq. (46), the four coefficients A, B, D, and E can be computed as 

B = 3 cr-k-I - 3 cr_k + ~ cxr-k-I + 2 ~ CXf_k 

D= - 6x CX!lk I -

Substitution of Eq. (50) into Eq. (46) yields 

in which 

where 

a1 = a 2 
( 3 -2 a) \ 

a1 = 1 -a1 

a3 = a 2 
( 1 - a ) ~ I 

t14= - a( 1 - a)2 ~ 

One can also evaluate CX~ from Eq. (51) as 

in which 
bi= 6 a (a - 1) 

~ 

b1 = - b1 
b3= a(3a - 2) 
b4 = ( a - 1 )( 3 a - 1 ) 

(50) 

(51) 

(52) 

(53) 

(54) 

From Eq. (51) it is obvious that to solve the problem completely one has to 
keep track of not only the concentration ~n but also cxr for the next time step. This can 
be done by taking the derivative of Eq. (43) with respect to x: 

or 
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or 

1- (ex) + u i_ cex) = - ex au 
dt: ax ax 

d(ex) =_ex au 
dt ax 

(55) 

For the gradient concentration ex, one may write the direct analogy of Eqs. (44) 
and (45) using the technique used to compute concentration e: 

(56) 

This is approximated as 

CX!1+1 
I 

= ex" - & [ ex" [au] + exr+l [au] n+l l 
~ 2 ~ ax ~ ax i 

Solving for exr+1, one obtains 

ex!1+1 = ex" [ 
1 

- T [~] ~ ] 
' ~ l+ & [au]n+1 

2 ax i 

(57) 

where ex~ can be evaluated using Eq. (53) 

Diffusion Computation 

The diffusive process is described by the following equation: 

(58) 

Eq. (58) is a second-order partial differential equation that can be transformed into 
an equivalent system of two equations of the first order: 

ac a 
Aat = ax (A Ex ex) 

ac ex ax = 

(59) 

in which concentration e and its gradient ex are the dependent variables . Using the 
following notation such that 
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~ = Xj-Xi-1 

f:r· = C!1+ 1 - C!1 ·'-1 I I 
(60) 

L\CX 1· =CX!l+t -CX!1 
I I 

and a discretization scheme devised by A. Preissmann, which adopts the approximations, 

f(x t) = ft ( f !1+ l + f !1+ l ) + l- 0 ( f !1 + f !1 ) ' 2 I 1-1 2 I 1-1 

=~<Mi+ Afi_,) + t<f r + f ~1) 
"le ·f n+l f n+l f n f n 
_m = 0 i - i-1 + (1 - 0) i - i-1 
ax ~ ~ 

- JL ( A4'. - A4'. I)+ _l (f !1 - f !11) 
- ~ Lllj L.>.11- ~ 1 1-

df - err+' - f n + (f ~ti - f ~') 
at- Ut 

= 2h<Afi + Afi-1) 

Eq. (59) becomes the discretized system: 

~( ~C - ~C-1)+ ix (~0 - Cf_ 1 )= ~(L\CXi + L\CXi-1 ) + tccxr + cxr_1) 

~t (~C + ~C-1)= A Ex (~c ~cxi - L\CXi-1) + L ccxr - cxr_1 ))+ 

~~Ex (~c L\CXi + L\CXi-1) + } ccxr + cxr_1)) 

This system can be rewritten as 

a1~C + a1L\CXi + a3~C - 1 + atL\CXi-1 +as= 0) 
b1~C + bi~CXi + b3~C - 1 + b4~CXi- 1 + bs = 0 

where 

a,=JL 
~ 

a1= - ft 
2 

a3 =-a1 

r" - C."1 as= '-i •-
~ 

for i = 2, 3, ..... , N 
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Eq. (61) may be solved efficiently using the classic double-sweep algorithm. 

Elimination of ~CX ~1 from Eq. (61) yields 

(62) 
where 

(63) 

To obtain a relationship that is useful for computing the influence coefficients of the 
double-sweep method, let ~CX~1 = Q~1 ~C~1 + R;_1 • Substituting this relationship and 
Eq. (62) into Eq. (61), and solving for ~CX;. yields 

(64) 
where 

(65) 

One can solve the system of Eq. (61) recursively, using Eqs. (62) a nd 
(64), given the appropriate boundary conditions. 

Iterative Coupling of Megapore and Aquifer-Matrix Computation 

As previously mentioned, a fractional-step method is used to approximate the governing 
equations. In each time step during the simulation, the computations in the megapore 
network and those in the aquifer-matrix are coupled through the source or exchange term 
of the governing equation. For clarity, Eqs. (15) are repeated below. 

L~:' c~:' + Q::h+1 C~1 + W~ 1 Cs= 0 , m = 1, 2, 3, ... (66) 
Ip 

where n+ I denotes the end of the current time step; hm is the latest estimate of the pipe 
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piezometric head; W~1 is inflow entering node m from the aquifer-matrix; Cs is the latest 
estimate of pollutant concentration of node m from the aquifer, and all other symbols are 
as previously defined. 
In each time step, the last terms in Eqs. (15) and (66) represent the latest 
estimate of exchange mass between the megapore network and aquifer-matrix. The fractional­
step computations have to be carried out until this estimate converges according to some 
criterion. Thus the fractional step of the hydrodynamic computation will stop when the 
latest estimate of the megapore piezometric head hm in Eq. (15) satisfies a certain 
convergence criterion, after which the pollutant computations begin. As with the 
hydrodynamic computation, the fractional step of the pollutant transport computation will 
stop after the latest estimates of pollutant fluxes (W~1 C5) in Eq. (66) satisfy a 
certain convergence criterion. Thus, in each time step, the fractional-step computations are 
iterated until the convergence criterion is satisfied. 

TEST AND APPLICATION 

This chapter presents tests and applications of the model to the Big Spring Basin. 
Sensitivity analyses of important system parameters of this basin (megapore diameter, 
roughness coefficient, hydraulic conductivity of the aquifer, and classes of megapore 
diameter) are conducted to identify interaction between the parameters and model 
components. Simulation of dye trace experiments conducted in the basin is performed to 
demonstrate the capability of the model. 

Water Quality Responses of the Big Spring Basin 

If the present model is to serve as the basis for a broader range of research, it must be 
shown to be able to simulate field conditions. To do this, the model was run to simulate 
two of the dye trace experiments conducted by Hallberg et al. ( 1983). The purpose of 
these experiments was to establish direct connections between sinkhole recharge points 
and discharging springs. In the Big Spring Basin, several dye trace experiments were 
conducted by the Iowa Conservation Commission (ICC) and Iowa Geological Survey 
(IGS). Figure 13 shows the sinkholes used as dye input points (Hallberg et al. 1983). 

Simulation of Dye Trace Experiments 

In the dye trace experiments, Fluorescein dye was placed at the sinkholes. At least 
one week prior to both traces, packets of activated coconut charcoal were placed at the 
collection points. This coconut charcoal was used to capture Fluorescein from the water. 
These were replaced with fresh packets the day before each trace and tested for background 
levels of Fluorescein whkh, if present, could result in a false trace. Background levels at 
all collection points tested negative (Hallberg et al., 1983 ). In the present simulation, Big 
Spring is the only collection point considered. 

The first dye trace experiment simulated here is the one conducted on the Bugenhagen 
farm (trace A, see Figure 13). The experiment began at 8:30 pm, when 2 pounds of 
Fluorescein dye were placed in a sinkhole on the farm. At that time, a stream flow of 
0.02--0.05 cfs was draining directly into the sinkhole. Charcoal packets were changed 
periodically at Big Spring, with the first dye appearing between 39 and 51 hours after the 
input. Flow at Big Spring during thi s period varied from 62 to 65 cfs (Hallberg et al. 
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1983). 

R.6W. 

-·-· Big Spring Basin divide 
~ Location of sinkholes 

used for dye input 

R.5W. 

0.0 

0.0 

91°20' 

T.95N. 

T.94N. 

R.4W. 

SCALE 4.0 Miles 

4.0 Kilometers 

Figure 13. Location of Sinkholes Used for Dye Trace Experiments, after Hallberg et al. 
(1983) 

To simulate dye trace A, it is first assumed that all sixteen sinkholes have the same 
inflow of 0.05 cfs, giving a total inflow of 0.8 cfs . This assumption is a very minor one, 
since total sinkhole inflow only constitutes l .3% of the total discharge at Big Spring. The 
rest of the discharge is assumed to originate from the aquifer-matrix . This simulation is 
done by using the fixed megapore topology previously used in the sensitivity analysis, and 
by imposing discharge on the aquifer-matrix in the area surrounding the arbitrarily-chosen 
sinkholes 60, 66, 94, and 11 8 so that the discharge at Big Spring is within the range of 62 
to 65 cfs. The model is run for megapore diameters, D, ranging from 5 to I 0 ft; two values 
of megapore roughness, k., 30 and 20; and two values of hydraulic conductivity, K, 
7 .6 x 10-5 fps and 7 .6 x 10--0 fps. At time t = 6 hrs, a pollutant concentration of 2000 units 
is imposed at sinkhole 60 so that a pollutant flux of 100 units enters the sinkhole. Sinkhole 60 
is chosen to represent the sinkhole used in the actual dye trace A experiment since it is the 
nearest sinkhole in the computational network to the real one. 

Figure 14 presents the results of the simulation for megapore diameter, D, ranging 
from 5 to 10 ft; megapore roughness, k

8
, equal to 30; and hydraulic conductivity, K equal 
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to 7.6 x 10-5 fps . During the simulation, discharge at Big Spring is 63.8 cfs. Complete 
results are given in Table 1. 

Table 1. Results of Simulation of Dye Trace A 

Diameter (ft) 
K = 7.6 x 10-5 fps 

k. =30 

5 28 
6 36 
7 45 
8 55 
9 67 
10 79 

0 25 50 

Travel Time (hrs) 
K = 7.6 x 10-5 fps 

k. =20 

28 
36 
45 
55 
67 
79 

75 
Time (hrs) 

K = 7.6 x 10~ fps 
k. =30 

27 
34 
43 
53 
63 
75 

100 125 150 

Figure 14. Results of Simulation of Dye Trace A for Several Megapore Diameters, D; 
Megapore Roughness, k. = 30; and Hydraulic Conductivity, K = 7.6 x 10-5 fps 

In Table 1, the travel times of the pollutant flux at Big Spring are taken to 
be the first positive pollutant flux encounters as shown in Figure 14. Figure 14 shows that 
due to numerical errors, negative pollutant flux precedes the first positive flux with the 
same order of magnitude. It should be realized that both the negative and positive pollutant 
fluxes are almost undetectable compared to the imposed pollutant influx of 100 units 
entering sinkhole 60. 
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Figure I 4 and Table I show that, for all cases, a megapore diameter of 7 ft 
produces travel times that lie within the range of the real travel time of dye trace A; i.e., 
from 39 to 51 hours . Table l also shows that variation of megapore cliameter 
gives significantly different travel times. Specifically, there is a narrow variation of 
megapore diameter that produces the correct travel time of dye trace A; i.e., about 1.25 ft 
or megapore diameters from 6.25 to 7 .5 ft (see Figure 15). Table I 
shows that variation of megapore roughness, ks, from 30 to 20 docs not affect the travel 
time, while variation of hydraulic conductivity of the aquifer-matrix gives a difference of 
travel time ranging from 1 to 4 hours. 

The second dye trace experiment simulated here was conducted on the Baade sink 
(trace 1, see Figure 13). The experiment began at 9:00 pm, when 2 pounds of Fluorescein 
dye were placed in a sinkhole on the Baade sink. At that time, a stream flow of 0.11 cfs 
was draining directly into the sinkhole, due to a heavy rain in the basin. Charcoal packets 
were replaced at 1/2 day intervals at Big Spring with the first dye appearing between 44 
and 50 hours after input. Flow at Big Spring during this period was approximately 56 cfs 
(Hallberg et al., 1983 ). 

I I 
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Time (hrs) 

60 

K = 7 .6E-5 fps 

K = 7.6E-6 fps 

70 80 

Figure 15 .Travel Time, in Hours, versus Megapore Diameter, in Feet, in the 
Simulation of Dye Trace A 

To simulate dye trace I, it is first assumed that all sixteen sinkholes have the same 
inflow of 0.11 cfs, giving a total inflow of 1.67 cfs. This is a minor assumption since the 
sinkhole inflow only constitutes 3.0% of the total discharge at Big Spring. The rest of the 
discharge is assumed to originate from the aquifer-matrix. This simulation is done using 
the fixed megapore topology as before, and imposing discharge on the aquifer-matrix in 
the area surrounding sinkholes 25, 60, 66, and 112 so that the discharge at Big Spring is 
about 56 cfs . As in the previous dye trace experiment, these four sinkholes are chosen 
arbitrarily . The model is run for megapore diameters, D, ranging from 5 to 10 ft ; two 
values of megapore roughness, ks, 30 and 10; and two values of hydraulic conductivity, K, 
7 .6 x 10-5 fps and 7 .6 x 10-6 fps. At time t = 6 hrs, a pollutant concentration of 2000 units 
is imposed at sinkhole 112 giving a pollutant flux of 220 units entering the sinkhole. 
Sinkhole 112 is chosen to represent the sinkhole used in the actual dye trace 1 experiment 
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since it is the nearest sinkhole in the computational network to the real one. 

Figure 16 presents the results of the simulation for megapore diameter, D, 
ranging from 5 to 10 ft; megapore roughness, ks, equal to 30; and hydraulic conductivity, 
K, equal to 7.6 x 10-5 fps . During the simulation, discharge at Big Spring is 56.0 cfs . 
Complete results are given in Table 2. 

Table 2. Results of Simulation of Dye Trace 1 

Diameter (ft) Travel Time (hrs) 
K = 7.6 x 10-5 fps K = 7.6 x 10-6 fps K = 7.6 x 10-6 fps 

ks = 30 ks =30 ks = 10 

5 28 24 25 
6 36 32 32 
7 45 40 40 
8 55 50 50 
9 66 60 60 
10 79 72 72 

Figure 16 and Table 2 show that, for all cases, a megapore diameter of 7 ft 
produces travel times that lie within the range of the real travel time of dye trace 1; i.e., 
from 44 to 50 hours. Table 2 also shows that variation of megapore diameter gives 
significantly different travel times. Specifically, Table 2 shows that a narrow variation of 
megapore diameter produces the actual travel time of dye trace 1; i.e., about 0.6 ft or 
megapore diameters from 6.8 to 7.4 ft (see Figure 17). Table 2 shows that variation 
of megapore roughness, k ., from 30 to 10 does not affect the travel time, while variation of 
hydraulic conductivity of the aquifer-matrix gives a difference of travel time ranging from 
4 to 7 hours. 

In Table 2, the travel times of the pollutant flux at Big Spring are taken to be the first 
positive pollutant flux encounters as shown in Figure 16. Figure 16 
shows that due to numerical errors, negative pollutant flux precedes the first positive flux 
with the same order of magnitude. It should be realized that both the negative and positive 
pollutant fluxes are almost undetectable compared to the imposed pollutant influx of 220 units 
entering sinkhole 112. 

Summary of Sensitivity Analysis and Dye Trace Simulations 

This section summarizes the sensitivity analysis and dye trace simulations. From lhe 
results of the sensitivity analysis performed in previous sections, the parameters and megapore 
features affecting the Big Spring Basin can be ranked in order of imp01tance, as presented 
in Table 3. 
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Table 3. Parameters and Features Affecting the Big Spring Basin 

Parameter/Features 

Megapore diameter 
Diameter class 
Hydraulic conductivity 
Megapore roughness 
Dispersion coefficient 

Degree of Importance 

Very important 
Very important 
Important 
Important 
Not important 

It is important to mention that the above results are based on a fixed megapore 
topology. Presumably, megapore topology plays a more important role than megapore 
diameter. Moreover, the above results are based on following ranges of parameters: 
megapore diameter, D, from 3 ft to 30 ft; hydraulic conductivity, K, from 7.6 x 10-6 fps to 
7.6 x 10-5 fps; megapore roughness, k

5
, from IO to 35; and Taylor dispersion coefficient, 

C1, from 5.05 to 20.2, values which are 50% to 200% of the suggested value of C
1
(I0.1) . 

The results of sensitivity are summarized in the following paragraphs: 

(1) The size of the equivalent megapore dictates whether the overall system is responsive 
or diffusive. Generally, the smaller the diameter, the less responsive the system to a 
storm hydrograph entering sinkholes. Moreover, for a given megapore diameter, there 
is a threshold input hydrograph that the megapore can pass directly. 

(2) Megapore diameter classes are particularly important for pollutant transport while this 
feature does not significantly affect discharge response. The same discharge response 
at Big Spring may be obtained by replacing several megapore diameter classes by one 
uniform diameter, but it is difficult to get the same pollutant response using this 
procedure. 

(3) After megapore diameters and their classes, hydraulic conductivity of the aquifer-matrix 
is the third most important parameter. The importance of hydraulic conductivity is due 
to its contribution to the baseflow of the system. Generally, in any storm event, if 
there is pollutant in the water, the storm acts only as a carrier to bring the pollutant 
from outside into the system (i.e., aquifer-matrix and megapore network). Inside the 
system itself, the pollutant is usually carried by the baseflow, except for the case of 
small megapore diameters in which small amounts of the pollutant are also carried by 
the storm, resulting in a flashy downstream pollutant flux. 

(4) Megapore roughness is a mildly important parameter. Generally, this parameter only 
slightly affects the peak discharge of water and pollutant, as well as the time to peak. 
The overall behavior of responses at Big Spring is not affected by this parameter. 

(5) The dispersion coefficient also does not play an important role in the present study 
since the advective phenomenon is dominant compared to the diffusive one. Variation 
of the value of the dispersion coefficient, C1, from 50% to 200% of the suggested value 
does not give significant differences in pollutant transport at Big Spring. 
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Figure 16. Results of Simulation of Dye Trace 1 for Several Megapore 
Diameters, D; Megapore Roughness, k , = 30; and Hydraulic Conductivity, 
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Figure 17. Travel Time, in Hours, versus Megapore Diameter, in Feet, in the 
Simulation of Dye Trace I 

Figure 18 shows that discharge response at Big Spring for a 20 ft megapore diameter, 
D, represents a conduit response in which most water flows through megapores, while D 
equal to 7 ft represents a diffuse response in which most water flows through the aquifer­
matrix. This result agrees with the conceptualization of Hallberg et al. (1983), Figure 19, 
which shows the difference between conduit-flow and diffuse-flow in a carbonate aquifer. 

The simulation of the dye trace experiments, shows that travel times of the dye traces 
are very sensitive to megapore diameter, confirming that megapore diameter is the most 
important parameter affecting the system. The range in magnitude of diameter that produces 
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the actual travel time is within 1.5 ft of the representative diameter. Even though the 
representative diameters chosen in the previous section are not necessarily the actual ones, 
the range of deviation from the representative diameter is an important finding. This 
narrow deviation shows that megapore diameter significantly affects pollutant transport. 
These results confirm the conclusion of the sensitivity analysis on megapore diameter. 

The simulation results show that the maximum outflow at Big Spring usually coincides 
with a point in the inflow hydrograph. It should be possible, therefore, to predict the now 
at Big Spring using a reservoir-type formulation, wruch avoids the complexity of a detailed 
mathematical formulation that considers all the water pathways (megapore network). For 
pollutant transport, however, the pathways are important and the reservoir formulation is 
not adequate to determine the concentration of pollutants in the Big Spring flow. Thus, the 
discharge response at Big Spring can be written as: 

~ = I(t) - O(t) (67) 

where l(t) is known storm hydrographs entering sinkholes and O(t) is discharge response at 
Big Spring. When O(t) reaches maximum value, i.e., ~=0, the discharge response at 

Big Spring is O(t = t1) = I(t = t1). As the system becomes a diffusive one, i.e., the 
megapore diameters decrease, Eq. (67) will no longer apply. 

CONCLUSIONS 

This section summarizes all results obtained from the present study. First, from 
sensitivity analysis, important parameters and features of the karst region have been identified. 
The most important parameter is the equivalent megapore diameter, and its distribution 
throughout the megapore network is the most important feature of the megapores. Other 
parameters affecting the Big Spring Basin ranked in order of importance are hydraulic 
conductivity of the aquifer-matrix, megapore roughness and dispersion coefficient. The 
megapore dispersion coefficient does not affect the basin, since the pollutant transport is 
dominated by advection rather than dispersion phenomenon. 

Second, the main objective of the present study has been achieved by the computer 
code Labyrinth. The Labyrinth code is capable of simulating the behavior of saturated 
groundwater flow and pollutant transport in karst regions. The two modes of the flow; 
fast-response flow in cave passages and slow-response flow in the aquifer-matrix, have 
been correctly reproduced by the Labyrinth code. 

Third, the results of the dye trace simulation, viewed in a Monte Carlo simulation 
framework, succeed in producing realizations for dye trace A and 1 experiments. Thus, the 
Labyrinth code has shown the capability to serve as a "deterministic engine." 

FIN AL REMARKS 

As a part of a larger research objective - to serve as the deterministic engine of a 
Monte Carlo simulation of water resources in a karst region - the Labyrinth code has a 
promising future. At present, however, due to limited availability of data and time, the 
Labyrinth code can only produce the qualitative behavior of saturated groundwater flow 
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and pollutant transport. If more field data and resources become available in the future, 
more thorough tests can be performed on the Labyrinth code to completely understand its 
behavior and to calibrate parameters, thus enabling the present code to predict future 
conditions of the Big Spring Basin during wet seasons. Moreover, the extension of the 
Labyrinth code to handle unsaturated cases and its inclusion in a Monte Carlo simulation 
will make the code a powerful tool to analyze water resources in karst regions . 
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Figure 19. Schematic Hydrographs Showing the Difference between Conduit-Flow and 
Diffuse-Flow Discharge in a Carbonate Aquifer (e.g., at a spring) over Time, in Response 

to a Recharge Event at Time, T0, after Hallberg et al. (1983). 
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