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Introduction

Discussion.

[author=garrett,style=friendly,label=introduction_to_whole_work,version=1, file

=text_files/introduction_to_whole]

Relax. Calculus doesn’t have to be hard, and its basic ideas can be understood
by anyone. So, why does it have a reputation? Well, Calculus can be hard. Huh?
That’s right, it doesn’t have to be hard, but it can be.

Calculus itself just involves two new processes, differentiation and integration,
and applications of these new things to solution of problems that would have been
impossible otherwise.

For better or for worse, most Calculus classes increase the overall level of
difficulty above pre-Calculus, while teaching you the subject matter. What this
means is that in addition to learning how to take the derivative, you’ll set up word
problems, solve some equations, interpret the results etc. Most of this is algebra,
but the pieces are all held together by the Calculus.

The three hardest parts about a typical Calculus class are (in my opinion):
(1) Setting problems up (reading word problems, setting up equations etc), (2)
manipulating functions and equations in algebraic way, (3) keeping track of a
bunch of parts of the problem and putting it together. Note that (1) and (3)
should be really important for anyone who is going to use their head for a living.
Note that none of these “hard parts” is taking derivatives or integrating. Of course,
I could be biased since I teach the class!

Another thing to think about as you take this course is the role of the calculator.
On the one hand, since we have graphing calculators, the way we use calculus
should be a little different than how it was used in the past. However, math
teachers are still figuring out what parts should change and what parts should
stay the same. So please forgive us if we don’t have it perfect quite yet.

On the other hand, some of the parts that have changed are now harder. So,
in the past, it might have been a useful exercise (in a practical sense)for a student
to learn how to graph y = ex/x by hand, now the use of this exercise is probably
one of the following: (1) purely for the sake of learning, (2) because we have to be
able to double check/understand what the calculators are telling us, (3) as a warm
up for the problems that the calculator can’t solve. Option (3) might mean being
able to analyze all functions of the form y = aebx/x where a and b are constants,
but we don’t know what they are ahead of time. Note that the calculator can’t
graph y = aebx; we can (and will) learn to do it, but this problem is a little harder
than graphing y = ex/x.

Discussion.

[author=duckworth,style=formal,label=introduction_to_whole_work,version=2, file

=text_files/introduction_to_whole]

This text book aims to provide both insight into the essential problems of Calculus
(and the related field of mathematical analysis) and a rigorous proof of all of the
standard material in a Calculus class. However, we will not put rigor in the way
of leisure or explanation. Thus, while we will prove everything, we will not always
do so in the most sophisticated or efficient manner manner.

One of the special features of this text is to include discussion of the historical
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controversies and so-called paradoxes which made Calculus such an exciting and
hard-won mathematical field.

Discussion.

[author=duckworth,style=middle,label=introduction_to_whole_work,version=3, file

=text_files/introduction_to_whole]

This text will attempt to introduce the student to all of the varied roles which Cal-
culus plays in science and academia. Calculus is an applied subject which forms
the basis of elementary calculations in physics, biology, psychology, statistics, en-
gineering, etc. Calculus is the first math class that most people have taken where
they have to learn concepts that are not immediate generalizations of arithmetic
or geometric intuition. Finally, and related to both of the above, Calculus is the
first math class that many people take where statements are given that are not
exercises in proof, like in geometry, but still need to be proven.

It is of course not easy to satisfy all of the above goals at the same time, so
we will have to take a middle-of-the-road approach: we will offer a little bit of
material towards each goal.

In addition to the elusive goals just layed out, there is the difficulty of having
a widely defined audience: in a typical college Calculus class roughly one third
of the students have seen Calculus before, and remember the material fairly well.
Another third of the class has seen Calculus before, but did not absorb a significant
part of the course. The final third of the class has not seen Calculus before.

It is of course not easy to write a book addressed to all of the above parts of
the audience, so we will again take a middle-of-the-road approach: we will offer
enough explanation that a student who has never seen the material before can,
with diligence, learn Calculus. The phrase “with diligence” is supposed to suggest
that such a student will have to expect to spend more time figuring out examples
and discussion in this book than they needed for previous math classes. Such a
student might also want to access extra material from study guides.
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Background

Discussion.

[author=duckworth, file =text_files/introduction_to_background]

In this chapter we gather together bacground material. This material actually
comes in two varieties: the stuff that is really necessary to have a good chance of
passing the class, and the stuff that it’s ok to look up, or learn as you go along.
Often Calculus books, and teachers, seem to say that you should know everything
in this chapter before you start. Well, maybe the ideal Calculus student would,
but most of us aren’t ideal, and most of us can still pass a calculus class. In any
case, I will try to make it clear what is really necessary to know from what is
merely helpful.

1.1 The numbers

Discussion.

[author=duckworth,author=livshits, file =text_files/basics_about_numbers]

The natural numbers are symbolized by N. These are the numbers 1, 2, 3, 4, . . . .

The integers are symbolized by Z (from the German word “Zahl”). These are
the natural numbers, together with their negatives and together with 0. In other
words, these are the numbers 0, ±1, ±2, ±3, ±4, . . . .

The rational numbers are symbolized by Q. These are all the fractions you
can make integers on the top and bottom. In other words, these are the numbers
of the form a

b with a and b integers. Every integer is a rational number because
a
1 = a. A decimal number is a rational number if and only if the decimal digits
have a repeating pattern.

The real numbers are symbolized by R. These include the rational numbers.
You can think of the real numbers as being all the points on a number line. The
real numbers form the heart of calculus; everything we do in calculus involves them
and depends intimately upon their properties.

We can think of the real numbers as the set of all decimals numbers. This
includes decimal numbers that extend infinitely to the right. Even decimal num-
bers with an infinite number of digits can be approximated with decimals numbers

3
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having only finitely many digits. For example, although π has an infinite number
of digits, we can approximate it as π ≈ 3.1415926 · · · . This is how our calculators
and computers work: they approximate the set of all real numbers using only num-
bers with finitely many digits. This is why their answers are sometimes wrong;
because they’re based on approximations.

Discussion.

[author=duckworth,uses=complex_numbers,uses=extended_reals,uses=hyperreals, file

=text_files/basics_about_numbers]

It is sometimes convenient to add some extra numbers to the real numbers. When
we do so we go beyond many people’s intuition, and this might make some stu-
dents uncomfortable. Good! This discomfort is a sign of something interesting; I
encourage you to explore any topic here which you think is strange, or suspicious.
I’ll just briefly say now that everything we do here can be rigorously justified, and
that it’s great fun to introduce new objects into your mathematics. With these
new objects you can do things that were previously “forbidden”: take the square
root of negative numbers and divide by 0,

The complex numbers are denoted by C and are obtained by taking the real
numbers R and joining them with the “imaginary” number i, which satisfies i2 =
−1. By “joining” I mean that you also take all sums, differences, products and
quotients of things in R together with i. In other words, every complex number can
be written in the form a + bi where a and b are any real number. The arithmetic
is C is defined by the two rules:

(a + bi) + (c + di) = (a + c) + (b + d)i for all real numbers a, b, c, d
(a + bi)(c + di) = (ac− bd) + (ad + bc)i for all real numbers a, b, c, d

The extended real numbers do not have a standard symbol. They are obtained
by taking the real numbers R and joining them with infinity ∞. Again, “joining”
means taking all sums, differences, products, and quotients of things in R with ∞.
The arithmetic in the extended real numbers is (loosely speaking) defined by the
following rules:

−∞ is also an extended real number
a±∞ = ±∞ for every real number a
a(±∞) = ±∞ for every real number a > 0
−∞ < a < ∞ for every real number a
a
0 = ±∞ for every real number a 6= 0

a
±∞ = 0 for every real number a

0∞ is undefined
∞−∞ is undefined
0
0 and ∞

∞ are undefined

The hyperreal numbers are similar to the extended real numbers. They are
obtained by taking the real numbers R and joining them with ∞, as well as an
infinitesimal ε. The arithmetic in the hyperreals is (loosely speaking) defined by
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the following rules:

−ε and −∞ are also hyperreals
a±∞ = ±∞ for every real number a
a(±∞) = ±∞ for every real number a > 0
−∞ < a < ∞ for every real number a
0 < aε < b for all real numbers a, b > 0
a
b = ±∞ for b = 0, ε and every real number a 6= 0
a
±∞ = ±ε for every real number a

b∞ is undefined for b = 0, ε
∞−∞ is undefined
a
b and ∞

∞ are undefined (where a, b = 0, ε)

These three extended systems of the real numbers have quite different uses,
and mathematicians view them quite differently. The complex numbers are seen
as a “simple” extension of the real numbers. They are used almost exactly the
same way that real numbers are; to solve equations, to define polynomials, expo-
nentials, logarithms, trigonometry, derivatives and anti-derivatives. The extended
real numbers are viewed as a notational convenience. They allow one to writ things
like 5

∞ = 0 which is useful when calculating limits. The hyperreals are a mod-
ern version of the ideas that Newton and Leibnitz first used to develop Calculus.
They are mathematically rigorous, deep, and can be used to prove all the results
of Calculus we will use later. They also seem more abstract or foreign to many
students than the complex numbers or the extended reals.

Discussion.

[author=wikibooks, file =text_files/rules_of_basic_algebra]

The following rules are always true and the basis of all algebra that we do in this
class (and in other classes, like Linear Algebra, Abstract Algebra, etc.)

Algebraic Axioms for the Real Numbers 1.1.1.

[author=wikibooks,uses=algebraic_axioms_for_reals,label=algebra_axiom_for_real_

number_field, file =text_files/rules_of_basic_algebra]

The following axioms, or rules, are satisfied by the real numbers.

• Addition is commutative: a + b = b + a

• Addition is associative: (a + b) + c = a + (b + c)

• Defining property of zero: 0 + a = a for all numbers a

• Defining property of negatives: For each number a, there is a unique number,
which we write as −a, such that a + (−a) = −a + a = 0

• Defining property of subtraction: a− b means a + (−b) where −b is defined
as above.

• Multiplication is a commutative: a · b = b · a

• Multiplication is associative: (a · b) · c = a · (b · c)

• Defining property of one: 1 · a = a for all numbers a
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• Defining property of inverses: For every number a, except a = 0, there is a
unique number, which we write as 1

a , such that a 1
a = 1

aa = 1.

• Defining property of division: a
b means a · 1

b

Comment.

[author=wikibooks,author=duckworth, file =text_files/rules_of_basic_algebra]

The above laws are true for all a, b, and c. This also means that the laws are true
if a, b and c represent unknowns, or combinations of unknowns; in other words a,
b and c can be variables, functions, formulas, etc. All the algebra we do in this
class (or any other class), follows from these rules (as well as the rules of logic,
and the rule that you can do the same thing to both sides an equation and you
will still have an equation). Of course, all of us know lots of other algebraic rules,
but each of these other rules must be built up, or derived, from the simple ones
above.

Example 1.1.1.

[author=wikibooks,author=duckworth, file =text_files/rules_of_basic_algebra]

When you want to cancel or simplify something, if you’re not sure what rule you’re
trying to use, look up the rule. For instance, occasionally people do the following,
which is incorrect

2 · (x + 2)
2

=
2
2
· x + 2

2
=

x + 2
2

.

So, how do Axioms ?? apply to this situation? Well first, let’s review our rules for
multiplying fractions. So, can we figure out a

b ·
c
d from Axioms ??? Well, a

b doesn’t
appear in Axioms ??. In fact, a

b is shorthand notation for a · 1
b , which does appear

in Axioms ??. So a
b ·

c
d really equals ac1

b
1
d . Ok, now what. Now I claim that 1

b
1
d

must equal 1
bd . Why? Well, by Axiom 1.1.1 there is a unique number which is the

inverse of bd, and that number has the unique property that when you multiply it
by bd you get 1. Well,

( 1
b

1
d )bd = ( 1

b b)( 1
dd) by Axioms 1.1.1 and 1.1.1

= 1 · 1 by Axiom 1.1.1
= 1 by Axiom 1.1.1

Therefore, 1
b

1
d equals the inverse of bd, thus 1

b
1
d = 1

bd . Therefore, a
b

c
d = a 1

b c 1
d =

ac bd
=

ac
bd .

Note: I would never suggest that you go through these steps every time. We
have just shown how to multiply two fractions, from now on, I would always just
use the property we just derived.

Ok, now that we know how to multiply two fractions, we can straighten out
the mistake above. It is not the case that 2(x+2)

2 = 2
2

x+2
2 . Rather, We should have

2(x+2)
2 = 2

2
x+2
1 = 1(x + 2) = x + 2.

Example 1.1.2.

[author=wikibooks, file =text_files/rules_of_basic_algebra]
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For example, if you’re not sure whether it’s ok to cancel the x + 3 in the following
expression (x+2)(x+3)

x+3 you could justify the steps as follows:

(x+2)(x+3)
x+3 = (x + 2)(x + 3) · 1

x+3 (Division definition)
= (x + 2) · 1 (Associtive law and Inverse law)
= x + 2 (One law)

Discussion.

[author=duckworth,label=discussion_of_what_less_than_means, file =text_files/

inequalities]

The real numbers are split in half; the positive numbers are on the right half of
the number line and the negative numbers are on the left half.

For any real numbers a and b we say a < b if a is to the left of b on the real
number line. This is equivalent to having b− a be positive.

Next, we’re going to review basic facts and arithmetic about positive and neg-
ative numbers, and inequalities.

Order Axioms for the Real Numbers 1.1.2.

[author=duckworth,label=order_axioms_for_reals,label=order_axioms_for_reals,

file =text_files/inequalities]

In additon to the algebraic axioms for the real numbers (see 1.1), we also have the
following order axioms:

• The trichotomy law: for all real numbers a and b we have a < b or b < a or
a = b.

• Transitivity: if a ≤ b and b ≤ c then a ≤ c.

• Addition preserves order: if a ≤ b and c is any real number then a+c ≤ b+c.

• Multiplication by positives preserves order: if a ≤ b and c ≥ 0 then ac ≤ bc.

Rule 1.1.1.

[author=garrett,label=rules_for_multiplying_pos_negatives, file =text_files/inequalities]

First, a person must remember that the only way for a product of numbers to be
zero is that one or more of the individual numbers be zero. As silly as this may
seem, it is indispensable.

Next, there is the collection of slogans:

• positive times positive is positive

• negative times negative is positive

• negative times positive is negative
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• positive times negative is negative

Or, more cutely: the product of two numbers of the same sign is positive, while
the product of two numbers of opposite signs is negative.

Extending this just a little: for a product of real numbers to be positive, the
number of negative ones must be even. If the number of negative ones is odd then
the product is negative. And, of course, if there are any zeros, then the product is
zero.

Notation.

[author=wikibooks, file =text_files/interval_notation]

The notation used to denote intervals is very simple, but sometimes ambiguous
because of the similarity to ordered pair notation

Let a and b be any real numbers, or ±∞, with a ≤ b. We define the following
sets, called intervals, on the real line:

[a, b] = those x of the form a ≤ x ≤ b
(a, b) = those x of the form a < x < b
[a, b) = those x of the form a ≤ x < b
(a, b] = those x of the form a < x ≤ b

Unfortunately the notation (a, b) is the same notation as is used for x, y points.
I’m sorry but mathematicians re-use notation and hope that the context makes it
clear which meaning is intended.

There is also notation for combining intervals. The union notation ∪ means
combine the intervals. Thus (1, 2) ∪ (3, 4) means the set of numbers that are in
(1, 2) or in (3, 4).

Note: the use of the word “or” here is sometimes confusing. You might think
of (1, 2) ∪ (3, 4) as equalling the interval (1, 2) and the interval (3, 4). You’re not
wrong if you think this way. But, mathematicians have learned through experience
that it’s best, linguisticly, to talk about a single number x rather than infinite sets
of numbers. Thus, a single number x is in (1, 2) ∪ (3, 4) if x is in (1, 2) or x is in
(3, 4).

Exercises

1. Find the intervals on which f(x) = x(x − 1)(x + 1) is positive, and the
intervals on which it is negative.

2. Find the intervals on which f(x) = (3x − 2)(x − 1)(x + 1) is positive, and
the intervals on which it is negative.

3. Find the intervals on which f(x) = (3x − 2)(3 − x)(x + 1) is positive, and
the intervals on which it is negative.
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1.2 Functions

Definition 1.2.1.

[author=duckworth,label=definition_of_function, file =text_files/what_is_a_function]

A function is something which takes a set of numbers as inputs, and converts each
input into exactly one output.

Comment.

[author=duckworth,label=comment_explaining_functions, file =text_files/what_is_

a_function]

In our definition of function, “something” means rule or algorithm or procedure.
The most familiar “something” is a formula like x2 or x + 3.

The function sin(x) gives an example of something which you might think of as
a formula, but actually depends upon a procedure. To find sin(.57) one “draws”
a right triangle which contains the angle .57, and then sin(.57) equals the ratio of
the opposite side over the hypotenuse. People are often bothered by this definition
when the first learn it, because it’s not a formula. Eventually, time and experience
make people more comfortable with sin(x) and we actually start to view it as one
of our basic functions, as if we knew it’s formula.

Comment.

[author=duckworth,label=comment_what_kind_of_functions_to_expect, file =text_

files/what_is_a_function]

Some of our basic “formulas” that we are familiar with, are actually defined by
rules, like sin(x). In Calculus we will not add new basic functions, although later
we will learn a rule which creates new functions from old, possibly without giving
a formula for the new one.

For the time being, all functions that we will see will be given by one of the
following:

1. With a formula involving basic functions like sin(x), x2, ex, etc. .

2. Piecwise: Giving more than one formula and piecing them together.

3. Graphically: Giving a graph with inputs on one axis and outputs on the
other.

4. Numericaly: Listing a table of numbers for the inputs and outputs.

5. Implicitly: Describing the rule verbally or in a problem, or in a formul not
solved for y.

Definition 1.2.2.

[author=garrett,author=duckworth,label=definition_domain_and_range, file =text_
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files/what_is_a_function]

The collection of all possible inputs is called the domain of the function. The
collection of all possible outputs is the range.

If the domain has not been stated explicitly, then we assume that the domain
equals all real numbers which make the function defined. In this case it is usually
easy, with a little work, to find an explicit description of the domain. The range
is not usually explicitly stated and it is sometimes difficult to find an explicit
description of it.

Discussion.

[author=garrett,label=discussion_what_to_look_for_in_domain, file =text_files/

what_is_a_function]

If the domain of a function has not been explicitly stated, then here is how we
can find it. We start by asking: What be used as inputs to this function without
anything bad happening?

For our purposes, ‘anything bad happening’ just refers to one of

• trying to take the square root of a negative number

• trying to take a logarithm of a negative number

• trying to divide by zero

• trying to find arc-cosine or arc-sine of a number bigger than 1 or less than
−1

(We note that some of these things aren’t so bad if one is willing to work with
the complex numbers, or the hyperreals.)

Discussion.

[author=duckworth,label=discussion_finding_range, file =text_files/what_is_a_

function]

Finding the range of a function is generally harder than finding the domain. We
should memorize the range of ex, sin, cos, x, x2, x3 etc. For other functions we
will learn various techniques later in this course that will help us find the range.
Sometimes, we may have to graph the function.

Example 1.2.1.

[author=duckworth,label=example_finding_domain_simple_rational_function, file =text_

files/what_is_a_function]

Find the domain of f(x) = 1
x−2 +x2. The only problem with plugging any number
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simple_rational_function

Figure 1.1:

into this function comes from the division in the fraction. The only way we could
have division by zero is is x = 2. Thus, the domain is all numbers except 2. This
agrees with what we see in figure 1.1, namely that the graph does not exist at
x = 2.
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Example 1.2.2.

[author=garrett,label=example_finding_domain_sqrt_x^2-1, file =text_files/what_

is_a_function]

For example, what is the domain of the function

y =
√

x2 − 1?

Well, what could go wrong here? No division is indicated at all, so there is no
risk of dividing by 0. But we are taking a square root, so we must insist that
x2 − 1 ≥ 0 to avoid having complex numbers come up. That is, a preliminary
description of the ‘domain’ of this function is that it is the set of real numbers x
so that x2 − 1 ≥ 0.

But we can be clearer than this: we know how to solve such inequalities. Often
it’s simplest to see what to exclude rather than include: here we want to exclude
from the domain any numbers x so that x2 − 1 < 0 from the domain.

We recognize that we can factor

x2 − 1 = (x− 1)(x + 1) = (x− 1) (x− (−1))

This is negative exactly on the interval (−1, 1), so this is the interval we must
prohibit in order to have just the domain of the function. That is, the domain is
the union of two intervals:

(−∞,−1] ∪ [1,+∞)

You can also verify our answer by looking at the graph. Of course, we will
–2
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sqrt_x_squared_minus_1always try to solve problems algebraically when possible, rather than just relying
upon the graph. In any case, on the graph we don’t see any points between x = −1
and x = 1, which is equivalent to saying that the domain equals what we described
above.

Example 1.2.3.

[author=wikibooks,label=example_finding_domain_top_half_of_circle, file =text_

files/what_is_a_function]

Let y =
√

1− x2 define a function. Then this formula is only defined for values 0
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top_half_of_unit_circleof x between −1 and 1, because the square root function is not defined (in the
world of real numbers) for negative values. Thus, the domain would be [−1, 1].
This agrees with the fact that the graph is the top half of a circle, and not defined
outside of [−1, 1].

In this case it is easy to see that
√

1− x2 can only equal values from 0 to 1.
Thus, the range of this function is [0, 1].

Example 1.2.4.

[author=duckworth,label=example_function_given_by_graph, file =text_files/what_

is_a_function]

Let f(x) be defined by the graph below.
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To determine a function value from the graph we read the y-value (off the verti-
cal axis) which corresponds to some given x-value (on the horizontal axis). For
example given the input of x = 3 the output is y = 14.

A graph shows us lots of information about the function, and much of what we
learn later will be how to find this information without relying upon the graph.
For example, we can see that there is a certain type of maximum at x = 0.

In problems like this, that depend upon the graph, we will generally not require
very accurate answers. The answers only need to be accurate enough to show that
we’ve read the graph correctly.

Example 1.2.5.

[author=duckworth,label=example_function_given_by_numbers, file =text_files/what_

is_a_function]

Let the table of numbers below define a function, where x is the input and y is
the output.

x 1 2 2.5 2.9 3.1 3.5 4
y 2.1 3.72 3.88 4.42 4.36 4.1 2.7

For example, given an input of x = 1, the output is y = 2.1. Given an input of
x = 4 the output is y = 2.7. However, we can’t say for sure what happens to an
input of x = 1.5. We could make a leap of faith and guess that the corresponding
output is somewhere between 2.1 and 3.72. For lots of functions this might be a
reasonable assumption, but if we don’t know anything else about this function we
really can’t be sure about this, or even if the output is defined. (Technically, if all
we’ve been given is this table, then the output is definitely not defined. But in
practice, we usually think that the table gives us a handful of values of a function
which is defined for more numbers than shown.) Similarly, we can’t be sure that
this function has a maximum around x = 3, even though we probably all think
that it should.

Example 1.2.6.

[author=duckworth,label=example_piecewise_function, file =text_files/what_is_

a_function]

Let y be defined by the following formulas, each applying to just one range of



1.2. FUNCTIONS 13

inputs.

y =

 x2 if x ≤ 0
−x2 if 0 < x ≤ 3
ex if 3 < x

Which formula you use depends upon which x-value you are plugging in. To
plug in x = −1 we use the first formula. So an input of x = −1 has an output of
(−1)2 = 1. To plug in x = 2 we use the second formula, so the output is −22 = −4.
Similarly an input of x = 4 has an output of y = e4.

We can also graph y. In this case it looks like x2 on the left (i.e. for x ≤ 0); it
looks like −x2 in the middle (for 0 < x ≤ 3) and it looks like ex on the right (for
x > 3). Notice that the graph looks “unnatural,” especially at x = 3 where it is
discontinuous.
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two_parbs_and_exponential

Example 1.2.7.

[author=duckworth,label=example_function_implicit, file =text_files/what_is_a_

function]

Let y be defined as a function of x, x < 0, by the equation:

x3 + y3 = 6xy

It is difficult (but not impossible) to find an explicit equation for y as a function
of x. However, for each negative x-value, it is possible to compute a corresponding
y-value, which is all we need for an abstract definition of function. For example,
if x = −.5 I can have my calculator solve

(−.5)3 + y3 = 6 · (−.5)y

for y (actually I’ll probably have to enter it in the calculator using x instead of
y!) to find y ≈ 0.04164259578. Similarly, I could do this for any negative value
for x; this is how y can be viewed as a function of x (only for negative values of x
though).

To make this more concrete, but still not rely upon a formula, I could fill in a
small table of numbers:

x −1 −.75 −.5 −.25 0
y 0.1659 0.0936 0.0416 0.0104 0
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What happens when we try to plug in a positive value for x like x = 1? There
is more than one solution for y. This means that y is not a function of x for x > 0.

Discussion.

[author=livshits,uses=function_extensions,label=discussion_extension_restriction_

of_functions, file =text_files/what_is_a_function]

We think of a function as a rule by which we can figure out f(x) from x. Strictly
speaking, we have to specify what objects x are being used, the collection of all
these objects is called the (definition) domain of the function.

The home address is a real life example of a function. This function is defined
for all the people that have home address, in other words, the definition domain
of the home address is the collection of all the people who live at home. The
home address is not defined for the homeless people. On the other hand, some
homeless individuals pick up their mail at the post office and therefore have their
postal addresses. For people who live at home their postal address and their home
address coincide.

We say that the postal address is an extension of the home address to the
homeless individuals who pick up their mail at the post office.

We also say that the home address is a restriction of the postal address to the
individuals who live at home.

The notions of restriction and extension of functions are central to our approach
to differentiation.

Discussion.

[author=duckworth,label=discussion_types_of_basic_functions, file =text_files/

list_of_basic_functions]

In practice, in this class, we don’t have that many basic functions. Here’s most of
them.

Polynomials These are positive powers of x, combined with addition and mul-
tiplication by numbers. We call the highest power that appears the degree
of the polynomial. The numbers which are multiplied by x are called the
coefficients. The leading coefficent is the coefficent of the highest power
of x. The constant term is the number which has no power of x.

We can write a general expression for a polynomial, but since we don’t now
exactly what the degree will be, we need to use a letter to represent it; we
will use n. Since we don’t know how big the degree is, we can’t write all the
terms, thus we will leave out some number of terms in the middle, and will
write “. . . ” in their place. Similarly, we will need to use letters to represent
the coefficients. The number of coefficients equals the degree varies with the
degree, so we don’t know how many letters we’ll need. For this reason we
don’t usually write a general polynomial with letters of the form a, b, c, . . . ,
but rather we use a0, a1, a2, etc. We summarize this terminology and show
some examples in figure 1.2

Trigonometric Functions sin(x), cos(x), tan(x), sin−1(x), cos−1(x), tan−1(x),
csc(x), sec(x), cot(x)
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Figure 1.2: Polynomial examples
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Figure 1.3: y = x3
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Figure 1.4: y = 1/x
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Exponential and Logarithm ex, ln(x)

We show some graphs of some of these functions in the next few figures.

Notation.

[author=duckworth,label=function_notation, file =text_files/function_notation]

All functions use the following notation. When we write “f(x)” it means the Very Important
following: f is the name of a function, x is the input (anything which comes
inside of the parentheses ( ) is the input), f(x) is the output you get when you
plug in x. We read the notation “f(x)” as “f of x”. We call x the input, or the
independent variable, or the argument to f (this sounds somewhat old-fashioned,
but it is still what inputs are called in computer science).

There is one family of exceptions to this notation. Out of laziness, or if you
prefer, efficiency, many people write things like sinπ instead of sin(π). People do
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Figure 1.5: y = sin(x)
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Figure 1.6: y = tan−1(x)
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Figure 1.7: y = ex
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Figure 1.8: y = ln(x)
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the same thing with ln, cos, tan and the other trig functions. In this book, we
will always use parentheses for these functions, unless the notation becomes too
complicated and and it seems that leaving out some parenthesis would simplify it.

Example 1.2.8.

[author=wikibooks,label=example_simple_function_notation, file =text_files/function_

notation]

For example, if we write f(x) = 3x+2, then we mean that f is the function which,
if you give it a number, will give you back three times that number, plus two. We
call the input number the argument of the function, or the independent variable.
The output number is the value of the function, or the dependent variable.

For example, f(2), (i.e. the value of f when given argument 2) is equal to
f(2) = 3 · 2 + 2 = 6 + 2 = 8.

Example 1.2.9.

[author=duckworth, file =text_files/function_notation]

Let f be the function given by f(x) = x2. Then x represents the input, the output
is x2. For instance f(2) = 4.

Discussion.

[author=wikibooks,author=duckworth,label=pros_cons_function_notation, file =text_

files/function_notation]

Function notation has great advantages over using y = . . . notation, but these Very Important
advantages bring with them the need to be more careful and thoughtful about
exactly what is being written.

Firstly, we can give different names to different functions. For example we coud
say f(x) = x2 and g(x) = 3 sin(x) and then talk about f and g.

Another advantage of function notation as that it clearly labels inputs and
outputs. In some of the previous function examples we had to use many phrases
of the form “given the input x = 3 the output is y = 7”. In function notation this
becomes much more compact: “f(3) = 7”.

Furthermore, it is possible to replace the input variable with any mathematical
expression, not just a number. For instance we can write things like f(7x) or f(x2)
or f(g(x)); we’ll talk more about what these mean below.

This last point brings up what we need to be careful and thoughtful about
in function notation. This brings up a really important point. The variable “x”
doesn’t always mean x. It just stands for the input. So the function f(x) = x2

could have been described this way “f is the function which takes an input and
square it.” Why do I care? Because we need to know how to calculate things like
f(3x) and f(x + 3).

If you get too focused on thinking that f squares x , then you might think
that f(3x) = 3x2. No! The function squares any input, and in the case of f(3x),
the input is 3x. So the output is (3x)2.
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Now, if you really understand the notation, you should be able to say what
f(x + 3) is without a moment’s hesitation. . . . . . . . . . I hope you said (x + 3)2, but
if not, keep practicing!

Example 1.2.10.

[author=duckworth,label=example_function_notation_sin,uses=sin, file =text_files/

function_notation]

Let f(x) = sin(x). Then f(π/2) = sin(π/2). Now it so happens that sin(π/2)
equals 1, so we can say that f(π/2) = 1. Similarly, f(π/2+1) = sin(π/2+1). Be-
lieve it or not, I don’t know what sin(π/2+1) equals. It is not equal to sin(π/2)+1.
According to my calculator, sin(π/2 + 1) is approximately equal to 0.54.

Examples 1.2.11.

[author=wikibooks,label=example_various_functions, file =text_files/function_

examples]

Here are some examples of various functions.

1. f(x) = x. This takes an input called x and returns x as the output.

2. g(x) = 3. This takes an input called x, ignores it, gives 3 as an output.

3. f(x) = x + 1. This takes an input called x, and adds one to it.

4. h(x) =
{

1, if x > 0
−1, if x < 0 .

This gives 1 if the input is positive, and −1 if the input is negative. Note
that the function only accepts negative and positive numbers, not 0. In other
words, 0 is not in the “domain” of the function.

5. g(y) = y2. This function takes an input called y and squares it.

6. f(y) =

{∫ y

−y
ex2

dx, if y > 0
0, if y ≤ 0

.

This function takes an input called y, and uses it as boundary values for an
integration (which we’ll learn about later).

Example 1.2.12.

[author=livshits,label=example_absolute_value_function,uses=absolute_value, file

=text_files/function_examples]

Here’s one way to define the absolute value function:
0

0.5

1

1.5

2

2.5

3

–3 –2 –1 1 2 3

abs_value_function

|x| =
{

x if x is already positive, or 0
−x if x is negative

You can think of this function as “making x positive” or “stripping the sign from
x”. You can also think of |x| as the distance from x to 0 on the real number line;
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this is a nice way to think about it, because it’s geometric, and because the main
reason we use absolute values is to give a mathematical expression to distances.

Discussion.

[author=wikibooks,label=discussion_arithmetic_with_functions, file =text_files/

combining_functions]

Functions can be manipulated in the same manner as any other variable they
can be added, multiplied, raised to powers, etc. For instance, let f(x) = 3x + 2
g(x) = x2.

We define f + g to be the function which takes an input x to f(x) + g(x). If
you completely understand function notation then you know what the formula for
f(x) + g(x) is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f(x) + g(x) = (3x + 2) + (x2). Of course, this formula can be simplified to
f(x) + g(x) = x2 + 3x + 2.

Similarly,

• f(x)− g(x) = (3x + 2)− (x2) = −x2 + 3x + 2.

• f(x) · g(x) = (3x + 2) · (x2) = 3x3 + 2x2.

• f(x)/g(x) = (3x + 2)/(x2) = 3
x + 2

x2 .

However, there is one particular way to combine functions which is not like
the usual arithmetic we do with variables: you can plug one function inside of
the other! This is possibility really opens the door to many wonderful areas of
mathematics way beyond Calculus, but for now we won’t go there.

Definition 1.2.3.

[author=wikibooks,label=definition_function_composition, file =text_files/combining_

functions]

Plugging one function inside of another is called composition. Composition is
denoted by f ◦ g = (f ◦ g)(x) = f(g(x)). In this case, g is applied first, and then
f is applied to the output of g.

Example 1.2.13.

[author=wikibooks,label=example_simple_function_composition, file =text_files/

combining_functions]

For instance, let f(x) = 3x + 2 and g(x) = x2 then h(x) = f(g(x)) = f(x2) =
3(x2)+2 = 3x2 +2. Here, h is the composition of f and g. Note that composition
is not commutativef(g(x)) = 3x2 + 2 6= 9x2 + 12x + 4 = (3x + 2)2 = g(3x + 2) =
g(f(x)). Or, more obviously stated f(g(x)) 6= g(f(x)).

Examples 1.2.14.

[author=duckworth,label=example_various_combinations_of_two_functions, file =text_
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files/combining_functions]

Let f(x) = x2 + 1 and g(x) = sin(x).

1. Find a formula for f(x) + g(x).

2. Find f(1)− g(1)

3. Find a formula for f(x)/g(x)

4. Find a formula for f(g(x)).

5. Find f(g(2)).

Definition 1.2.4.

[author=duckworth,label=definition_one_to_one_function, file =text_files/one_

to_one_functions_and_inverses]

A function f(x) is one-to-one if it does not ever take to different inputs to the
same output. In symbols: if a 6= b then f(a) 6= f(b).

Example 1.2.15.

[author=wikibooks,label=example_circle_is_not_one_to_one, file =text_files/one_

to_one_functions_and_inverses]

The function f(x) =
√

1− x2 is not one-to-one, because both x = 1/2 and0
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top_half_of_unit_circle x = −1/2 result in f(x) =
√

3/4. You can see this graphically as the fact that the
horizontal line y =

√
3/4 crosses the graph twice.

The function f(x) = x + 2 is one-to-one because for every possible value of
f(x) we never have two different inputs going to the same output. In symbols: if
a 6= b then a + 2 6= b + 2, and therefore f(a) 6= f(b).

Definition 1.2.5.

[author=duckworth,label=definition_function_inverses, file =text_files/one_to_

one_functions_and_inverses]

Let f(x) be a function. We say that another function g(x) is the inverse function
of f(x) if f(g(x)) = x and g(f(x)) = x for all x. This means that f and g cancel
each other.

An equivalent definition is that f(a) = b if and only if g(b) = a. This means
that g reverses inputs and outputs compared to f .

An equivalent way to think about this is that g(x) is the answer to the question:
f of what equals x?

Another equivalent way to think about this is that f(x) has an inverse function
if and only f(x) is one-to-one.
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Example 1.2.16.

[author=wikibooks,label=example_function_inverse, file =text_files/one_to_one_

functions_and_inverses]

For example, the inverse of f(x) = x + 2 is g(x) = x− 2. To verify this note that
f(g(x)) = f(x− 2) = (x− 2) + 2 = x.

The function f(x) =
√

1− x2 has no inverse (as we saw above). The function√
1 + x2 is close, but it works only for positive values of x. To verify this note

that f(
√

1 + x2) =
√

1− (
√

1 + x2)2 =
√

1− (1 + x2) =
√

x2 = |x| where |x| is
the absolute value of x.

Example 1.2.17.

[author=duckworth,label=example_function_inverse_e^x_and_ln,uses=e^x,uses=ln,

file =text_files/one_to_one_functions_and_inverses]

Let’s consider ex and ln(x). These functions are inverses. So, for example,
since e2 ≈ 7.39 we must have ln(7.39) ≈ 2. Another way to state this is that
eln(7.39) = 7.39 and ln(e2) = 2.

However, these numerical examples are not really how we use the fact that
ln(x) and ex are inverses. The following would be a much more common example.

Suppose that the amount of money in someone’s bank account is given by
1000e.05t where t is measured in years. Find out how many years it will take
before they have $3000.

This means that we want to solve 3000 = 1000e.05t. Dividing both sides by
1000 we get a new eqation

3 = e.05t.

Now we can take ln(x) of both sides:

ln(3) = ln(e.05t).

By the inverse property this means

ln(3) = .05t

whence

t =
ln(3)
.05

This is a perfectly good expression for the final answer. Of course, some readers
would rather get an explicit number for t; this is understandable, but you should
practice being comfortable with answers that are formulas.

Example 1.2.18.

[author=duckworth,label=example_function_inverse_cos,uses=cos, file =text_files/

one_to_one_functions_and_inverses]

Let’s consider cos(x) and cos−1(x). If I write x = cos(y) (and x is between −π/2
and π/2) this is (mathematically) equivalent to writing y = cos−1(x). In other
words, the two equations will be satisfied by exactly the same values of x and y.

Thus, saying that cos(π/2) = 0 is equivalent to saying that π/2 = cos−1(0).
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(We will use this idea later to find the derivative of cos−1(x). We will start
with y = cos(x), solve this for x = cos−1(y) and then apply implicit derivatives.)

Discussion.

[author=duckworth,label=discussion_how_to_find_inverses, file =text_files/one_

to_one_functions_and_inverses]

Many of us learned how to find inverses by following these steps: given an equation
y = . . ., (1) reverse x and y, (2) solve the new equation for y.

I think this procedure sometimes makes people confused. To clear up the
confusion, I hope you realize that step (1) is purely cosmetic. In other words, the
only part of this step that matters is step (2), the reason we do step (1) is because
we’re not used to having a function of the form x = . . ..

Let’s illustrate. The equation which translates Farhenheit into Celsius is C =
5
9 (F − 32). The inverse of this equation will translate Farhenheit into Celsius. We
find the inverse by solving for F :

C =
5
9
(F − 32) −→ 9

5
C = F − 32 −→ F =

9
5
C + 32

Now, wasn’t that simple?

If you follow the same steps for the equation y = 5
9 (x−32) you get x = 9

5y+32,
and this is the sort of equation that step (1) was meant to prevent.

The moral of this story should be: don’t get too hung up on the roles of x
and y, they just represent two numbers. If you get too fixated on which what the
input and output should look like, then you will sometimes have extra work to do,
to sort out purely cosmetic problems.

Exercises

1. Find the domain of the function

f(x) =
x− 2

x2 + x− 2

That is, find the largest subset of the real line on which this formula can be
evaluated meaningfully.

2. Find the domain of the function

f(x) =
x− 2√

x2 + x− 2

3. Find the domain of the function

f(x) =
√

x(x− 1)(x + 1)
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4. What is the graph of the function y = −x?

5. What is the graph of the function y = |x|?

6. What is the range of f(x) = |x|?

7. What is the range of the function u(x) = 5?

8. The function is defined by the formula h(x) = |x|, the domain of h is all the
numbers x such that −10 ≤ x ≤ 5. What is the range of h?

9. What is the graph of this function?

10. What is fg? What is 1/f? What are their graphs? What is the domain of
1/f? What is the range of 1/f?

11. v(x) = x− 3, what is the graph of |v|?

12. u(x) = (x + 1)/(x− 1), q(x) = (x2 − 1)/(x− 1). Find the domains of u and
q.

13. p(x) = x2 + 2x + 5, what is the range of p?

14. What is the degree of the product fg of 2 polynomials? Hint: What is the
highest degree term of fg?

15. Let f and g be 2 nonzero polynomials. Can fg be zero? Hint: What is the
leading term of fg?

16. Find the domain of r(x). Check that r(x) = u(x) = (x+1)/(x−1) for x 6= 0.

17. Find the domain of z(x) = 1/(1/x). Check that for x 6= 0 z(x) = x.

18. Extend the function q(x) = (x2 − 1)/(x − 1) to x = 1 by a polynomial; in
other words, find a polynomial p(x) such that p(x) = q(x) for x 6= 1.
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Figure 1.9: A point in the x, y-plane
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1.3 Using, applying, and Manipulating functions
and equations

Discussion.

[author=duckworth,label=intro_to_manipulating_functions, file =text_files/intro_

to_manipulating_functions]

In this section we lay out some of the basic tools for using functions. This is sort
of grab-bag of techniques.

We start by reviewing how equations can represent lines, circles, and other
geometric objects.

We review some applications of functions to model real-world data.

We review how to solve some equations and inequalities.

Discussion.

[author=duckworth,label=discussion_of_point_in_xy_plane, file =text_files/cartesian_

coords_and_graphs]

Recall that the x, y-plane refers to an ideal mathematical plane labelled with an
x-axis which is horizontal, a y-axis which is vertical and the origin which is where
the two axes intersect. Every point in the plane can be labelled with x and y co-
ordinates which measure the horizontal and vertical distance respectively between
the point and the origin, see figure 1.9
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Definition 1.3.1.

[author=duckworth,label=definition_graph_of_function, file =text_files/cartesian_

coords_and_graphs]

The graph of a function f(x) is the set of points (x, y) such that x is in the do-
main and y equals f(x). Given any equation involving x and y the graph of the
equation is the set of points (x, y) which satisfy the equation.

Discussion.

[author=wikibooks,label=discussion_of_how_to_graph, file =text_files/cartesian_

coords_and_graphs]

Functions may be graphed by finding the value of f for various x, and plotting
the points (x, f(x)) in the x, y-plane.

Plotting points like this is laborious (unless you have your calculator do it).
Fortunately, many functions’s graphs fall into general patterns, and we can learn
these patters. For example, consider a function of the form f(x) = mx. The graph
of f(x) is a straight line, and m controls how steeply angled the line is. Similarly
we can learn about the graphs of our other basic functions, and later we will learn
how to find out useful information about more complicated graphs as well.

Example 1.3.1.

[author=duckworth,label=example_plotting_points, file =text_files/cartesian_coords_

and_graphs]

Draw a picture of the graph of f(x) = 3x3 − 10x by plotting a few points.

First, we calculate some points:

x −3 −2.5 −2 −1.5 −1 −.5 0 .5 1 1.5 2 2.5 3
f(x) −51 −21.9 −4 4.9 7 4.6 0 −4.6 −7 −4.9 4 21.9 51

These points are shown in Figure 1.10 Note, we could have saved some effort if we

–40

–20

20

40

–3 –2 –1 1 2 3

cubic_plot_points

Figure 1.10:

had only calculated half of these points. This function is odd (in a technical sense
that we’ll define later), and this would have told us that the values in the right
half of our table would equal the negative of the values in the left half. Now we
draw a smooth line through the points and get the graph shown in figure 1.11.
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Figure 1.11:

Definitions 1.3.2.

[author=garrett,author=duckworth,label=defintion_slopes_equations_lines, file =text_

files/lines_and_circles]

The simplest graphs are straight lines. The main things to remember are:

• The slope of a line is the ratio

m =
∆y

∆x

where ∆y and ∆x are the vertical and horizontal change between two points.
If the two points have coordinatens (x0, y0) and (x1, y1) then we have

m =
y1 − y0

x1 − x0
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Figure 1.12: Distance formula triangle

D = \sqrt{x^2+y^2}

(x_1,y_1)

(x_0,y_0)

|y_1−y_0| = \Delta y

|x_1−x_0|=\Delta x

distance_formula_triangle

• A vertical line has equation x = a for some number a. A horizontal line has
equation y = c for some number c.

• The slope-intercept form of the equation of a line is y = mx + b. This
form is convenient for graphing by hand, but it is not as convenient for some
other purposes.

• The point-slope form of the equation of a line with slope m and containing
a point (x0, y0) is given by

y = m(x− x0) + y0.

This is by far the most convenient form of the equation of a line for us to
use in Calculus.

Example 1.3.2.

[author=duckworth, file =text_files/lines_and_circles]

The line y = −2x + 5 has slope of −2 and a y-intercept of 5. It’s graph is shown
in the margin figure .

–2
0

2
4
6
8

10
12

–4 –3 –2 1 2 3 4

straight_line

Definition 1.3.3.

[author=duckworth,label=definition_distance_formula, file =text_files/lines_and_

circles]

Given two points (x0, y0) and (x1, y1), in the x, y-plane, their distance apart can
be computed by drawing a right triangle that contains them and applying the
Pythagorean theorem (see figure 1.12). This gives distance as

d =
√

(x1 − x0)2 + (y1 − y0)2

Example 1.3.3.
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Figure 1.13: Example of distance formula

D=\sqrt{3^2+4^2}

(5,1)

(2,5)

example_of_distance_formula

[author=duckworth,label=example_distance_between_two_points, file =text_files/

lines_and_circles]

The distance between the points (2, 5) and (5, 1) (see figure 1.13) is√
(2− 5)2 + (5− 1)2 =

√
9 + 16 = 25

Definition 1.3.4.

[author=duckworth,label=definition_equation_of_circle, file =text_files/lines_

and_circles]

The equation for distance can be immediately translated into the equation for a
circle.

The equation of a circle centered at the origin and with radius r (see figure 1.14)
is given by

x2 + y2 = r.

This can be put into function form by solving for y; if we do this we get two values
of y, so we need two functions

y1 =
√

r − x2 and y2 = −
√

r − x2.

The equation of a circle with center at the point (a, b) and radius r (see fig-
ure ??) is given by

(x− a)2 + (y − b)2 = r2

Example 1.3.4.

[author=livshits,label=example_graph_of_circle_and_lines, file =text_files/lines_

and_circles]
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Figure 1.14: Generic circle centered at origin with radius r
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Figure 1.15: Function of top half of circle
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Figure 1.16: Graphs of unit circle and straigt lines
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Figure 1.17:
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Figure 1.18:
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In figure 1.16 we show the graphs of the unit circle x2 + y2 = 1, and the straight
lines y = x, y = −x and y = −1/2.

Discussion.

[author=duckworth,label=discussion_graphing_on_calculators_not_always_easy, file

=text_files/complicated_graphs]

Using calculators does not always make it perfectly easy to graph a function. We
collect now a few examples of things which take some work to graph.

Example 1.3.5.

[author=duckworth,label=example_graph_squished_rational_function, file =text_

files/complicated_graphs]

Using your calculator, graph y = 1
100x2+1170 .

In figure1.17 we show a standard view (i.e. −10 ≤ x ≤ 10, −10 ≤ y ≤ 10) of
this graph. This view doesn’t help much.

ZoomFit is a very useful feature on the calculators for graphs like this. To
use this feauter you must specify the x range, and then the calculator will fit the
y-values of the window to the graph. The result is shown in figure 1.18.
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Figure 1.19:
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Figure 1.20:
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Example 1.3.6.

[author=duckworth,label=example_sin_of_5000x, file =text_files/complicated_graphs]

Using your calculator, graph y = sin(5000x).

What this figure looks like will depend upon your machine. On your calculator,
with an x-range of −π ≤ x ≤ π, it might look like the graph in figure 1.19.

In the computer package Maple the default graph is shown in figure 1.20.

In Maple we can increase the number of points used to sample the graph. The
result of using a large number of points is shown in figure 1.21.

None of these pictures really shows the graph properly. To get a good graph,

Figure 1.21:
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Figure 1.22:
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we should use our knowledge of sin(x). We know that sin(x) oscillates. It turns out
that sin(ax) still oscillates, but it oscillates faster if a is greater than 1. To show
a graph that is oscillating faster, we need a smaller window. Roughly speaking,
to graph sin(5000x) we should use a graph that is 5000 times smaller than usual.
Thus, we try graphing with the range −π

5000 ≤ x ≤ π
5000 . The results are shown in

figure1.22.

Discussion.

[author=duckworth,label=discussion_graphing_with_calculators_wrap_up, file =text_

files/complicated_graphs]

We will see later examples of functions that are even more difficult to graph than
the ones we have shown here. In fact, functions which are impossible to graph well
are quite common; most of the graphs in Calculus textbooks are artifically nice
and well-behaved.

We will also see later examples of problems that show how our calculators and
computers can lead us to incorrect solutions.

Definition 1.3.5.

[author=duckworth,label=definition_mathematical_models, file =text_files/mathematical_

models]

A mathematical model is a function that is used to describe a real-world set of
data. Sometimes this can be done by exactly solving equations for various param-
eters. Sometimes this we can only find the model which comes closest to matching
some data; in this case we usually need to use our calculators or computers.

Example 1.3.7.

[author=duckworth,label=example_modelling_population,uses=e^x,uses=ln, file =text_

files/mathematical_models]

Use an exponential model (i.e. P = Cekt) to match the following populations
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(where t = 0 corresponds to 1980), and predict the population in 2020:

Year Population
1980 4 billion,
2000 5 billion

We wish to find k and C such that the following two equations are satisfied:

4 = Ce0

5 = Ce20k

From the first equaton we see that C = 4. Plugging this into the second equation
we get

5 = 4e20k.

As soon as you see an equation with an unknown as an exponent, you can be sure
that we will use ln(x) to find that unknown. In this case, I’ll divide by 4 first:

5/4 = e20k

and then take ln(x) of both sides (using the cancelling property of ln(x) and ex,
see Example 1.2)

ln(5/4) = 20k

whence
k =

1
20

ln(5/4).

Example 1.3.8.

[author=garrett,label=example_solving_polynomial_inequality,version=1, file =text_

files/solving_inequalities]

Solve the following inequality:

5(x− 1)(x + 4)(x− 2)(x + 3) < 0

The roots of this polynomial are 1,−4, 2,−3, which we put in order (from left to
right)

. . . < −4 < −3 < 1 < 2 < . . .

The roots of the polynomial P break the numberline into the intervals

(−∞,−4), (−4,−3), (−3, 1), (1, 2), (2,+∞)

On each of these intervals the polynomial is either positive all the time, or negative
all the time, since if it were positive at one point and negative at another then it
would have to be zero at some intermediate point!

For input x to the right (larger than) all the roots, all the factors x + 4, x + 3,
x − 1, x − 2 are positive, and the number 5 in front also happens to be positive.
Therefore, on the interval (2,+∞) the polynomial P (x) is positive.

Next, moving across the root 2 to the interval (1, 2), we see that the factor
x − 2 changes sign from positive to negative, while all the other factors x − 1,
x + 3, and x + 4 do not change sign. (After all, if they would have done so, then
they would have had to be 0 at some intermediate point, but they weren’t, since
we know where they are zero...). Of course the 5 in front stays the same sign.
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Therefore, since the function was positive on (2,+∞) and just one factor changed
sign in crossing over the point 2, the function is negative on (1, 2).

Similarly, moving across the root 1 to the interval (−3, 1), we see that the
factor x − 1 changes sign from positive to negative, while all the other factors
x − 2, x + 3, and x + 4 do not change sign. (After all, if they would have done
so, then they would have had to be 0 at some intermediate point). The 5 in front
stays the same sign. Therefore, since the function was negative on (1, 2) and just
one factor changed sign in crossing over the point 1, the function is positive on
(−3, 1).

Similarly, moving across the root −3 to the interval (−4,−3), we see that the
factor x + 3 = x− (−3) changes sign from positive to negative, while all the other
factors x− 2, x− 1, and x + 4 do not change sign. (If they would have done so,
then they would have had to be 0 at some intermediate point). The 5 in front
stays the same sign. Therefore, since the function was positive on (−3, 1) and just
one factor changed sign in crossing over the point −3, the function is negative on
(−4,−3).

Last, moving across the root −4 to the interval (−∞,−4), we see that the
factor x + 4 = x− (−4) changes sign from positive to negative, while all the other
factors x − 2, x − 1, and x + 3 do not change sign. (If they would have done so,
then they would have had to be 0 at some intermediate point). The 5 in front
stays the same sign. Therefore, since the function was negative on (−4,−3) and
just one factor changed sign in crossing over the point −4, the function is positive
on (−∞,−4).

In summary, we have

5(x− 1)(x + 4)(x− 2)(x + 3) > 0 on (2,+∞)
5(x− 1)(x + 4)(x− 2)(x + 3) < 0 on (1, 2)
5(x− 1)(x + 4)(x− 2)(x + 3) > 0 on (−3, 1)
5(x− 1)(x + 4)(x− 2)(x + 3) < 0 on (−4,−3)
5(x− 1)(x + 4)(x− 2)(x + 3) > 0 on (−∞,−4).

There’s another way to write this. The polynomial is negative on (1, 2)∪(−4,−3).
(The notation (1, 2)∪ (−4,−3) means all those x-values between 1 and 2, together
with all those x-values betwen −4 and −3.)

Example 1.3.9.

[author=garrett,label=solving_polynomial_inequality,version=2, file =text_files/

solving_inequalities]

As another example, let’s see on which intervals

P (x) = −3(1 + x2)(x2 − 4)(x2 − 2x + 1)

is positive and and on which it’s negative. We have to factor it a bit more: recall
that we have nice facts

x2 − a2 = (x− a) (x + a) = (x− a) (x− (−a))

x2 − 2ax + a2 = (x− a) (x− a)

so that we get

P (x) = −3(1 + x2)(x− 2)(x + 2)(x− 1)(x− 1)
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It is important to note that the equation x2 + 1 = 0 has no real roots, since the
square of any real number is non-negative. Thus, we can’t factor any further than
this over the real numbers. That is, the roots of P , in order, are

−2 << 1 (twice!) < 2

These numbers break the real line up into the intervals

(−∞,−2), (−2, 1), (1, 2), (2,+∞)

For x larger than all the roots (meaning x > 2) all the factors x + 2, x − 1,
x− 1, x− 2 are positive, while the factor of −3 in front is negative. Thus, on the
interval (2,+∞) P (x) is negative.

Next, moving across the root 2 to the interval (1, 2), we see that the factor
x − 2 changes sign from positive to negative, while all the other factors 1 + x2,
(x − 1)2, and x + 2 do not change sign. (After all, if they would have done so,
then they would have be 0 at some intermediate point, but they aren’t). The
−3 in front stays the same sign. Therefore, since the function was negative on
(2,+∞) and just one factor changed sign in crossing over the point 2, the function
is positive on (1, 2).

A new feature in this example is that the root 1 occurs twice in the factor-
ization, so that crossing over the root 1 from the interval (1, 2) to the interval
(−2, 1) really means crossing over two roots. That is, two changes of sign means
no changes of sign, in effect. And the other factors (1 + x2), x + 2, x − 2 do not
change sign, and the −3 does not change sign, so since P (x) was positive on (1, 2)
it is still positive on (−2, 1). (The rest of this example is the same as the first
example).

Again, the point is that each time a root of the polynomial is crossed over, the
polynomial changes sign. So if two are crossed at once (if there is a double root)
then there is really no change in sign. If three roots are crossed at once, then the
effect is to change sign.

Generally, if an even number of roots are crossed-over, then there is no change
in sign, while if an odd number of roots are crossed-over then there is a change in
sign.

Exercises

1. Write the equation for the line passing through the two points (1, 2) and
(3, 8).

2. Write the equation for the line passing through the two points (−1, 2) and
(3, 8).

3. Write the equation for the line passing through the point (1, 2) with slope 3.

4. Write the equation for the line passing through the point (11,−5) with slope
−1.
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1.4 End of chapter problems

Exercises
1. Two mathematicians (A and B) are taking a walk and chatting.

A: I have 3 children.
B: How old are they?
A: The product of their ages is 36.
B: I can’t figure out how old they are.
A: The number on the house that we are passing is the sum of their ages.
B: I still can’t figure it out.
A: My oldest child is having a soccer match tomorrow.
B: Now I can figure it out!
How old are the children?

Make a list of the possible ages whose product is 36.

The only possibilities for these three ages are 1, 1, 36; 1, 6, 6; 1, 2, 18; 1, 3, 12;
2, 2, 9; 2, 3, 6; 3, 3, 4. The sums of these ages are 38, 13, 21, 16, 13, 12, 10.
If the house number had been any of these sums except 13, mathematician
B would have known the ages, so the street number must have been 13. If
there is only one oldest child, then 2, 2, 9 must be the ages.

2. You have 2 identical ropes, a scissors and a box of matches. Each rope, when
ignited at one of its ends, burns for 1 hour. Fugure out how to measure off
45 minutes by burning these ropes. Notice: the ropes may be not uniform,
so they can burn in starts and stops, not at a constant speed.

Ignited from both ends sinultaneously, how long will a rope burn?

3. Repeat example ??, where you replace the leaky cone-shaped bucket with a
leaky cylindrical bucket.

The surface area A will be proportional to H2, i.e. A = cH2 the equation
dH/dt = −(a/A)v(H) = −(a/A)

√
2gH still holds, stick the expression for A

into it and try to work out the rest.
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Chapter 2

Limits

2.1 Elementary limits

Discussion.

[author=duckworth,label=discussion_overview_of_limits,style=historical, file =text_

files/limits_overview]

Before we begin to learn limits, it might be worth describing how the way we use
limits today is the reverse of how they came to be developed historically.

Almost all modern Calculus courses (see exceptions below) start with the def-
inition of limit, and then everything which follows is built upon this definition:
vertical and horizontal asymptotes are described using limits; derivatives are de-
fined in terms of limits, as are definite integrals; sequences and series, Taylor poly-
nomials, L’Hospital’s rule, all deal directly with limits. So the modern approach
is limits first, and then everything else.

But the modern approach reverses the order of history! Newton and Leibnitz
invented a lot of what we think of as Calculus, and they never used the concept
of limits. In fact, their work was finished around 1700, but it wasn’t until around
1850’s that limits were carefully and precisely defined. Even then, it took about
another 100 years for Calculus books to base everything on limits. (Over this 100
year period the use of limits gradually trickled from more advanced subjects down
to a college freshman level Calculus course.)

So, if you find it a little difficult to understand exactly what limits are, how
they are used, and why we discuss them so much, don’t feel bad! Geniuses like
Newton, Leibnitz, Euler, Gauss, Lagrange, the Bernoulli’s, etc. didn’t understand
them either! On the other hand, by now, limits have been re-worked and simplified
so much that anyone can use them, but they still take work. The moral: don’t
feel bad if they don’t make sense at first, but don’t give up or decide that you just
can’t get it; keep working hard.

So, are there alternatives to a limits based Calculus? Yes. In the 1960’s the
infinitesimal approach was put on rigorous grounds, and this made it acceptable
to mathematicians to write Calculus books which based their results on this ap-
proach. Infinitesimals are very similar to how Leibnitz thought about derivatives
and integrals. They involve doing calculation with infinitely small quantities; this
is a strange idea and the strangeness of it is why mathematicians didn’t feel that
it was rigorously justified until the work in the 1960’s mentioned above was com-
plete. (For more about this approach and the the one which is described next

37
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see the section on further reading.) Interestingly, even in an infinitesimal based
Calculus course, limits are still discussed and used, but not as a foundation for
everything else.

Another approach to Calculus has been developed recently by a variety of
authors. This approach uses division of functions to define derivatives and uses
piecewise-linear functions to work with integrals. In this approach, something
similar to limits is always lurking in the background; for example, showing that
the exact value for the area under a curve is always between two piecewise-linear
approximations which can be made infinitely close to each other. However, limits
are never explicitly used, and instead one must use various clever calculations of
bounds and inequalities.

Perhaps this discussion leaves one more question unanswered: if limits take
some hard work to understand, and if there are alternatives, and if historically
limits weren’t used for the first 150 of Calculus, why do we learn them now? Well,
for 150 years, belief in Calculus required a certain amount of faith: mathematicians
would make arguments which mentioned things like “divide two infinitely small
quantities”, or “take the ratio of the quantities just before they become zero” and
these arguments were used to justify the formulas they had. So, to prove that a
falling object had a certain speed, or to prove that the planets orbited the sun
under the influence of gravity, or to prove a hundred other things, one had to
refer to these arguments which were not rigorous (although the answers seemed
to work). Mathematically speaking there were other problems when Calculus
was not rigorous. Maybe the answers obtained in simple cases were correct, but
what about when things got more complicated? Maybe we believe, for example,
that the derivative of sin(x) is cos(x) (we’ll learn this later). But what if x is
a complex number ; is this result still true? What if we want to do mathematics
in 3 dimensions, or 4, or 100? Here we can’t draw pictures, and our intuition
breaks down, so we can’t claim that “the answers seem to work”; can we still
prove anything about derivatives? What about strange counter-examples that
mathematicians had discovered; this examples showed that our intuition about
functions and derivatives can be completely wrong (see below), so how do we
know that the simpler problems, whose “answers seemed right” were really right?

Well, the use of limits (with work) answers all these questions. Finally, ev-
erything that we think is correct can be rigorously proven; the proofs work for
complex numbers and for mathematics in 100 dimensions. We can see exactly
which part of the proof fails in various counter-examples, and we can prove that
some things in math are correct, but defy our intuition. Finally, the best part is
that once we learn limits we can go far beyond the pictures and numerical argu-
ments in Freshman Calculus. We can do Calculus in infinite-dimensional space, we
can prove statements in the space-time universe of Einstein’s General Theory of
Relativity, we can prove things about geometric spaces that exist beyond anyone’s
ability to intuitively understand.

What are some of the counter-examples I mentioned above? Well, to fully
understand them you have to first understand essentially all of Freshman Calculus,
but I can give you some idea of what they are about here.

Here’s an intuitive idea: functions are mostly differentiable, and the derivative
can only fail to exist at a handful of points. For example, the absolute value
function y = |x| is differentiable everywhere except at x = 0, where it has a
corner. Well, we could make a worse example which has a bunch of corners, but
still, most of the points don’t have corners, right? Wrong. Weierstrass showed
that there exist continuous functions which have infinitely many corners, and in
fact the corners are infinitely close to each other! Can this be true? Well, picture a



2.1. ELEMENTARY LIMITS 39

line which zig-zags up and down, and then imagine that if you magnify the picture,
that there are more zig-zags that were too small for you to see before; and if you
magnify the picture again, there are more zig-zags, etc. This example is correct;
to prove that it is correct, you need to understand limits and continuity; but more
importantly, it shows that you cannot rely on intuition to say things like “it’s clear
that a continuous function is differentiable”.

Here’s another idea: integrals are calculated by finding anti-derivatives. For
example, the area between the curve y = x2 and x = 0 and x = 1 is calculated by
finding the anti-derivative 1

3x3, and plugging in x = 1 and x = 0 to get the area of
1
3 . But what about the function e−x2

? Does that have an anti-derivative? Well,
it turns out that there is no formula for the anti-derivative of e−x2

. So, how can
we calculate areas under this curve? Well, with limits we can define the integral∫ b

0
e−x2

dx and we can show that the limit exists, and therefore the integral exists,
even though we cannot write down a formula for it.

Discussion.

[author=duckworth,label=overview_of_limits,style=middle, file =text_files/limits_

overview]

This section picks two problems to act as guiding examples for the rest of the
chapter: finding the slope of a tangent line and finding the instantaneous velocity.
In both cases we look at a fraction as the bottom gets smaller and smaller. (Using
later notation we could say that we were approximating lim∆x→0

∆y
∆x , and lim∆t→0

∆d
∆t .)

Example 2.1.1.

[author=duckworth,label=example_glimpse_of_deriv_as_limit, file =text_files/limits_

overview]

Here’s a brief glimpse of something that’s coming later. We show it now because
it’s so important; in fact, it’s the whole reason we introduced limits now! Let
f(x) = x2. Then the derivative of f(x) at x = 3 will be defined (later) to be

f ′(x) = lim x → 3
f(x)− f(3)

x− 3

. We interpret the derivative to be the slope of the tangent line at x = a, or the
instantaneous velocity.

Example 2.1.2.

[author=duckworth,label=example_naive_approach_to_inst_vel, file =text_files/

limits_overview]

It can be shown through experiments (as Galileo did in the early 1600’s) that an
object thrown off of a building of height 100m and with an intial velocity of 23 m/s

has a position given by the formula

h(t) = −9.8t2 + 23t + 100.

Find (without using derivatives yet) the velocity of such an object at t = 4.
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The point of this exercise is to see the steps that we’re about to do as leading
to the idea of limits, which we’ll define in the next section, and that limits will
allow us to define derivatives.

The definition of average velocity is ∆h
∆t where ∆h is the change in height h

and ∆t is the change in time t. The probleb is that the example did not tell us to
find the velocity from t = 4 to, say, t = 6. We were given only one point in time,
and so ∆t appears to be 0. We can’t plug 0 into our definition of velocity or we
would be dividing by zero.

The elementary way out of this dilemma, is to find the average velocity from
t = 4 to t = 4.1, and figure that this is pretty close to the instantaneous velocity
at t = 4. We have:

velocity from t = 4 to t = 4.1 =
h(4.1)− h(4)

4.1− 4
=
−7.938

.1
= −79.38 ms

(I’ve done all the calculations in my calculator using y1 = −9.8x2 +23x+100 and
enterying y1(4.1), etc.) Now, this answer is probably pretty close to the correct
value. But, to make sure, we should probably compute a few more velocities over
shorter intervals of time; this should get closer to the correct answer at t = 4.

t = 4 to t = 4.01 h(4.01)−h(4)
4.01−4 = −78.498

t = 3.999 to t = 4 h(4)−h(3.999)
4−3.999 = −78.3902

This makes it pretty clear that the “real” answer should be somewhere around
−78 ms. We can’t be sure how accurate our calculations are until we learn later
how to get the exact expression.

The idea of limit will be to take the calculations just done, and try to figure
out what the limit as t approaches 4 of the velocity function h(t)−h(4)

t−4 is.

Discussion.

[author=duckworth,label=discussion_looking_forward_to_derivatives, file =text_

files/limits_overview]

Looking ahead to the chapter on derivatives: Once we decide that formulas for
derivatives are more useful than finding the derivitive at lots of randomly chosen
numbers, we want to get a list of shortcuts. To prove that these shortcuts are
correct we need to use the long definition given above. But we only have to do
that once for each shortcut and then we will always use the shortcut.

Discussion.

[author=wikibooks,label=discussion_introducing_section_on_limits, file =text_

files/basic_limits]

Now that we have done a review of functions, we come to the central idea of cal-
culus, the concept of limit.

Example 2.1.3.

[author=wikibooks,label=example_removable_discontinuity_leading_to_limits, file

=text_files/basic_limits]
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Let’s start with a function, f(x) = x2. Now we know that f(2) = 4. But let’s be
a bit mischevious and create a gap at 2. We can do this by creating the function

f(x) =
x2(x− 2)

x− 2
.

Now this truly is a mischevious function. It’s equal to x2 everywhere except at
x = 2, where it has no well-defined value. Now, one fact about the funny function
is that as x gets closer to 2, then f(x) gets closer to 4. This is a useful fact, and
we can express this in symbols as

lim
x→2

f(x) = 4.

Notice it doesn’t matter what f(x) is at x = 2, in this case we have left it undefined,
but it could be 2 or 15 or 1, 000, 000. The idea of the limit is that that you can
talk about how a function behaves as it gets closer and closer to a value, without
talking about how it behaves at that value. Now using variables we can say that
L is the “limit’ of the function f(x) as x approaches c if f(x) ≈ L whenever x ≈ c.

Definition 2.1.1.

[author=duckworth,label=definition_of_a_limit,style=informal, file =text_files/

basic_limits]

The notation limx→a f(x) = L means any of the following equivalent statements
(choose whichever one makes the most sense to you):

1. If
{

x is close
to a(but 6= a) then

{
f(x) is close
to L

2. If x 6= a and |x− a| is small then |f(x)− L| is small

3. If x 6= a and |x− a| < δ then |f(x)− L| < ε where ε can be chosen as small
as we want.

4. If x 6= a and a− δ < x < a + δ then L− ε < f(x) < L + ε.

We also have variations on this definition if x → a+ (i.e. x approaches a from the
right), x → a− (i.e. x approaches a from the left), a = ±∞ (i.e. we are finding
horizontal asymptotes) or L = ±∞ (i.e. we are finding vertical asymptotes).

Strategy.

[author=duckworth,label=strategy_how_we_find_limits, file =text_files/basic_limits]

We can find a limit in one of the following ways.

1. Graph f(x), look at y-values as x gets close to a.

2. Make a table of numbers for x and f(x) as x gets close to a and look for the
pattern of y-values.

3. Simplify f(x), if neccessary, and plug in x = a. (I call this the algebraic
approach).
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Once you’ve found the limit, you still might be asked to verify that it satisfies
the definition. In particular, you might be given f(x), L, a and ε and asked to
find δ. Essentially, you do this graphically as follows: find the closest x-value
corresponding to y = L± ε and δ is the distance from this x-value to x = a.

Discussion.

[author=wikibooks,label=discussion_of_limits_after_definition, file =text_files/

basic_limits]

Now this idea of talking about a function as it approaches something was a major
breakthrough, because it lets us talk about things that we couldn’t before. For
example, consider the function 1/x. As x gets very big, 1/x gets very small. In
fact 1/x gets closer and closer to zero, the bigger x gets. Now without limits its
very difficult to talk about this fact, because 1/x never actually gets to zero. But
the language of limits exists precisely to let us talk about the behavior of a func-
tion as it approaches something, without caring about the fact that it will never
get there. So we can say

lim
x→∞

1
x

= 0.

Notice that we could use “=” instead of saying “close to”. Saying that the limit
equals 0 already means that 1/x is close to.

Exercises

1. Find limx→5 2x2 − 3x + 4.

2. Find limx→2
x+1
x2+3 .

3. Find limx→1

√
x + 1.
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2.2 Formal limits

Discussion.

[author=wikibooks,label=discussion_intro_to_formal_limits, file =text_files/formal_

limits]

In preliminary calculus, the definition of a limit is probably the most difficult con-
cept to grasp. If nothing else, it took some of the most brilliant mathematicians
150 years to arrive at it.

The intuitive definition of a limit is adequate in most cases, as the limit of a
function is the function of the limit. But what is our meaning of “close”? How
close is close? We consider this question with the aid of an example.

Example 2.2.1.

[author=duckworth,label=example_limit_sin_over_x,uses=sin,uses=limits, file =text_

files/formal_limits]

Consider the function f(x) = sin(x)
x . What happens to f(x) as x gets close to 0?

Well, if you try to plug x = 0 in, you get f(0) = 0/0, and this is undefined. But
if you graph the function you figure 2.1. It seems clear that the y-value “at” (or

–0.4
–0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

y

–8 –6 2 4 6 8

sin_over_x

Figure 2.1:

near) x = 0 should be 1.

How do we convert that intuition into a rigorous statement? What do I mean by
“rigorous statement”? Well, we need a statement that doesn’t depend on looking
at graphs. Why can we not depend on graphs? Well, we need to be able to find
limits of functions like xn, without knowing what n is! So if we don’t know n,
how can we graph the function? Also, we need a statement that will work for
other kinds of limits, like those we will use when we define definite integrals, and
like those we will use when we do calculus in three (or higher) dimensions, where
we can’t rely on a graph. Finally, sometimes graphs, can be misleading, or even
wrong. See Section 1.3 for examples of this.

Discussion.

[author=duckworth,label=discussion_limit_means_infinitely_close,uses=sin,uses=

limits, file =text_files/formal_limits]

So, to say, for example, that limx→0
sin(x)

x = 1, how close does sin(x)
x have to get

to 1? Infinitely close. In mathematics, we usually want answers that are exactly
correct, not just “close enough” (actually, there are many parts of math where
“close enough” is of interest, but if it’s possible, then exactly right is always bet-
ter). So, how can we define infinitely close? The human brain doesn’t deal well
with “infinite” statements. So in fact, we translate infinite statements into finite
ones.

A first attempt at this might give something like limx→0
sin(x)

x = 1 means that
limx→0

sin(x)
x is closer to 1 than any other real number. This attempt has the

problem that it’s circular, we explained what “limx→0
sin(x)

x ” means by talking
about “limx→0

sin(x)
x ” itself.

No, we need to describe what this limit means by refering only to sin(x)
x . What

should this be doing? It should be close to 1. How close? Infinitely close. How can
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I state this using only “finite” concepts? By saying something like the following:
“for every distance you want to pick, sin(x)

x will get at least that close to 1”. The
formal definition of limit merely names “distance” with the letter ε.

Definition 2.2.1.

[author=wikibooks,label=definition_of_limit_formal,style=formal,uses=limits,

file =text_files/formal_limits]

Let f(x) be a function. We write

lim
x→a

f(x) = L

if for every number ε, there exists a number δ such that |x − a| < δ and x 6= a
implies that |f(x)− L| < ε.

Comment.

[author=wikibooks,label=comment_about_what_limit_definition_means, file =text_

files/formal_limits]

Note that instead of saying f(x) approximately equals L, the formal definition
says that the difference between f(x) and L is less than any number epsilon.

Definition 2.2.2.

[author=duckworth,label=defintion_of_one_sided_limits,uses=limits,style=formal,

file =text_files/formal_limits]

Let f(x) be a function. We write

lim
x→a+

f(x) = L

if for every number ε, there exists a number δ such that a < x < a+ δ implies that
|f(x)− L| < ε. We write

lim
x→a−

f(x) = L

if for every number ε, there exists a number δ such that a− δ < x < a implies that
|f(x)− L| < ε.

Comment.

[author=wikibooks,label=comment_how_to_read_one_sided_limits, file =text_files/

formal_limits]

We read limx→a− f(x) as the limit of f(x) as x approaches a from the left, and
limx→a+ f(x) as x approaches a from the right.

Fact.

[author=wikibooks,label=fact_limit_implies_equality_of_two_sided_limits, file =text_

files/formal_limits]
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limx→a f(x) = L if and only if limx→a− f(x) = limx→a+ f(x) = L

Example 2.2.2.

[author=wikibooks,label=example_find_limit_of_x+7,style=formal, file =text_files/

formal_limits]

What is the limit of f(x) = x + 7 as x approaches 4?

There are two steps to answering such a question first we must determine the
answer – this is where intuition and guessing is useful, as well as the informal
definition of a limit. Then, we must prove that the answer is right. For this
problem, the answer happens to be 11. Now, we must prove it using the definition
of a limit

Informally, 11 is the limit because when x is close to 4, then f(x) = x + 7 is
close to 4 + 7, which equals 11.

Here’s the formal approach. (Note: please keep in mind that this example is
to practice the formal approach; this example is so simple that you might feel that
there is no need for the formal approach, but we will need it later to prove more
general statements.) We need to prove that no matter what value of ε is given to
us, we can find a value of δ such that |f(x)− 11| < ε whenever |x− 4| < δ.

For this particular problem, letting δ equal ε works. (We’ll talk more later
about how to pick δ in different problems.) Now, we have to prove |f(x)− 11| < ε
given that |x− 4| < δ = ε. Since |x− 4| < ε, we know |f(x)− 11| = |x + 7− 11| =
|x− 4| < ε, which is what we wished to prove.

Example 2.2.3.

[author=duckworth,label=example_lengthy_calculation_of_easy_limit, file =text_

files/formal_limits]

Suppose we want to look at the definition of the limit as applied to the function
y = 2x + 1. If we want to show that it’s continuous (which it certainly should be
judging from the graph) we would like to show that as x gets very close to a what
happens to the y-values is what we would expect, that y(x) gets very close to y(a).
By the way, one hard part about all this is that it’s hard to say exactly howfast
these y-values should be getting close to y(a). On the other hand we don’t care
if this is happening really quickly or not, as long as the y-values do what they’re
supposed to eventually. Another way to say all this is that we can make y(x) as
close to y(a) as we want by making x close enough to a. procedure (1) FIRST
we decide how close we want to make y(x) to y(a).

(2) THEN we figure out how close we need x to be to a to accomplish (1)

For example, ouppose that I want to make sure that we’ll get |y(x) − y(a)| <
.0000001 = 10−6 when we get close enough to x = a. Well, after some guesswork
and some graphing we might figure out that this will always happen if we just
look at x’s which satisfy |x − a| < 10−7. By the way, this was certainly overkill;
we don’t absolutely need for x to be this close to a, it just makes it easy.

But how do we do this in general? What if someone asked me to make y(x) a
million times closer to y(a)? I would like an argument which will help me out no
matter how close I’m supposed to get to y(a).



46 CHAPTER 2. LIMITS

Let ε > 0 be some (small) number, and suppose that we want to get our y values
to a distance within ε of 2a + 1. In other words we want |2x + 1 − (2a + 1)| < ε
when we make x close enough to a. How close do we need x to be to a?

We want

|2x + 1− (2a + 1)| < ε

|2x− 2a| < ε

|2(x− a)| < ε

2|(x− a)| < ε

|(x− a)| < ε/2

Ah ha!! Whatever ε is we can guarantee that |y(x) − y(a)| < ε if we pick x’s
with |x− a| < ε/2.

We have just proven that lim
x→a

2x + 1 = 2a + 1. Note that this applies to stuff
we did before with the difference quotient where we simplified an expression down
to something like lim

h→0
2h + 1 = 1

Example 2.2.4.

[author=wikibooks,label=example_limit_of_x^2,style=formal, file =text_files/formal_

limits]

What is the limit of f(x) = x2 as x approaches 4?

Informal reasoning suggests that the limit should be 16. Again, we’ll try to
prove this formally.

Let ε be any positive number. Define δ to be δ =
√

(ε + 16)− 4. Note that δ
is always positive for positive ε. Now, we have to prove |x2 − 16| < ε given that
|x− 4| < δ =

√
ε + 16− 4.

We know that |x + 4| = |(x − 4) + 8| ≤ |x − 4| + 8 < δ + 8 (because of the
triangle inequality), thus

|x2 − 16| = |x− 4| · |x + 4|
< δ · (δ + 8)
= (

√
16 + ε− 4) · (

√
16 + ε + 4)

= (
√

16 + ε)2 − 42

= ε

.

Example 2.2.5.

[author=wikibooks,label=example_limit_of_sin_of_1_over_x_dne,style=formal, file

=text_files/formal_limits]

Show that the limit of sin(1/x) as x approaches 0 does not exist.

We will proceed by contradiction, thus, suppose the limit exists and is L. We
show first that L 6= 1 is a contradiction, the case L = 1 is similar. Choose ε = L−1,
then for every δ > 0, there exists a large enough n such that 0 < x0 = 1

π/2+2πn < δ,
but |sin(1/x0)− l| = |L− l| = ε a contradiction.
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The function sin(1/x) is known as the topologist’s sine curve.

Example 2.2.6.

[author=wikibooks,label=example_limit_x_times_sin_1_over_x, file =text_files/

formal_limits]

What is the limit of x sin(1/x) as x approaches 0?

We will prove that the limit is 0. For every ε > 0, choose δ = ε so that for all
x, if 0 < |x| < δ, then |x sinx− 0| <= |x| < ε as required.

2.3 Foundations of the real numbers

Discussion.

[author=duckworth,label=discussion_logical_foundations, file =text_files/foundations_

of_reals]

In this section we present the logical foundations of calculus. We note that it is
possible to study calculus without first studying these logical foundations. The
advantage of such a study is that it leads immediately to “doing” calculus, to
applications, and it does not bewilder the beginning student with the harder work
required for mathematical rigor. However, skipping the foundations also skips
learning why calculus works the way mathematicians say it does, it skips the
chance to stretch your mind and exercise your deductive reasoning, and it skips
developing the skills and techniques needed to study higher mathematics (like
calculus in n-dimensions, differential geometry, theoretical physics, etc).

In rigorous mathematics everything starts with axioms. Axioms are simple
statements, that are hopefully somewhat intuitive, and which one accepts as logi-
cally true if one wants to continue with calculus (if you want to debate the axioms,
that’s worth studying too, but then you are doing logic, or metamathematics, or
model theory, but not calculus).

After the axioms, the first assertions are proven using only the axioms. By proof
we mean a finite set of logical steps, each of which can be justified completely, which
start with the axioms and which finish with the assertion to be proven. Finally,
later assertions are proven using the first assertions or the axioms.

There’s one more ingrediant in rigorous mathematics: definitions. Logically,
definitions play no essential role; the only important things are axioms, assertions,
and deductive proofs. But practically speaking definitions are crucial for the way
we think about things: essentially, they just give names to certain properties,
formulas, or statements. So, logically, we wouldn’t have to define “continuous”,
we could merely repeat it’s definition in every assertion that used the property of
“continuous”. Of course, in practice such a text would be unreadable.

So, the ingrediants of a rigorous approach to calculus (or any mathematical
subject) are: axioms, assertions, deductive proofs, definitions.

Discussion.
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[author=wikibooks,label=discussion_recalling_basic_axioms_of_reals, file =text_

files/foundations_of_reals]

Recall that we have already assumed certain basic properties of the real numbers
(see Section 1.1, Axioms 1.1 and 1.1). The real numbers have addition, multipli-
cation, and a relation ≤

Definition 2.3.1.

[author=wikibooks,label=definition_upper_lower_bounds, file =text_files/foundations_

of_reals]

A subset E of the real numbers R is bounded above if there exists a number M
which is ≥ every number in E. Any M which satisfies this condition is called an
upper bound of the set E. We say that M is the least upper bound if it is
the smallest number which is an upper bound of E.

Similarly, E is bounded below of there exists a number M which is ≤ every
number in E.

Least Upper bound axiom 2.3.1.

[author=wikibooks,label=axiom_least_upper_bound, file =text_files/foundations_

of_reals]

Every non-empty set E of real numbers which is bounded above has a least upper
bound in R.

Comment.

[author=duckworth,label=comment_on_least_upper_bound_axiom, file =text_files/

foundations_of_reals]

The least upper bound axiom is the most subtle axiom in all of Calculus (and in
a lot of other mathematics for that matter!). This axiom is what distinguishes
the real numbers (which satisfy the axiom) from the rational numbers (which do
not). Historically, it was this axiom which gave the first rigorous approach to the
real numbers. One way to think about what this axiom means, is that the real
number line does not have any holes. Because if it had a hole, it would have to be
infinitely small (since the real number line contains Q), and then you could let E
be set of all real numbers to the left of this hole. The axiom would then say that
the real numbers contain a least upper bound of E; this least upper bound would
have to be the number where the hole was located!

Of course an axiom is assumed, so it’s not immediately clear how this axiom
would contribute to a rigorous study. Here’s how: before this, people made all
kinds of assertions about what “continuous” meant, what “convergent” meant,
what was different between the real numbers and the rational numbers. Some of
these assertions were “clear”, some were complicated, all appeared a little different,
and actually most were not even clearly articulated, but rather implicitly used
without specefic mention. In contrast, the least upper bound axiom (after you
look at a few pictures) is fairly clear and starting with it you can derive all the
various other assertions people made. So at the very least you’ve replaced a variety
of implicit assumptions, with one, clear assertion.

Now, if you still don’t like this axiom, that’s ok. You can try to develop a theory
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of calculus without it, and you can see how far you get. Seriously, that would be a
fun exercise. But, if you want, you can simply preface all the statements later in
calculus with the invisible statement “If the least upper bound axiom holds, then
. . . ” where “. . . ” might be some rule about limits, or some rule about derivatives,
or some rule about max and mins of a function. In this way, all the statements
which follow are hypothetical statements, which are logically perfect, and then one
can debate if they are “really” true, which is to say, does the least upper bound
axiom “really” hold!

Comment.

[author=duckworth,label=comment_that_lub_implies_glb, file =text_files/foundations_

of_reals]

The least upper bound axiom is not symmetric, in that it talks only about upper
bounds and not lower ones. However, the real numbers are quite symmetric, and
multiplying by −1 turns lower bounds into upper bounds and vice versa. The
following theorem makes this more precise.

Theorem 2.3.1.
[author= wikibooks,label= theroem_ existence_ of_ glb , file =text_files/foundations_

of_reals]

Every non-empty set of real numbers which is bounded below has an greatest lower
bound.

Proof.
[author=duckworth,label=proof_that_existence_of_lub_implies_glb, file =text_files/

foundations_of_reals]

Let E be a non-empty set of of real numbers which is bounded below. Then −E
is bounded above (check this assertion). Let M be a least upper bound for −E.
Then −M is a greatest lower bound for E (check this assertion).

Notation.

[author=duckworth,label=notation_for_glb_and_lub, file =text_files/foundations_

of_reals]

Let E be a nonempty subset of the real numbers.

The greatest lower bound of E is denoted by inf E (“inf stands for the Latin
word infimum which was used historically in this context).

The least upper bound of E is denoted by supE (“sup” stands for the Latin
word supremum which was used historically in this context).

Lemma 2.3.1.
[author= wikibooks,label= lemma_ facts_ about_ infs_ and_ sups_ and_ subsets , file =text_

files/foundations_of_reals]

Let A and B be two nonempty subsets of the real numbers. The following hold:

1. A ⊆ B ⇒ supA ≤ supB

2. A ⊆ B ⇒ inf A ≥ inf B
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3. supA ∪B = max(sup A, supB)

4. inf A ∪B = min(inf A, inf B)

Triangle Inequality 2.3.2.
[author= duckworth , file =text_files/foundations_of_reals]

For all real numbers x, y we have |x+y| ≤ |x|+ |y|. This inequality can be picture
as in figure ??.

x=a−b, y=b−c

c

b

a|y|=|b−c|

|x|=|a−b||

|x+y| =|(a−b)+(b−c)|

triangle_inequality

Figure 2.2:

Comment.

[author=duckworth, file =text_files/foundations_of_reals]

The previous lemma is called the triangle inequality because it can be pictured
thus: sides

Proof.
[author=duckworth, file =text_files/foundations_of_reals]

Case 1: x and y are positive. Then |x + y| = x + y and |x|+ |y| = x + y.

Case 2: x is positive, y is negative, and x + y is positive. Then |x + y| = x + y
and |x|+ |y| = x− y. Now we calculate:

x + y ≤ x− y ⇐⇒ y ≤ −y

⇐⇒ 2y ≤ 0
⇐⇒ y ≤ 0

which is true

The other cases are similar.

2.4 Continuity

Discussion.

[author=garrett,label=discussion_of_limits_as_usually_easy, file =text_files/

continuity]

The idea of limit is intended to be merely a slight extension of our intuition. The
so-called ε, δ-definition was invented after people had been doing calculus for hun-
dreds of years, in response to certain relatively pathological technical difficulties.
For quite a while, we will be entirely concerned with situations in which we can
either ‘directly’ see the value of a limit by plugging the limit value in, or where we
transform the expression into one where we can just plug in.

So long as we are dealing with functions no more complicated than polynomials,
most limits are easy to understand: for example,

lim
x→3

4x2 + 3x− 7 = 4 · (3)2 + 3 · (3)− 7 = 38

lim
x→3

4x2 + 3x− 7
2− x2

=
4 · (3)2 + 3 · (3)− 7

2− (3)2
=

38
−7

The point is that we just substituted the ‘3’ in and nothing bad happened. This is
the way people evaluated easy limits for hundreds of years, and should always be
the first thing a person does, just to see what happens.
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Definition 2.4.1.

[author=wikibooks,label=definition_of_continuity_at_point, file =text_files/continuity]

We say that f(x) is at c if limx→c f(x) = f(c).

Discussion.

[author=duckworth,label=discussion_of_continuous_definition, file =text_files/

continuity]

The definition of continuous is a technical version of something that is supposed
to be intuitive. This is not done to make an easy thing seem hard. Rather, it is
done so that results can be rigorously proven. In fact, in every technical field it
is common to take an intuitive idea, often an idea that that exists outside of the
field, and translate it into a technical statement that can be used within the field.

Here’s two intuitive translations of the definition continuity:

1. To take the limit, just plug the number in.

2. What you get when you plug the number c in is what you get for numbers
near c.

The main intuitive ideas of continuity that this definition is supposed to capture
are these:

1. Continuous should mean that there are no holes in the graph. If you think
about it there are two types of holes, and in both cases, what is happening
at the number x = c is different than what is happening near the number.

jump_discontinuity

removable_discontinuity

2. The slope between x = c, y = f(c) and an other point on the curve of f(x)
is bounded, i.e. the absolute value of this slope does not become infinitely
large. The same pictures we drew showing holes in a discontinuos function
should also show you that the slopes become infinite. It will take us some
time to prove that the slope is bounded for a continous function.

Discussion.

[author=livshits,label=discussion_of_continuity_as_bounded_accuracy, file =text_

files/continuity]

Here is a real-life way to think about continuity. How much accuracy do we need
in x in order to get a certain accuracy in f(x)?” Or, to put it more precisely, how
many accurate decimal places in x do we need to get a certain number of accurate
decimal places in f(x)? You can view continuity as saying that it’s possible to get
a nice function which relates the accuracy of f(x) to the accuracy of x.

Here are a few examples.

1. f(x) = 100x + 7, then by taking n + 2 accurate decimal places in x we get
n accurate decimal places in f(x), no matter what x is.

2. f(x) = x2 and assume |2x| < 10k, then by taking n + k accurate decimal
places in x we get n accurate decimal places in f(x).
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3. f(x) =
√

(x), x = 0, then we need 2n accurate decimal places in x to get n
accurate decimal places in f(x), and it will work for x > 0 as well.

4. f(x) = 1/x and |x| > 10−k, then we can get n accurate decimal places in
f(x) by taking n + 2k accurate decimal places in x.

5. f(x) = sin(x), then we can get n accurate places in f(x) by taking n accurate
places in x.

The examples above suggest that as long as x stays away from the ”bad” values
(such as x = 0 for f(x) = 1/x) and from infinity (which means that there is an
estimate of the form |x| < A, like in example 2), we can answer the question in a
satisfactory manner. In othes words, given n, we can, by taking enough (but still
a finite number) of accurate decimal places in x get n accurate decimal places in
f(x).

Definition 2.4.2.

[author=duckworth,label=definition_of_continuous_on_interval, file =text_files/

continuity]

We say that a function f(x) is continous on an interval [a, b] if it is continous at
each number c in the interval.

Discussion.

[author=livshits, file =text_files/continuity]

Actually there are two brands of continuity.

If we fix x first and then worry about the question, we get continuity at this
particular x.

If we consider the whole range of values for x and then worry about the question
(?n), we get the uniform continuity (for this particular range of values of x).

This brand of continuity is more important for practical purposes.

There is a theorem by E. Heine (1872) that says that if a function f is contin-
uous at every x such that a ≤ x ≤ b, then f is uniformly continuous on the whole
closed interval [a, b] (which is the set of numbers x such that a ≤ x ≤ b).

This theorem becomes wrong if we replace one of the ≤ signs with the <
sign. We can understand why by inspecting in more detail the function 1/x from
example 4. It is continuous at every x of the interval (0, 1], but not uniformly
continuous on this interval

We will mostly deal with continuous functions on closed intervals and by con-
tinuity will mean the uniform continuity. Continuity at a given point will be less
important. In fact the whole notion of a given point becomes problematic when
we deal only with the finite accuracy approximations, but it is still handy for the
theory.

Discussion.

[author=livshits, file =text_files/continuity]

Continuous functions are rather reasonable, in particular, continuous functions
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don’t jump, in other words, if f is a continuous function defined on an interval
(a, b) and f(x) = 0 for all x 6= c then f(c) = 0 too.

Indeed, there is d 6= c such that a < d < b and d − c is as small as we want,
but f(d) = 0, therefore f(c) ≈ 0 with any accuracy we want, therefore we must
have f(c) = 0.

The following properties of continuous functions are immediate.

1. A sum of two continuous functions is continous.

2. A constant multiple of a continuous function is continuous.

It follows that our approach to differentiation (see section 2.1) works for con-
tinuous functions, i.e. the rule that f ′(a) is (f(x) − f(a))/(x − a) evaluated at
x = a defines f ′(a) unambiguously if the division is carried out in the class of
continuous functions.

It follows from the observation that any 2 continuous functions g and h such
that (x − a)(g(x) − h(x)) = 0 must be equal because they are equal for x 6= a as
well as for x = a (g − h can’t jump).

Discussion.

[author=wikibooks, file =text_files/finding_limits]

Now we will concentrate on finding limits, rather than proving them. In the proofs
above, we started off with the value of the limit. How did we find it to even begin
our proofs?

First, if the function is continuous at a particular point c, that the limit is
simply the value of the function at c, due to the definition of continuity. All
polynomial, trigonometric, logarithmic, and exponential functions are continuous
over their domains.

If the function is not continuous at c, then in many cases (as with rational
functions) the function is continuous all around it, but there is a discontinuity
at that isolated point. In that case, we want to find a similar function, except
with the hole is filled in. The limit of this function at c will be the same, as can
be seen from the definition of a limit. The function is the same as the previous
except at a point c. The limit definition depends on f(x) only at the points where
0 < |x− c| < δ. When x = c, that inequality is false, and so the limit at c does not
depend on the value of the function at c. Therefore, the limit is the same. And
since our new function in continuous, we can now just evaluate the function at c
as before.

Lastly, note that the limit might not exist at all. There are a number of ways
that this can occur There a is gap (more than a point wide) in the function where
the function is not defined.

Example 2.4.1.

[author=wikibooks, file =text_files/finding_limits]

As an example, in

f(x) =
√

x2 − 16

f(x) does not have any limit when −4 ≤ x ≤ 4. There is no way to ”approach”
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the middle of the graph. Note also that the function also has no limit at the
endpoints of the two curves generated (at x=-4 and x=4). For the limit to exist,
the point must be approachable from both the left and the right. Note also that
there is no limit at a totally isolated point on the graph.

Discussion.

[author=wikibooks, file =text_files/finding_limits]

Let’s take a closer look at different types of discontinuities.

Jump discontinuities It follows from the previous discussion that if the graph
suddenly jumps to a different level (creating a discontinuity, where the function
is not continuous), there is no limit. This is illustrated in the floor function (in
which the output value is the greatest integer not greater than the input value).

Asymptotic discontinuities In f(x) = 1
x2 the graph gets arbitrarily high as

x approaches 0. There is no limit.

Infinite Oscillation These next two can be tricky to visualize. In this one, we
mean that a graph continually rises above and below a horizontal line. In fact, it
does this infinitely often as you approach a certain x-value. This often means that
there is no limit, as the graph never homes in on a particular value. However, if
the height (and depth) of each oscillation diminishes as the graph approaches the
x-value, so that the oscillations get arbitrarily smaller, then there might actually
be a limit.

The use of oscillation naturally calls to mind trigonometric functions. And,
indeed, a simply-defined example of this kind of nonlimit is f(x) = sin 1x.

In the plain old sine function, there are an infinite number of waves as the
graph heads out to infinity. The 1/x takes everything that in (1,∞) and squeezes
it into (0, 1). There we have it infinite oscillation over a finite interval of the graph.

Incomplete graph Let us consider two examples. First, let f be the constant
function f(q) = 2 defined for some arbitrary number q. Let q0 be an arbitrary
value for q.

We can show that f is continuous at q0. Let δ > 0 then if we pick any ε > 0,
then whenever q is a real number within ε of q0, we have |f(q0)− f(q)| = |2− 2| =
0 < δ. So f is indeed continuous at q0.

Now let g be the similar-looking function defined on the entire real line, but
we change the value of the function based on whether q is rational or not.

g(q) =
{

2, if q is rational
0, if q is irrational

Now g is continuous nowhere! For let x be a real number we show that g isn’t
continuous at x. Let δ = 2 then if g were continuous at x, there’d be a number
ε such that whenever y was a real number at distance less than ε, we’d have
|g(x) − g(y)| < 1. But no matter how small we make ε we can find a number y
within ε of x such that |g(x)− g(y)| = 2 for if x is rational, just pick y irrational
and if x is irrational, pick x rational. Thus g fails to be continuous at every real
number!

Discussion.
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[author=garrett, file =text_files/limits_cancellation]

But sometimes things ‘blow up’ when the limit number is substituted:

lim
x→3

x2 − 9
x− 3

=
0
0

?????

Ick. This is not good. However, in this example, as in many examples, doing a bit
of simplifying algebra first gets rid of the factors in the numerator and denominator
which cause them to vanish:

lim
x→3

x2 − 9
x− 3

= lim
x→3

(x− 3)(x + 3)
x− 3

= lim
x→3

(x + 3)
1

=
(3 + 3)

1
= 6

Here at the very end we did just plug in, after all.

The lesson here is that some of those darn algebra tricks (‘identities’) are
helpful, after all. If you have a ‘bad’ limit, always look for some cancellation of
factors in the numerator and denominator.

In fact, for hundreds of years people only evaluated limits in this style! After
all, human beings can’t really execute infinite limiting processes, and so on.

Definition 2.4.3.

[author=wikibooks, file =text_files/discontinuities]

A discontinuity is a point where a function is not continuous. The discontinuity
is said to be removable if we can define or redefine a single value of the function
to make it continuous.

Example 2.4.2.

[author=wikibooks, file =text_files/discontinuities]

For example, the function f(x) = x2−9
x−3 is considered to have a “removable discon-

tinuity’ at x = 3.

In particular, we can divide the function to get f(x) = x + 3, except at x = 3.
If we let f(x) be 6 at that point, we will get a continuous function

g(x) =
{

x + 3, if x 6= 3
6, if x = 3

But x + 3 = 6 for x = 3, and so we can simplify the function to simply g(x)
= x + 3. (This is not the same as the original function, in that it has an extra
point at (3, 6).) Thus the limit at x = 3 is 6. In fact, this kind of simplification is
always possible with a removable discontinuity in a rational function. When the
denominator is not 0, we can divide through to get a function which is the same.
When it is 0, this new function will be identical to the old except for new points
where previously we had division by 0. And above it was proved that the limit of
this function (since it is continuous) is the same at the limit of the old function.

Exercises
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1. Find limx→5 2x2 − 3x + 4.

2. Find limx→2
x+1
x2+3 .

3. Find limx→1

√
x + 1.

4. Verify the claims in these examples. (Hint: use the fact that the chord is
shorter than the corresponding arc to treat the example 5.)

5. Generilize example 2 to f(x) = xm and example 3 to x1/m.

6. Check that 1/x is continuous, but not uniformly continuous on (0, 1]

(The following exercises an outline of another approach to continuity using
the moduli of continuity, all functions are defined on a closed interval)

7. An increasing function that hits all its intermediate values is continuous.

8. The inverse of an increasing function is continous.

9. Bolzano theorem says that a continouous function defined on [a, b] hits all the
values between f(a) and f(b). Derive the following: an increasing function
is continuous if and only if it hits all its intermediate values.

10. A continuous function that has an inverse must be monotonic (= increasing
or decreasing). (Hint: Use Bolzano).

11. A one-to-one function from an interval onto another interval is continuous if
and only if its inverse is continuous.

12. Assume that |f(x) − f(a)| ≤ g(|x − a|) with increasing continuous g and
g(0) = 0. Then f is continuous at a.

13. Let |f(x + h)− f(x)| ≤ g(|h|) for any x, with g as in the previous exercise.
Then f is uniformly continuous.
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2.5 Limits at infinity

Discussion.

[author=garrett, file =text_files/limits_at_infinity]

On the other hand, what we really mean anyway is not that x ‘becomes infinite’ in
some mystical sense, but rather that it just ‘gets larger and larger’. In this context,
the crucial observation is that, as x gets larger and larger, 1/x gets smaller and
smaller (going to 0). Thus, just based on what we want this all to mean,

lim
x→∞

1
x

= 0

lim
x→∞

1
x2

= 0

lim
x→∞

1
x3

= 0

and so on.

This is the essential idea for evaluating simple kinds of limits as x → ∞:
rearrange the whole thing so that everything is expressed in terms of 1/x instead
of x, and then realize that

lim
x→∞

is the same as lim
1
x→0

Example 2.5.1.

[author=garrett, file =text_files/limits_at_infinity]

Next, let’s consider

lim
x→∞

2x + 3
5− x

The hazard here is that ∞ is not a number that we can do arithmetic with in the
normal way. Don’t even try it. So we can’t really just ‘plug in’∞ to the expression
to see what we get.

So, divide numerator and denominator both by the largest power of x appearing
anywhere:

lim
x→∞

2x + 3
5− x

= lim
x→∞

2 + 3
x

5
x − 1

= lim
y→0

2 + 3y

5y − 1
=

2 + 3 · 0
5 · 0− 1

= −2

Discussion.

[author=garrett, file =text_files/limits_at_infinity]

The point is that we called 1/x by a new name, ‘y’, and rewrote the original limit
as x → ∞ as a limit as y → 0. Since 0 is a genuine number that we can do
arithmetic with, this brought us back to ordinary everyday arithmetic. Of course,
it was necessary to rewrite the thing we were taking the limit of in terms of 1/x
(renamed ‘y’).

Notice that this is an example of a situation where we used the letter ‘y’ for
something other than the name or value of the vertical coordinate.
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Discussion.

[author=garrett, file =text_files/limits_infinity_exponential]

It is important to appreciate the behavior of exponential functions as the input to
them becomes a large positive number, or a large negative number. This behavior
is different from the behavior of polynomials or rational functions, which behave
similarly for large inputs regardless of whether the input is large positive or large
negative. By contrast, for exponential functions, the behavior is radically different
for large positive or large negative.

As a reminder and an explanation, let’s remember that exponential notation
started out simply as an abbreviation: for positive integer n,

2n = 2× 2× 2× . . .× 2 (n factors)

10n = 10× 10× 10× . . .× 10 (n factors)(
1
2

)n

=
(

1
2

)
×
(

1
2

)
×
(

1
2

)
× . . .×

(
1
2

)
(n factors)

From this idea it’s not hard to understand the fundamental properties of
exponents (they’re not laws at all):

am+n = a× a× a× . . .× a︸ ︷︷ ︸
m+n

(m + n factors)

= (a× a× a× . . .× a)︸ ︷︷ ︸
m

× (a× a× a× . . .× a)︸ ︷︷ ︸
n

= am × an

and also
amn = (a× a× a× . . .× a)︸ ︷︷ ︸

mn

=

= (a× a× a× . . .× a)︸ ︷︷ ︸
m

× . . .× (a× a× a× . . .× a)︸ ︷︷ ︸
m︸ ︷︷ ︸

n

= (am)n

at least for positive integers m,n. Even though we can only easily see that these
properties are true when the exponents are positive integers, the extended notation
is guaranteed (by its meaning, not by law) to follow the same rules.

Discussion.

[author=garrett, file =text_files/limits_infinity_exponential]

Use of other numbers in the exponent is something that came later, and is also just
an abbreviation, which happily was arranged to match the more intuitive simpler
version. For example,

a−1 =
1
a

and (as consequences)

a−n = an×(−1) = (an)−1 =
1
an
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(whether n is positive or not). Just to check one example of consistency with the
properties above, notice that

a = a1 = a(−1)×(−1) =
1

a−1
=

1
1/a

= a

This is not supposed to be surprising, but rather reassuring that we won’t reach
false conclusions by such manipulations.

Also, fractional exponents fit into this scheme. For example

a1/2 =
√

a a1/3 = 3
√

a

a1/4 = 4
√

a a1/5 = 5
√

a

This is consistent with earlier notation: the fundamental property of the nth root
of a number is that its nth power is the original number. We can check:

a = a1 = (a1/n)n = a

Again, this is not supposed to be a surprise, but rather a consistency check.

Then for arbitrary rational exponents m/n we can maintain the same proper-
ties: first, the definition is just

am/n = ( n
√

a)m

One hazard is that, if we want to have only real numbers (as opposed to
complex numbers) come up, then we should not try to take square roots, 4th

roots, 6th roots, or any even order root of negative numbers.

For general real exponents x we likewise should not try to understand ax except
for a > 0 or we’ll have to use complex numbers (which wouldn’t be so terrible).
But the value of ax can only be defined as a limit : let r1, r2, . . . be a sequence of
rational numbers approaching x, and define

ax = lim
i

ari

We would have to check that this definition does not accidentally depend upon
the sequence approaching x (it doesn’t), and that the same properties still work
(they do).

Discussion.

[author=garrett, file =text_files/limits_infinity_exponential]

The number e is not something that would come up in really elementary math-
ematics, because its reason for existence is not really elementary. Anyway, it’s
approximately

e = 2.71828182845905

but if this ever really mattered you’d have a calculator at your side, hopefully.

Discussion.

[author=garrett, file =text_files/limits_infinity_exponential]
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With the definitions in mind it is easier to make sense of questions about limits
of exponential functions. The two companion issues are to evaluate

lim
x→+∞

ax

lim
x→−∞

ax

Since we are allowing the exponent x to be real, we’d better demand that a be a
positive real number (if we want to avoid complex numbers, anyway). Then

lim
x→+∞

ax =

+∞ if a > 1
1 if a = 1
0 if 0 < a < 1

lim
x→−∞

ax =

 0 if a > 1
1 if a = 1

+∞ if 0 < a < 1

To remember which is which, it is sufficient to use 2 for a > 1 and 1
2 for

0 < a < 1, and just let x run through positive integers as it goes to +∞. Likewise,
it is sufficient to use 2 for a > 1 and 1

2 for 0 < a < 1, and just let x run through
negative integers as it goes to −∞.

Exercises

1. Find limx→∞
x+1
x2+3 .

2. Find limx→∞
x2+3
x+1 .

3. Find limx→∞
x2+3

3x2+x+1 .

4. Find limx→∞
1−x2

5x2+x+1 .

5. Find limx→∞ e−x2



Chapter 3

Derivatives

3.1 The idea of the derivative of a function

Discussion.

[author=wikibooks, file =text_files/derivatives_intro]

Historically, the primary motivation for the study of ’differentiation’ was to solve
a problem in mathematics known as the tangent line problem for a given curve,
find the slope of the straight line that is tangent to the curve at a given point.

The solution is obvious in some cases for example, a straight line, y = mx +
c, is its own tangent so the slope at any point is m. For the parabola y = x2, the
slope at the point (0,0) is 0 (the tangent line is flat). In fact, at any vertex of
any smooth function the slope is zero, because the tangent line slopes in opposite
directions on either side.

But how does one find the slope of, say, y = sin(x) + x2 at x = 1.5?

The easiest way to find slopes for any function is by differentiation. This
process results in another function whose value for any value of x is the slope of
the original function at x. This function is known as the derivative of the original
function, and is denoted by either a prime sign, as in f ′(x) (read ”f prime of x”),
the quotient notation, df

dx or d
dx [f ] (which is more useful in some cases), or the

differential operator notation, Dx[f(x)], which is generally just written as Df(x).

Most of the time, the brackets are not needed, but are useful for clarity if we
speak of something like D (fg) for a product.

Example 3.1.1.

[author=wikibooks, file =text_files/derivatives_intro]

For example, if f(x) = 3x + 5, then f ′(x) = 3, no matter what x is. If f(x) =
—x—, the absolute value function, then

f ′(x) =

 −1, x < 0
undefined, x = 0

1, x > 0

The reason f’(x) is undefined at 0 is that the slope suddenly changes at 0, so
there is no single slope at 0 - it could be any slope from -1 to 1 inclusive.

61
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Definition 3.1.1.

[author=wikibooks, file =text_files/derivatives_intro]

The definition of slope between two points (x1, y1) and (x2, y2) is m = ∆y
∆x = y2−y1

x2−x1
.

If the two points are on a function f(x) and f(xi) = yi.

If we let h = ∆x = x2 − x1 then x2 = x1 + h and y2 = f(x2) = f(x1 + h) and
of course y1 = f(x1)

we find that by substituting these into the former equation, we can express it
in terms of two variables (h and x1)

m = ∆y
∆x = y2−y1

x2−x1
= f(x1+h)−f(x1)

h .

We then, to find the slope at a single point, let x2 → x1 to become any point
x. This also defines h → 0. By defining h and x, we have defined the slope - or
derivative - at any single point x as the [[CalculusLimits—limit]]

limh→0
f(x+h)−f(x)

h

Definition 3.1.2.

[author=duckworth,, file =text_files/derivatives_intro]

After we have absorbed the idea of the derivative at a single point x = a, we will
start looking for formulas which will work for any value of a. In this context, we
don’t know what a is and so we will write x instead of a. The derivative of f(x)
is the following function:

lim
h→0

f(x + h)− f(x)
h

.

We write this as f ′(x) or df
dx or d

dxf(x).

Example 3.1.2.

[author=duckworth, file =text_files/derivatives_intro]

For example, let f(x) = x2 and suppose we are interested in the derivative at
a = 2, 3 and 4. We can show that f ′(2) = 4 and f ′(3) = 6 and f ′(4) = 8. But it is
more compact to say that f ′(x) = 2x and let anyone who wants to plug numbers
into the formula.

Discussion.

[author=wikibooks, file =text_files/velocity_problem_as_limit]

To see the power of the limit, let’s go back to the moving car we talked about at
the introduction. Suppose we have a car whose position is linear with respect to
time (that is, that a graph plotting the position with respect to time will show a
staight line). We want to find the velocity. This is easy to do from algebra, we
just take a slope, and that’s our velocity.

But unfortunately (or perhaps fortunately if you are a calculus teacher), things
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in the real world don’t always travel in nice straight lines. Cars speed up, slow
down, and generally behave in ways that make it difficult to calculate their veloc-
ities. (figure 2)

Now what we really want to do is to find the velocity at a given moment.
(figure 3) The trouble is that in order to find the velocity we need two points,
while at any given time, we only have one point. We can, of course, always find
the average speed of the car, given two points in time, but we want to find the
speed of the car at one precise moment.

Here is where the basic trick of differential calculus comes in. We take the
average speed at two moments in time, and then make those two moments in time
closer and closer together. We then see what the limit of the slope is as these two
moments in time are closer and closer, and as those two moments get closer and
closer, the slope comes out to be closer and closer to the slope at a single instant.

Discussion.

[author=garrett, file =text_files/derivative_idea]

First we can tell what the idea of a derivative is. But the issue of computing
derivatives is another thing entirely: a person can understand the idea without
being able to effectively compute, and vice-versa.

Suppose that f is a function of interest for some reason. We can give f some
sort of ‘geometric life’ by thinking about the set of points (x, y) so that

f(x) = y

We would say that this describes a curve in the (x, y)-plane. (And sometimes we
think of x as ‘moving’ from left to right, imparting further intuitive or physical
content to the story).

For some particular number xo, let yo be the value f(xo) obtained as output by
plugging xo into f as input. Then the point (xo, yo) is a point on our curve. The
tangent line to the curve at the point (xo, yo) is a line passing through (xo, yo)
and ‘flat against’ the curve. (As opposed to crossing it at some definite angle).

The idea of the derivative f ′(xo) is that it is the slope of the tangent line at
xo to the curve. But this isn’t the way to compute these things...

Example 3.1.3.

[author=livshits, file =text_files/derivative_idea]

A troublemaker on the seventh floor dropped a plastic bag filled with water. It
took the bag 2 seconds to hit the ground. How fast was the bag moving at that
moment? The distance the bag drops in t seconds is s(t) = 16t2 feet.

The average velocity of the bag between time t and time 2 is (s(t)−s(2))/(t−2).
If we take t = 2 the expression becomes 0/0 and it is undefined. To make sense out
of it we should use the formula for s(t). When we plug it in, we get 16(t2−22)/(t−
2). The numerator is divisible by the denominator because t2−22 = (t+2)(t−2),
therefore the expression can be rewritten as 16(t+2), and it makes sense for t = 2
too. The problem is solved; the velocity of the bag when it hits the ground is
16(2 + 2) = 64 ft/sec. More generally, the velocity at time t will be 32t (exercise).

Was it just luck? Not at all! The reason for our success is that the numerator
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is a polynomial in t that vanishes at t = 2, so the numerator is divisible by t − 2
(see section 1.2); the ratio, which is 16(t + 2), is a polynomial in t and is defined
for t = 2. Now we can see that the trick will work when s(t) is any polynomial
whatsoever.

But is our trick good only for polynomials? No, as we can see from the following
problem.

Example 3.1.4.

[author=livshits, file =text_files/derivative_idea]

The area of a circular puddle is growing at π square feet per second. How fast is
the radius of the puddle growing at time T? Assume that the area was 0 at time
0 when the puddle started growing.

Let us denote by r(t) the radius of the puddle at time t. Then the area of the
puddle at time t is πr(t)2, which must be equal to πt. Therefore r(t) =

√
πt/π =√

t. Now we have to make sense out of the expression (
√

t−
√

T )/(t−T ) for t = T .
To do so we can multiply both the numerator and the denominator by

√
t +

√
T ,

then we get (t−T )/(
√

t+
√

T )(t−T ) = 1/(
√

t+
√

T ) which makes sense for t = T .
We conclude that at time T the radius r is growing at 1/(2

√
(T )) feet per second.

You may notice that it is the same trick “upside down”, because if we put z =√
t and Z =

√
T , the undefined expression to take care of becomes (z−Z)/(z2−Z2)

which is the same as (z − Z)/((z − Z)(z + Z)).

Here is one more similar problem that is easy enough to do ”with the bare
hands”.

Example 3.1.5.

[author=livshits, file =text_files/derivative_idea]

the slope of the tangent line to the hyperbola y = 1/x at the point x = a, y = 1/a.

The slope of the secant line that passes through the points (a, 1/a) and (x, 1/x)
is (1/x− 1/a)/(x− a) which is an expression that is not defined for x = a, but we
can rewrite it in the form −(x− a)/(xa)/(x− a) which becomes (after we cancel
x− a) −1/(xa) which is defined for x = a and is −1/a2.

y

x

(a,1/a)

the tangent

the secant

(x,1/x)

y=1/x

1_over_x_tangent_secant

Definition 3.1.3.

[author=wikibooks, file =text_files/derivatives_definition]

f ′(x) = lim
h→0

f(x + h)− f(x)
h
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This is known as the definition of a derivative. The more visual explanation of
this formula is that the slope of the tangent line touching one point is the limit of
the slopes of the secant lines intersecting two points near that point, as the two
points merge to one.

Example 3.1.6.

[author=wikibooks, file =text_files/derivatives_definition]

Let us try this for a simple function

f(x) = x
2

f ′(x) = limh→0

x
2 + h

2−
x
2

h = limh→0
1
2 = 1

2

This is consistent with the definition of the derivative as the slope of a function.

Example 3.1.7.

[author=wikibooks, file =text_files/derivatives_definition]

Sometimes, the slope of a function varies with x. This is easily demonstrated by
the function f(x) = x2,

f ′(x) = limh→0
(x2+2xh+h2)−x2

h

= limh→0
2xh+h2

h
= limh→0 2x + h
= 2x.

Though this may seem surprising, because y = x2 fits y = mx + c if m = x
and c = 0, it becomes intuitive when one realizes that the slope changes twice as
fast as with m = x because there are two xs that vary.

Discussion.

[author=livshits, file =text_files/derivatives_definition]

In each of the three problems that we dealt with so far we had a function, let
us call it now f(x), and we had to make sense out of the ratio q(x, a) = (f(x) −
f(a))/(x − a) (which is called the difference quotient) for x = a. The difference
quotient q(x, a) is well defined for x 6= a, but when x = a both the numerator
and the denominator vanish, so q(a, a) is undefined if we treat it as the quotient
of numbers (it is clear that any number c can be considered as the quotient 0/0
because c · 0 = 0 for any c).

Our approach was to rewrite the expression for q(x, a) in a form p(x, a) that
is well defined for x = a and that agrees with q(x, a) for x 6= a. For example, in
the third problem f(x) = 1/x, q(x, a) = (1/x − 1/a)/(x − a) which is undefined
for x = a, p(x, a) = −1/(xa) which is well defined for x = a, also q(x, a) = p(x, a)
for x 6= a.

The key idea is to consider the numerator and the denominator in q(x, a), as
well as p(x, a), as functions of a certain class, not as numbers, to disambiguate the
ambiguous expression 0/0.

For example, in the first problem our class of functions is the polynomials of t,
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in the second problem it is the class of rational functions of
√

t and
√

T , while in
the third problem it is the class of rational functions of x and a.

Why do we need a special class of functions? Why can’t we consider all func-
tions whatsoever? Because the class of all functions is too wide to disambiguate
the ambiguous ratio 0/0. Indeed, if we allow p(x, a) to be any function such that
q(x, a) = p(x, a) for x 6= a, we can get no information about p(a, a) because p(a, a)
can be changed to any number if we admit all the functions into the game. We
see that some restrictions on the functions that we treat are inevitable.

The following property of the functions we treated so far was crucial for our
success: any 2 of such functions that are defined for x = a and coincide for all x 6= a
also coincide for x = a. It means that the value p(a, a) is defined unambiguously by
the condition that p(x, a) = q(x, a) for x 6= a (see the last paragraph of section ??).

Later on we will describe some other classes of functions, much more general
than the ones we dealt with so far, but still nice enough for our machinery to work.

To summarize briefly, the function f is differentiable if the increment f(x)−f(a)
factors as f(x)− f(a) = (x− a)p(x, a) and the function p(x, a) is well defined for
x = a. The derivative f ′(a) = p(a, a).

In the next section we will consider some elementary properties (the rules) of
differentiation that will be handy in calculations.

Discussion.

[author=wikibooks, file =text_files/derivative_notation]

The derivative notation is special and unique in mathematics. The most common
use of derivatives you’ll run into when first starting out with differentiating, is the
dy
dx differentiation. You can think of this as ”change in y divided by change in
x”. You can also think of it as ”infinitesimal value of y divided by infinitesimal
value of x”. Either way is a good way of thinking. Often, in an equation, you will
see just d

dx , which literally means ”derivative with respect to x”. You can safely
assume that this is the equivalent of dy

dx for now.

Also, later, as you advance through your studies, you will see that dy and
dx can act as separate entities that can be multiplied and divided (to a certain
degree). Eventually you will see derivatives such as dx

dy , which sometimes will be
written d

dy , or you’ll see a derivative in polar coordinates marked up as dθ
dr .

Notation.

[author=livshits, file =text_files/derivative_notation]

The standard notation (due to Lagrange) for the derivative of f for x = a is f ′(a).
We can also consider it as a function of a and then differentiation becomes the
operation of passing from a function f to its derivative f ′ (which is also a function
of x).

The other notation for f ′ (due to Leibniz) is df/dx. In particular, we can say
that we calculated s′(2) in our first problem, r′(T ) in our second problem and
dy/dx(a) in our third problem. We can also write the results we got so far as
(16t2)′ = 32t,

√
t
′
= 1/(2

√
t and d(1/x)/dx = −1/x2.

Newton used dots on top of the letters denoting functions as the differentiation
sign; for example, by solving problem 1, we got ṡ(t) = 32t. This notation is still
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popular in mechanics.

3.2 Derivative Shortcuts

Example 3.2.1.

[author=livshits, file =text_files/deriv_of_polys]

In this section we will discuss the division of polynomials and prove that p(x) is
divisible by x − a if and only if p(a) = 0. From this fact we will derive that a
polynomial of degree d can not have more than d zeroes. It will follow that 2
rational functions that coincide on an infinite set also coincide wherever both of
them are defined.

Polynomials can be divided with remainder pretty much the same way as inte-
gers. Let us start with an example that will make the general rule clear. We will
divide 3x7 + 5x4 + x2 + 1 by x− 3.

3x6+9x5+27x4+86x3+258x2+ 775x+2325

x− 3)3x7+ 5x4+ x2+ 1

3x7− 9x6

9x6+ 5x4+ x2+ 1

9x6−27x5

27x5+ 5x4+ x2+ 1

27x5− 81x4

86x4+ x2+ 1

86x4−258x3

258x3+ x2+ 1

258x3− 774x2

775x2+ 1

775x2−2325x

2325x+ 1
2325x−6975

6976

On each step we multiplied the divisor by the monomial to kill the leading
term of the remainder obtained at the previous step. This way the degree of the
remainder dropped by one every step of the process. The process stops when the
degree of the remainder is less than the degree of the divisor. The remainder in
our example is 6976. On the other hand, p(3) = 6976 too. Is it a coincidence? No,
because the result of the division can be written as

p(x) = 3x7+5x4+x2+1 = (3x6+9x5+27x4+86x3+258x2+775x+2325)(x−3)+6976

and we can plug x = 3 into this formula to see that p(3) = 6976. In general, p(a)
is the remainder of the division of p(x) by x−a, in particular, p(a) = 0 if and only
if x− a divides p(x) evenly, i.e. with zero remainder.
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This is a very important fact. Assume that a1, ..., ak are the roots of p(x).
Then each x−aj divides p(x), whence p(x) = (x−a1)...(x−ak)g(x), so the degree
of p is at least k. It follows that a polynomial of degree d can not have more than
d different roots. In particular, no nonzero polynomial can have infinite number
of roots; in other words, if a polynomial has an infinite number of roots, it is
zero. Also two polynomial functions that coincide on an infinite set must coincide
everywhere (consider their difference!).

We can also see that any rational function is well defined for all the values of
the argument except for the finite number of values at which some denominator
involved in this function vanishes.

It also follows that a rational function can have at most a finite number of
zeroes, in particular, any two rational functions that coincide on an infinite set
coincide wherever they are both defined (exercise!).

We can use this fact to check our algebraic manipulations. For example, if we
rewrite some formula in a different form, to catch a mistake it is usually enough
to plug in some random number into both formulas and see if they give different
results. The probability that this approach fails is zero.

Discussion.

[author=garrett, file =text_files/deriv_of_polys]

There are just four simple facts which suffice to take the derivative of any polyno-
mial, and actually of somewhat more general things.

Rule 3.2.1.

[author=garrett, file =text_files/deriv_of_polys]

First, there is the rule for taking the derivative of a power function which takes
the nth power of its input. That is, these functions are functions of the form
f(x) = xn. The formula is

d

dx
xn = n xn−1

That is, the exponent comes down to become a coefficient in front of the thing,
and the exponent is decreased by 1.

Rule 3.2.2.

[author=garrett, file =text_files/deriv_of_polys]

The second rule, which is really a special case of this power-function rule, is that
derivatives of constants are zero:

d

dx
c = 0

for any constant c.

Rule 3.2.3.

[author=garrett, file =text_files/deriv_of_polys]
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The third thing, which reflects the innocuous role of constants in calculus, is that
for any function f of x we have

d

dx
c · f = c · d

dx
f

The fourth is that for any two functions f, g of x, the derivative of the sum is the
sum of the derivatives:

d

dx
(f + g) =

d

dx
f +

d

dx
g

Rule 3.2.4.

[author=garrett, file =text_files/deriv_of_polys]

Putting these four things together, we can write general formulas like

d

dx
(axm + bxn + cxp) = a ·mxm−1 + b · nxn−1 + c · pxp−1

and so on, with more summands than just the three, if so desired. And in any
case here are some examples with numbers instead of letters:

d

dx
5x3 = 5 · 3x3−1 = 15x2

d

dx
(3x7 + 5x3 − 11) = 3 · 7x6 + 5 · 3x2 − 0 = 21x6 + 15x2

d

dx
(2− 3x2 − 2x3) = 0− 3 · 2x− 2 · 3x2 = −6x− 6x2

d

dx
(−x4 + 2x5 + 1) = −4x3 + 2 · 5x4 + 0 = −4x3 + 10x4

Even if you do catch on to this idea right away, it is wise to practice the
technique so that not only can you do it in principle, but also in practice.

Rule 3.2.5.

[author=livshits, file =text_files/deriv_of_polys]

Sums Rule: (f + g)′(x) = f ′(x) + g′(x)

Multiplier Rule: (cf)′(x) = cf ′(x) when c is a constant

Both rules together say that differentiation is a linear operation. These rules
are sort of obvious. For example, to calculate (f +g)′(a) we consider the difference
quotient (f(x) + g(x)− (f(a) + g(a)))/(x− a) which can be rewritten as (f(x)−
f(a))/(x − a) + (g(x) − g(a))/(x − a). Since both additive terms make sense for
x = a and produce f ′(a) and g′(a), we are done.
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Examples 3.2.2.

[author=garrett, file =text_files/deriv_powers]

It’s important to remember some of the other possibilities for the exponential
notation xn. For example

x1/2 =
√

x

x−1 =
1
x

x−1/2 =
1√
x

and so on. The good news is that the rule given just above for taking the derivative
of powers of x still is correct here, even for exponents which are negative or fractions
or even real numbers:

d

dx
xr = r xr−1

Thus, in particular,
d

dx

√
x =

d

dx
x1/2 =

1
2
x−1/2

d

dx

1
x

=
d

dx
x−1 = −1 · x−2 =

−1
x2

When combined with the sum rule and so on from above, we have the obvious
possibilities:

Example 3.2.3.

[author=garrett, file =text_files/deriv_powers]

d

dx
(3x2 − 7

√
x +

5
x2

=
d

dx
(3x2 − 7x

1
2 + 5x−2) = 6x− 7

2
x−1/2 − 10x−3

Comment.

[author=garrett, file =text_files/deriv_powers]

The possibility of expressing square roots, cube roots, inverses, etc., in terms of
exponents is a very important idea in algebra, and can’t be overlooked.

Discussion.

[author=wikibooks, file =text_files/derivative_rules]

The process of differentiation is tedious for large functions. Therefore, rules for
differentiating general functions have been developed, and can be proved with a
little effort. Once sufficient rules have been proved, it will be possible to differen-
tiate a wide variety of functions. Some of the simplest rules involve the derivative
of linear functions.

Rule 3.2.6.

[author=wikibooks, file =text_files/derivative_rules]
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Constant rule d
dxc = 0

Linear functions d
dxmx = m

The special case dy
dx = 1 shows the advantage of the d/dx notation - rules

are intuitive by basic algebra, though this does not constitute a proof, and
can lead to misconceptions to what exactly dx and dy actually are.

Constant multiple and addition rules Since we already know the rules for
some very basic functions, we would like to be able to take the derivative
of more complex functions and break them up into simpler functions. Two
tools that let us do this are the constant multiple rules and the addition rule.

The constant multiple rule is d
dxcf(x) = c d

dxf(x)

The reason, of course, is that one can factor the c out of the numerator, and
then of the entire limit, in the definition.

Example 3.2.4.

[author=wikibooks, file =text_files/derivative_rules]

Example we already know that d
dxx2 = 2x Suppose we want to find the derivative

of 3x2 d
dx3x2 = 3 d

dxx2 = 3× 2x = 6x

Rule 3.2.7.

[author=wikibooks, file =text_files/derivative_rules]

Addition rule d
dx (f(x) + g(x)) = d

dxf(x) + d
dxg(x)

Subtraction Rule d
dx (f(x)− g(x)) = d

dxf(x)− d
dxg(x)

Example 3.2.5.

[author=wikibooks, file =text_files/derivative_rules]

Example what is d
dx

(
3x2 + 5x

)
d
dx

(
3x2 + 5x

)
= d

dx3x2 + d
dx5x

= 6x + d
dx5x

= 6x + 5

Comment.

[author=wikibooks, file =text_files/derivative_rules]

The fact that both of these rules work is extremely significant mathematically
because it means that differentiation is linear. You can take an equation, break
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it up into terms, figure out the derivative individually and build the answer back
up, and nothing odd will happen.

Rule 3.2.8.

[author=wikibooks, file =text_files/derivative_rules]

The Power Rule d
dxxn = nxn−1 - that is, bring down the power and reduce it

by one.

Example 3.2.6.

[author=wikibooks, file =text_files/derivative_rules]

For example, in the case of x2, the derivative is 2x1 = 2x, as was established
earlier.

Example 3.2.7.

[author=wikibooks, file =text_files/derivative_rules]

The power rule also applies to fractional and negative powers, therefore

d
dx [
√

x] = d
dx

[
x1/2

]
= 1

2x−1/2 = 1
2
√

x
=

√
x

2x

Comment.

[author=wikibooks, file =text_files/derivative_rules]

Since polynomials are sums of monomials, using this rule and the addition rule
lets you differentiate any polynomial.

Example 3.2.8.

[author=wikibooks, file =text_files/derivative_rules]

With the rules in hand we can now find the derivative of any polynomial we want.
Rather than write the general formula, let’s go step by step through the process
d
dx

[
6x5 + 3x2 + 3x + 1

]
The first thing we can do is to use the addition rule to

split the equation up into terms d
dx6x5 + d

dx3x2 + d
dx3x + d

dx1 Immediately we can
use the linear and constant rules to get rid of some terms d

dx6x5 + d
dx3x2 + 3 + 0

We use the constant muliplier rule to move the constants outside the derivative
6 d

dxx5 + 3 d
dxx2 + 3 Then we use the power rule to work with the powers 6(5x4) +

3(2x) + 3 And then we do some simple math to get our answer 30x4 + 6x + 3

Exercises

1. Find d
dx (3x7 + 5x3 − 11)
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2. Find d
dx (x2 + 5x3 + 2)

3. Find d
dx (−x4 + 2x5 + 1)

4. Find d
dx (−3x2 − x3 − 11)

5. Find d
dx (3x7 + 5

√
x− 11)

6. Find d
dx ( 2

x + 5 3
√

x + 3)

7. Find d
dx (7− 5

x3 + 5x7)
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3.3 An alternative approach to derivatives

Discussion.

[author=livshits, file =text_files/increasing_function_theorem]

Our treatment of differentiation in Sections ?? and ?? was rather formal. In
this section we will try to understand why a tangent looks like a tangent and
why the average velocity over a small time interval is a good approximation for
the instantaneous velocity. We will also prove the Increasing Function Theorem
(IFT). This theorem says that if the derivative of a function is not negative, the
function is nondecreasing. To put it informally, it says that if the velocity of a car
is not negative, the car will not move backward. IFT will play the major role in
our treatment of Calculus.

Example 3.3.1.

[author=livshits, file =text_files/increasing_function_theorem]

Let us start with a rather typical example. Consider a cubic polynomial f(x) = x3

and the tangent to its graph at the point (a, a3).

The equation of this tangent is y = a3 + 3a2(x − a), and the vertical dis-
tance from a point on this tangent to the graph will be |x3 − a3 − 3a2(x − a)| =
|(x−a)(x2 +xa+a2)− 3a2(x−a)| = |(x−a)(x2 +ax− 2a2)| = |(x−a)(x2−a2 +
a(x− a))| = |(x− a)((x− a)(x + a) + a(x− a))| = |x + 2a|(x− a)2.

y

x

a x

y=x3

x −a −3a (x−a)3 3 2

O

A

C

2 2
|BC| =  (|OB| + |AC|  − |OB|

B

strange_cubic_tangent_circle

We see that this distance has a factor (x− a)2 in it. The other factor, |x + 2a|
will be bounded by some constant K if we restrict x and a to some finite segment
[A,B], in other words, if we demand that A ≤ x ≤ B and A ≤ a ≤ B (in fact we
can take K = 3max{|A|, |B|}).

Now the whole estimate can be rewritten as |f(x) − f(a) − f ′(a)(x − a)| ≤
K(x − a)2 for x and a in [A,B]. Here K may depend only on function f and on
segment [A,B], but not on x and a. We can also see that |(f(x)− f(a))/(x− a)−
f ′(a)| ≤ K|x− a| for x 6= a.

The same kind of estimates hold when f is any polynomial or a rational function
defined everywhere in [A,B], it is also true if f is sin or cos

Definition 3.3.1.

[author=livshits, file =text_files/increasing_function_theorem]

We say that f is uniformly Lipschitz differentiable on [A,B] if for some constant
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K we have
|f(x)− f(a)− f ′(a)(x− a)| ≤ K(x− a)2 (3.1)

for all x and a in [A,B].

Comment.

[author=livshits, file =text_files/increasing_function_theorem]

Geometrically speaking, ?? says that the graph y = f(x) is located between the 2
parabolas: it is above the lower parabola with the equation

y = f(a) + f ′(a)(x− a)−K(x− a)2

and below the upper parabola with the equation

y = f(a) + f ′(a)(x− a) + K(x− a)2.

To see this we only have to rewrite Equation 3.1 in the form

f(a) + f ′(a)(x− a)−K(x− a)2 ≤ f(x) ≤ f(a) + f ′(a)(x− a) + K(x− a)2

y

x

y=f(x)

a

f(a)

y=f(a
)+

f (
a)(

x-a)

y=f(a)+f (a)(x-a)-K(x-a)

y=f(a)+f (a)(x-a)+K(x-a)2

2

tangent_parabs_bound_graph

We will often use “ULD” as an abbreviation for “uniformly Lipschitz differen-
tiable.”

The figure showing the upper and lower parabolas suggests that any ULD func-
tion with a positive derivative will be increasing. This is not easy to show, however,
if we assume that f ′(x) ≥ C for some C > 0, it becomes easy to demonstrate that
f is increasing.

Comment.

[author=livshits, file =text_files/increasing_function_theorem]

Another motivation for this definition is related to the idea to view differentiation
as factoring of functions of a certain class, that was developed in section 2.1. Let
us say that we want to deal only with the functions that don’t change too abruptly.
To insure it we can demand that |f(x)− f(a)| can be estimated in terms |x− a|,
the simplest estimate of this kind is used in the following definition.

Definition 3.3.2.
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[author=livshits, file =text_files/increasing_function_theorem]

A function g defined on [A,B] is uniformly Lipschitz continuous if

|g(x)− g(a)| ≤ L|x− a| (3.2)

for all x and a in [A,B].

Comment.

[author=livshits, file =text_files/increasing_function_theorem]

Important: the constant L (which is called a Lipschitz constant for g and [A,B]) in
this definition depends only on the function and the interval, but not on individual
x or a.

Definition 3.3.3.

[author=livshits, file =text_files/increasing_function_theorem]

We will often use “ULC” as an abbreviation for “uniformly Lipschitz continuous.”

Definition 3.3.4.

[author=livshits, file =text_files/increasing_function_theorem]

Now let us say that f(x) − f(a) factors as f(x) − f(a) = (x − a)p(x, a) where
p(x, a) is a ULC function of x and f ′(a) = p(a, a). Then the following inequality
holds for x 6= a:

|f(x)− f(a)
x− a

− f ′(a)| ≤ L(a)|x− a|.

Here the function L(a) may be rather nasty, but if it is bounded by a constant,
that is if L(a) ≤ K for all a between A and B, we arrive (by multiplying both
sides by |x− a| and replacing L(a) by K) at 3.1.

Increasing Function Theorem 3.3.1.
[author= livshits , file =text_files/increasing_function_theorem]

If f is uniformly Lipschitz differentiable on [a, b] and f ′ ≥ 0 then f(a) ≤ f(b).

Proof.
[author=livshits, file =text_files/increasing_function_theorem]

Case 1. We assume that if f ′(x) ≥ C for some C > 0 then f is increasing.

It follows from this result that f will be increasing if f ′ ≥ 0. Here is how.
According to exercise ??, for any C > 0 the function f(x)+Cx will be increasing,
i.e. for any a < b we will have f(a) + Ca ≤ f(b) + Cb, whence f(b) − f(a) ≥
−C(b− a), and since C is arbitrary, we must have f(a) ≥ f(b).

Case 2. The idea is the most popular one in Calculus: to chop up the segment
[A,B] into N equal pieces, use the estimate from our definition on each piece, and
then notice what happens when N becomes large.

Let us take xn = A + n(B − A)/N for n = 0, . . . , N and let us take a = xn−1

and x = xn in the estimate from the definition. The estimate from ?? can be
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rewritten as

−K(xn − xn−1)2 ≤ f(xn)− f(xn−1)− f ′(xn−1)(xn − xn−1) ≤ K(xn − xn−1)2.

Since f ′ ≥ 0 and xn ≥ xn−1 and therefore f ′(xn−1)(xn − xn−1) ≥ 0, we can (by
also noticing that xn − xn−1 = (B −A)/N) get the following estimate:

−K(B −A)2/N2 = −K(xn − xn−1)2 ≤ f(xn)− f(xn−1).

Now let us replace f(B)− f(A) with the following telescoping sum:

(f(x1)− f(x0)) + (f(x2)− f(x1)) + ... + (f(xN )− f(xN−1))

There are N terms in this sum, each one is ≥ −K(B−A)2/N2, therefore the whole
sum is ≥ −K(B −A)2/N . But the whole sum is equal to f(B)− f(A), therefore

−K(B −A)2/N ≤ f(B)− f(A)

This inequality can hold for all N only if f(B)−f(A) ≥ 0 (this is called Archimedes
Principle), therefore f(A) ≤ f(B).

Corollary 3.3.1.
[author= livshits , file =text_files/increasing_function_theorem]

If f ′(x) = 0 for all x, then f is a constant function.

Proof.
[author=livshits, file =text_files/increasing_function_theorem]

Let f be ULD on [A,B] and f ′ = 0. IFT tells us that f(A) ≥ f(B). But (−f)′ = 0
too, so −f(A) ≥ −f(B), and f(A) ≤ f(B), therefore f(A) = f(B). Taking A = u
and B = x, u ≤ x finishes the proof.

Corollary 3.3.2.
[author= livshits , file =text_files/increasing_function_theorem]

From this result we can conclude that any two ULD antiderivatives of the same
function may differ only by a constant, and therefore if F ′ = f then all the ULD
antiderivatives of f are of the form F + C, where C is a constant.

Theorem 3.3.2.
[author= livshits , file =text_files/increasing_function_theorem]

The derivative of a ULD function is ULC.

Proof.
[author=livshits, file =text_files/increasing_function_theorem]

For x 6= a, by dividing both sides of ?? by |x− a|, we get∣∣∣∣f(x)− f(a)
x− a

− f ′(a)
∣∣∣∣ ≤ K|x− a|. (3.3)

This estimate may be handy to check your differentiation. If your formula for f ′

is right, the left side of 3.3 will be small for x close to a (how close – will depend
on K), if it is wrong – it will not be so.

Interchanging x and a in formula 3.3 leads to∣∣∣∣f(a)− f(x)
a− x

− f ′(x)
∣∣∣∣ ≤ K|a− x|,

but
f(x)− f(a)

x− a
=

f(a)− f(x)
a− x
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and |a−x| = |x−a|, so f ′(x) and f ′(a) are less than K|x−a| away from the same
number, and therefore less than 2K|x− a| apart, i.e.

|f ′(x)− f ′(a)| ≤ 2K|x− a|. (3.4)

Comment.

[author=livshits, file =text_files/increasing_function_theorem]

This theorem together with the estimate 3.3 demonstrate that the time derivative
of the distance is a reasonable mathematical metaphor for instantaneous velocity
if the distance is a ULD function of time. Indeed, in this case the average velocity
over a short enough time interval will be close to the time derivative of the distance
at any time during this interval.

Comment.

[author=livshits, file =text_files/increasing_function_theorem]

It is natural to ask whether any ULC function has a ULD primitive. Later on, after
taking a closer look at area and integration, we show that it is true. Combining
this fact with IFT, we can derive positivity of definite integrals that was promised
at the end of section ??.

It is also clear that uniform Lipschitz differentiability is stronger than mere
divizibility of f(x) − f(a) by x − a in the class of ULC functions of x. As an
example, consider f(x) = x2sin(1/x). We have f(0) = f ′(0) = 0, but the x-axis
doesn’t look like a tangent, near x = 0 it cuts the graph of f (that looks like fuzz)
at infinitely many points. However, if f ′ understood in the spirit of section 2.1
turns out to be ULC, f will be ULD. To prove this fact one needs some rather
delicate property of the real numbers (completeness) that will be treated in another
chapter.

Derivation.

[author=livshits, file =text_files/increasing_function_theorem]

Here we give a rigorous proof of the derivative rules for sin(x) and cos(x).

Consider the following picture:

sin(t+u)-sin(t)
2sin(u/2)

= |CD|
|DB|

= cos(t + u/2)

D

BC

y

xt
u

y

u x

A B

C

ED

sin(u) < u < tan(u)
O A

deriv_sin_cos_rigorous

Dividing the inequality sin(u) < u < tan(u) by u (assuming π/4 > u > 0), we
get

sin(u)
u

< 1 <
tan(u)

u
=

sin(u)/u

cos(u)
,
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therefore

cos(u) <
sin(u)

u
< 1

which holds for −π/4 < u < 0 as well since cos(−u) = cos(u) and sin(−u) =
− sin(u), whence sin(−u)/(−u) = sin(u)/u. Now

sin(t + u)− sin(u)
u

=
sin(t + u)− sin(u)

2 sin(u/2)
×2 sin(u/2)

2(u/2)
= cos(t+u/2) sin(u/2)/(u/2).

To conclude our proof that sin′(u) = cos(u) we have to get an estimate∣∣∣∣cos(t)− cos(t + u/2)
sin(u/2)

u/2

∣∣∣∣ ≤ K|u|

for some K. This is now easy because | cos(t)−cos(t+u/2)| ≤ |u|/2, | sin(u/2)/(u/2)−
1| ≤ | cos(u/2)− 1| ≤ |u|/2 and | cos(t + u/2)| ≤ 1, and by the triangle inequality
we get

| cos(t)−cos(t+u/2) sin(u/2)/(u/2)| ≤ | cos(t)−cos(t+u/2)|+|cos(t+u/2)|×|sin(u/2)/(u/2)−1| ≤ |u|/2+|u|/2 ≤ |u|

that demonstrates that∣∣∣∣sin(t + u)− sin(u)
u

− cos(t)
∣∣∣∣ ≤ |u|,

and therefore sin′(u) = cos(u).

This takes care of sin′. To get the formula for cos′ we can observe that cos(t) =
sin(π/2− t), use the chain rule and then remember that cos(π/2− t) = sin(t). We
leave the details as an exercise.

Exercises

1. The same kind of estimates as in section ?? hold when f is any polynomial
or a rational function defined everywhere in [A,B], it is also true if f is sin
or cos

Prove it (sin and cos involve some geometry, they will be treated later in
this section).

2. Prove all the differentiation rules for ULD functions.

3. Try to show ”The figure showing the upper and lower parabolas suggests
that any ULD function with a positive derivative will be increasing.” it and
see that it is not easy.

4. Construct a demonstration that ”However, if we assume that f ′ ≥ C for
some C > 0, it becomes easy to demonstrate that f is increasing.”

5. Show that functions with positive derivatives are increasing. Can you use
IFT to make the argument easy?



80 CHAPTER 3. DERIVATIVES

6. Fill in the details of ”This theorem together with the estimate 3.3 demon-
strate that the time derivative of the distance is a reasonable mathematical
metaphor for instantaneous velocity if the distance is a ULD function of time.
Indeed, in this case the average velocity over a short enough time interval
will be close to the time derivative of the distance at any time during this
interval. ”



3.4. DERIVATIVES OF TRANSCENDENTAL FUNCTIONS 81

3.4 Derivatives of transcendental functions

Discussion.

[author=garrett, file =text_files/deriv_transcend]

The new material here is just a list of formulas for taking derivatives of exponential,
logarithm, trigonometric, and inverse trigonometric functions. Then any function
made by composing these with polynomials or with each other can be differentiated
by using the chain rule, product rule, etc. (These new formulas are not easy to
derive, but we don’t have to worry about that).

Rule 3.4.1.

[author=garrett, file =text_files/deriv_transcend]

The first two are the essentials for exponential and logarithms:

d
dxex = ex

d
dx ln(x) = 1

x

Rule 3.4.2.

[author=garrett, file =text_files/deriv_transcend]

The next three are essential for trig functions:

d
dx sin(x) = cos(x)
d
dx cos(x) = − sin(x)
d
dx tan(x) = sec2(x)

Rule 3.4.3.

[author=garrett, file =text_files/deriv_transcend]

The next three are essential for inverse trig functions

d
dx arcsin(x) = 1√

1−x2

d
dx arctan(x) = 1

1+x2

d
dxarcsec(x) = 1

x
√

x2−1

Comment.

[author=garrett, file =text_files/deriv_transcend]

The previous formulas are the indispensable ones in practice, and are the only
ones that I personally remember (if I’m lucky). Other formulas one might like to
have seen are (with a > 0 in the first two):

Rule 3.4.4.
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[author=garrett, file =text_files/deriv_transcend]

d
dxax = ln a · ax

d
dx loga x = 1

ln a·x
d
dx sec x = tan x sec x
d
dx csc x = − cot x csc x
d
dx cot x = − csc2 x

d
dx arccos x = −1√

1−x2

d
dxarccot x = −1

1+x2

d
dxarccsc x = −1

x
√

x2−1

Comment.

[author=garrett, file =text_files/deriv_transcend]

(There are always some difficulties in figuring out which of the infinitely-many
possibilities to take for the values of the inverse trig functions, and this is especially
bad with arccsc, for example. But we won’t have time to worry about such things).

Comment.

[author=garrett, file =text_files/deriv_transcend]

To be able to use the above formulas it is not necessary to know very many other
properties of these functions. For example, it is not necessary to be able to graph
these functions to take their derivatives!

Discussion.

[author=wikibooks, file =text_files/derivative_exponentials]

To determine the derivative of an exponent requires use of the symmetric difference
equation for determining the derivative

d
dxf(x) = limh→0

f(x+h)−f(x−h)
2h

First we will solve this for the specific case of an exponent with a base of e
and then extend it to the general case with a base of a where a is a positive real
number.

Derivation.

[author=wikibooks, file =text_files/derivative_exponentials]

First we set up our problem using f(x) = ex

d
dxex = limh→0

ex+h−ex−h

2h

Then we apply some basic algebra with powers (specifically that ab +c = abac)

d
dxex = limh→0

exeh−exe−h

2h

Treating ex as a constant with respect to what we are taking the limit of, we
can use the limit rules to move it to the outside, leaving us with



3.4. DERIVATIVES OF TRANSCENDENTAL FUNCTIONS 83

d
dxex = ex · limh→0

eh−e−h

2h

A careful examination of the limit reveals a hyperbolic sine
d
dxex = ex · limh→0

sinh(h)
h

Which for very small values of h can be approximated as h, leaving us with

Derivative of the exponential function d
dxex = ex in which f ′(x) = f(x).

Derivation.

[author=wikibooks, file =text_files/derivative_exponentials]

Now that we have derived a specific case, let us extend things to the general case.
Assuming that a is a positive real constant, we wish to calculate

d
dxax

One of the oldest tricks in mathematics is to break a problem down into a
form that we already know we can handle. Since we have already determined the
derivative of ex, we will attempt to rewrite ax in that form.

Using that eln(c) = c and that ln(ab) = b · ln(a), we find that

ax = ex·ln(a)

Thus, we simply apply the chain rule
d
dxex·ln(a) =

[
d
dxx · ln(a)

]
ex·ln(a)

In which we can solve for the derivative and substitute back with ex ·ln(a) = ax

to get

Derivative of the exponential function’ d
dxax = ln (a) ax

Derivation.

[author=wikibooks, file =text_files/derivatives_logarithms]

Closely related to the exponentiation, is the logarithm. Just as with exponents,
we will derive the equation for a specific case first (the natural log, where the base
is e), and then work to generalize it for any logarithm.

First let us create a variable y such that

y = ln (x)

It should be noted that what we want to find is the derivative of y or dy
dx .

Next we will put both sides to the power of e in an attempt to remove the
logarithm from the right hand side

ey = x

Now, applying the chain rule and the property of exponents we derived earlier,
we take the derivative of both sides

dy
dx · e

y = 1

This leaves us with the derivative
dy
dx = 1

ey
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Substituting back our original equation of x = ey, we find that

Derivative of the Natural Logarithm’ d
dx ln (x) = 1

x

Derivation.

[author=wikibooks, file =text_files/derivatives_logarithms]

If we wanted, we could go through that same process again for a generalized base,
but it is easier just to use properties of logs and realize that

logb(x) = ln(x)
ln(b)

Since 1 / ln(b) is a constant, we can just take it outside of the derivative
d
dx logb(x) = 1

ln(b) ·
d
dx ln(x)

Which leaves us with the generalized form of

Derivative of the Logarithm’ d
dx logb (x) = 1

x ln(b)

Discussion.

[author=wikibooks, file =text_files/derivatives_trig_functions]

Sine, Cosine, Tangent, Cosecant, Secant, Cotangent. These are functions that
crop up continuously in mathematics and engineering and have a lot of practical
applications. They also appear a lot in more advanced calculus, particularly when
dealing with things such as line integrals with complex numbers and alternate
representations of space such as spherical coordinates.

Derivation.

[author=wikibooks,uses=complexnumbers, file =text_files/derivatives_trig_functions]

There are two basic ways to determine the derivative of these functions. The first
is to sit down with a table of trigonometric identities and work your way through
using the formal equation for the derivative. This is tedious and requires either
memorizing or using a table with a lot of equations on it. It is far simpler to just
use Euler’s Formula

Euler’s Formula’ ei x = cos(x) + i sin(x)

Where i =
√
−1.

This leads us to the equations for the sine and cosine

sin(x) = ei x−e−i x

2i cos(x) = ei x+e−i x

2

Using the rules discussed above for exponents, we find that

d
dx sin(x) = i ei x+i e−i x

2i
d
dx cos(x) = i ei x−i e−i x

2

Which when we simplify them down, leaves us with

’Derivative of Sine and Cosine’ d
dx sin(x) = cos(x) d

dx cos(x) = − sin(x) We use
the definition of the derivative, i.e., f ′(x) = limh→0

f(x+h)−f(x)
h , to work these out.
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Derivation.

[author=wikibooks, file =text_files/derivatives_trig_functions]

Let us find the derivative of sin(x), using the above definition.

f(x) = sin(x) f ′(x) = limh→0
sin(x+h)−sin(x)

h

= limh→0
sin(x) cos h+cos(x) sin h−sin(x)

h

= limh→0
sin(x)(cos h−1)+cos(x) sin h

h

= limh→0
sin(x)(cos h−1)

h + cos(x) sin h
h

= limh→0
sin(x)(cos h−1)

h + limh→0
cos(x) sin h

h

= 0 + limh→0
cos(x) sin h

h

= cos(x)

Derivation.

[author=wikibooks, file =text_files/derivatives_trig_functions]

To find the derivative of the tangent, we just remember that

tan(x) = sin(x)
cos(x)

Which is a quotient. Applying the quotient rule, we get

d
dx tan(x) = cos2(x)+sin2(x)

cos2(x) = 1 + tan2(x) = 1
cos2(x) = sec2(x)

Derivative of the Tangent d
dx tan(x) = sec2(x)

Derivation.

[author=wikibooks, file =text_files/derivatives_trig_functions]

For secants, we just need to apply the chain rule to the derivations we have already
determined.

sec(x) = 1
cos(x)

So for the secant, we state the equation as

sec(x) = 1
u u(x) = cos(x)

Take the derivative of both equations, we find
d
dx sec(x) = −1

u2 · du
dx

du
dx = − sin(x)

Leaving us with
d
dx sec(x) = sin(x)

cos2(x)

Simplifying, we get

Derivative of the Secant d
dx sec(x) = sec(x) tan(x)

Derivation.
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[author=wikibooks, file =text_files/derivatives_trig_functions]

Using the same procedure on cosecants csc(x) = 1
sin(x)

We get

Derivative of the Cosecant d
dx csc(x) = − csc(x) cot(x)

Using the same procedure for the cotangent that we used for the tangent, we
get

Derivative of the Cotangent d
dx cot(x) = − csc2(x)

Discussion.

[author=livshits, file =text_files/derivatives_trig_functions]

Imagine a point on the x− y plane moving around the unit circle with unit speed.

O

B

Dy

A

C

t x

cos(t)

sin(t)

t |CD|=|OA|

|CB|=|AB|

implies cos=-sin

implies sin=cos

|OB|=|BD|=1

deriv_sin_cos_circle

You can see from the figure that sin(t)′ = cos(t) and cos(t)′ = −sin(t).

Exercises

1. Find d
dx (ecos x)

2. Find d
dx (arctan(2− ex))

3. Find d
dx (
√

ln (x− 1))

4. Find d
dx (e2 cos x+5)

5. Find d
dx (arctan(1 + sin 2x))

6. Find d
dx cos(ex − x2)

7. Find d
dx

3
√

1− ln 2x

8. Find d
dx

ex−1
ex+1

9. Find d
dx (
√

ln ( 1
x ))
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3.5 Product and quotient rule

Discussion.

[author=garrett, file =text_files/product_rule]

Not only will the product rule be of use in general and later on, but it’s already
helpful in perhaps unexpected ways in dealing with polynomials. Anyway, here’s
the general rule.

Rule 3.5.1.

[author=garrett, file =text_files/product_rule]

Product Rule
d

dx
(fg) = f ′g + fg′

Comment.

[author=garrett, file =text_files/product_rule]

While the product rule is certainly not as awful as the quotient rule just above,
it is not as simple as the rule for sums, which was the good-sounding slogan that
the derivative of the sum is the sum of the derivatives. It is not true that the
derivative of the product is the product of the derivatives. Too bad. Still, it’s not
as bad as the quotient rule.

Example 3.5.1.

[author=garrett, file =text_files/product_rule]

One way that the product rule can be useful is in postponing or eliminating a lot
of algebra. For example, to evaluate

d

dx

(
(x3 + x2 + x + 1)(x4 + x3 + 2x + 1)

)
we could multiply out and then take the derivative term-by-term as we did with
several polynomials above. This would be at least mildly irritating because we’d
have to do a bit of algebra. Rather, just apply the product rule without feeling
compelled first to do any algebra:

d

dx

(
(x3 + x2 + x + 1)(x4 + x3 + 2x + 1)

)
= (x3 + x2 + x + 1)′(x4 + x3 + 2x + 1) + (x3 + x2 + x + 1)(x4 + x3 + 2x + 1)′

= (3x2 + 2x + 1)(x4 + x3 + 2x + 1) + (x3 + x2 + x + 1)(4x3 + 3x2 + 2)

Now if we were somehow still obliged to multiply out, then we’d still have to do
some algebra. But we can take the derivative without multiplying out, if we want
to, by using the product rule.
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Comment.

[author=garrett, file =text_files/product_rule]

For that matter, once we see that there is a choice about doing algebra either
before or after we take the derivative, it might be possible to make a choice which
minimizes our computational labor. This could matter.

Rule 3.5.2.

[author=livshits, file =text_files/product_rule]

Product or Leibniz Rule: (fg)′ = f ′g + fg′

Derivation.

[author=livshits, file =text_files/product_rule]

The product rule looks a little strange, here is the derivation of it: (f(x)g(x) −
f(a)g(a))/(x− a) = (f(x)− f(a))g(x)/(x− a) + f(a)(g(x)− g(a))/(x− a), both
summands on the right of the = sign make sense for x = a, the first summand
becomes f ′(a)g(a), the second one becomes f(a)g′(a).

f

g(a)

f(a)(g(x)−g(a)

(f(x)−f(a))g(x)

f(a)g(a)

g(x)

f(x)

f(a)

g

Leibniz Rule

leibnitz_rule

Discussion.

[author=garrett, file =text_files/quotient_rule]

The quotient rule is one of the more irritating and goofy things in elementary
calculus, but it just couldn’t have been any other way.

Rule 3.5.3.

[author=garrett, file =text_files/quotient_rule]

Quotient Rule:
d

dx

(
f

g

)
=

f ′g − g′f

g2

Comment.

[author=garrett, file =text_files/quotient_rule]

The main hazard is remembering that the numerator is as it is, rather than acci-
dentally reversing the roles of f and g, and then being off by ±, which could be
fatal in real life.
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Example 3.5.2.

[author=garrett, file =text_files/quotient_rule]

d

dx

(
1

x− 2

)
=

d
dx1 · (x− 2)− 1 · d

dx (x− 2)
(x− 2)2

=
0 · (x− 2)− 1 · 1

(x− 2)2
=

−1
(x− 2)2

Example 3.5.3.

[author=garrett, file =text_files/quotient_rule]

d

dx

(
x− 1
x− 2

)
=

(x− 1)′(x− 2)− (x− 1)(x− 2)′

(x− 2)2
=

1 · (x− 2)− (x− 1) · 1
(x− 2)2

=
(x− 2)− (x− 1)

(x− 2)2
=

−1
(x− 2)2

Example 3.5.4.

[author=garrett, file =text_files/quotient_rule]

d

dx

(
5x3 + x

2− x7

)
=

(5x3 + x)′ · (2− x7)− (5x3 + x) · (2− x7)
(2− x7)2

=
(15x2 + 1) · (2− x7)− (5x3 + x) · (−7x6)

(2− x7)2

and there’s hardly any point in simplifying the last expression, unless someone
gives you a good reason. In general, it’s not so easy to see how much may or may
not be gained in ‘simplifying’, and we won’t make ourselves crazy over it.

Example 3.5.5.

[author=livshits, file =text_files/quotient_rule]

(f(x)/g(x)−f(a)/g(a))/(x−a)|x=a = [(f(x)/g(x)−f(x)/g(a))+(f(x)−f(a))/g(a)]/(x−
a)|x=a =

= (f(x)/(g(x)g(a)))(g(a)−g(x))/(x−a)|x=a+(f(x)−f(a))/(x−a)/g(a)|x=a =

= −f(x)g′(x)/(g(x))2 + f ′′(x)/g(x) = (f ′′(x)g(x)− f(x)g′(x))/(g(x)2)

Discussion.

[author=wikibooks, file =text_files/product_quotient_rules]

When we wish to differentiate a more complicated expression such as h(x) =
(x2+5)5 ·(x3+2)3 our only resort (so far) is to expand and get a messy polynomial,
and then differentiate the polynomial. This can get very ugly very quickly and is
particularly error prone when doing such calculations by hand. It would be nice if
we could just take the derivative of h(x) using just the functions f(x) = (x2 + 5)5
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and g(x) = (x3 + 2)3 and their derivatives.

Rule 3.5.4.

[author=wikibooks, file =text_files/product_quotient_rules]

Product rule d
dx [f(x) · g(x)] = f ′(x) · g(x) + f(x) · g′(x)

Proving this rule is relatively straightforward, first let us state the equation for
the derivative

d

dx
[f(x) · g(x)] = lim

h→0

f(x + h) · g(x + h)− f(x) · g(x)
h

.

We will then apply one of the oldest tricks in the book – adding a term that cancels
itself out to the middle

d

dx
[f(x) · g(x)] = lim

h→0

f(x + h) · g(x + h)−f(x) · g(x + h) + f(x) · g(x + h)− f(x) · g(x)
h

.

Notice that those terms sum to zero, and so all we have done is add 0 to the
equation.

Now we can split the equation up into forms that we already know how to solve

d

dx
[f(x) · g(x)] = lim

h→0

[
f(x + h) · g(x + h)− f(x) · g(x + h)

h
+

f(x) · g(x + h)− f(x) · g(x)
h

]
.

Looking at this, we see that we can separate the common terms out of the numer-
ators to get

d

dx
[f(x) · g(x)] = lim

h→0

[
g(x + h)

f(x + h)− f(x)
h

+ f(x)
g(x + h)− g(x)

h

]
.

Which, when we take the limit, turns into

d

dx
[f(x) · g(x)] = f ′(x) · g(x) + f(x) · g′(x).

One mnemonic for this is “one D-two plus two D-one”

This can be extended to 3 functions D[fgh] = f(x)g(x)h′(x)+f(x)g′(x)h(x)+
f ′(x)g(x)h(x) For any number of functions, the derivative of their product is the
sum, for each function, of its derivative times each other function.

Derivation.

[author=wikibooks, file =text_files/product_quotient_rules]

Quotient rule For quotients, where one function is divided by another function,
the equation is more complicated but it is simply a special case of the product
rule.

f(x)
g(x)

= f(x) · g(x)−1.

Then we can just use the product rule and the chain rule

d

dx

f(x)
g(x)

= f ′(x) · g(x)−1 − f(x) · g′(x) · g(x)−2.

We can then multiply through by 1, or more precisely g(x)2/g(x)2, which cancels
out into 1, to get d

dx
f(x)
g(x) = f ′(x)·g(x)

g(x)2 − f(x)·g′(x)
g(x)2 This leads us to the so-called
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”quotient rule”

Rule 3.5.5.

[author=wikibooks, file =text_files/product_quotient_rules]

Quotient Rule

d

dx

[
f(x)
g(x)

]
=

f ′(x) · g(x)− f(x) · g′(x)
g(x)2

.

Which some people remember with the mnemonic “low D-high minus high D-
low over the square of what’s below.”

Comment.

[author=wikibooks, file =text_files/product_quotient_rules]

Remember the derivative of a product/quotient “is not’ the product/quotient of
the derivatives. (That is, differentiation does not distribute over multiplication
or division.) However one can distribute before taking the derivative. That is
d
dx ((a + b)× (c + d)) ≡ d

dx (ac + ad + bc + bd))

Comment.

[author=duckworth, file =text_files/product_quotient_rules]

So, we do not usually have d
dxf(x)g(x) = f ′(x)g′(x). If allow some curiosity into

the discussion this leads to two questions: (1) When do we have d
dxf(x)g(x) =

f ′(x)g′(x), i.e. for which functions f and g would this be true? (2) When is a
product of derivatives equal to the derivative of something?

Exercises

1. Find d
dx (x3 − 1)(x6 + x3 + 1))

2. Find d
dx (x2 + x + 1)(x4 − x2 + 1).

3. Find d
dx (x3 + x2 + x + 1)(x4 + x2 + 1))

4. Find d
dx (x3 + x2 + x + 1)(2x +

√
x))

5. Find d
dx (x−1

x−2 )

6. Find d
dx ( 1

x−2 )

7. Find d
dx (

√
x−1

x2−5 )

8. Find d
dx ( 1−x3

2+
√

x
)
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3.6 Chain rule

Discussion.

[author=garrett, file =text_files/chain_rule]

The chain rule is subtler than the previous rules, so if it seems trickier to you,
then you’re right. OK. But it is absolutely indispensable in general and later, and
already is very helpful in dealing with polynomials.

The general assertion may be a little hard to fathom because it is of a different
nature than the previous ones. For one thing, now we will be talking about
a composite function instead of just adding or multiplying functions in a more
ordinary way.

Rule 3.6.1.

[author=garrett, file =text_files/chain_rule]

So, for two functions f and g,

d

dx
((f(g(x))) = f ′(g(x)) · g′(x)

There is also the standard notation

(f ◦ g)(x) = f(g(x))

for this composite function, but using this notation doesn’t accomplish so very
much.

Comment.

[author=garrett, file =text_files/chain_rule]

A problem in successful use of the chain rule is that often it requires a little thought
to recognize that some formula is (or can be looked at as) a composite function.
And the very nature of the chain rule picks on weaknesses in our understanding
of the notation. For example, the function

Example 3.6.1.

[author=garrett, file =text_files/chain_rule]

F (x) = (1 + x2)100

is really obtained by first using x as input to the function which squares and adds
1 to its input. Then the result of that is used as input to the function which takes
the 100th power. It is necessary to think about it this way or we’ll make a mistake.
The derivative is evaluated as

d

dx
(1 + x2)100 = 100(1 + x2)99 · 2x

To see that this is a special case of the general formula, we need to see what
corresponds to the f and g in the general formula. Specifically, let

f(input) = (input)100
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g(input) = 1 + (input)2

The reason for writing ‘input’ and not ‘x’ for the moment is to avoid a certain
kind of mistake. But we can compute that

f ′(input) = 100(input)99

g′(input) = 2(input)

The hazard here is that the input to f is not x, but rather is g(x). So the general
formula gives

d

dx
(1 + x2)100 = f ′(g(x)) · g′(x) = 100g(x)99 · 2x = 100(1 + x2)99 · 2x

Examples 3.6.2.

[author=garrett, file =text_files/chain_rule]

More examples:

d

dx

√
3x + 2 =

d

dx
(3x + 2)1/2 =

1
2
(3x + 2)−1/2 · 3

d

dx
(3x5 − x + 14)11 = 11(3x5 − x + 14)10 · (15x4 − 1)

Example 3.6.3.

[author=garrett, file =text_files/chain_rule]

It is very important to recognize situations like

d

dx
(ax + b)n = n(ax + b)n−1 · a

for any constants a, b, n. And, of course, this includes

d

dx

√
ax + b =

1
2
(ax + b)−1/2 · a

d

dx

1
ax + b

= −(ax + b)−2 · a =
−a

(ax + b)2

Example 3.6.4.

[author=garrett, file =text_files/chain_rule]

Of course, this idea can be combined with polynomials, quotients, and products
to give enormous and excruciating things where we need to use the chain rule, the
quotient rule, the product rule, etc., and possibly several times each. But this is
not hard, merely tedious, since the only things we really do come in small steps.
For example:

d

dx

(
1 +

√
x + 2

(1 + 7x)33

)
=

(1 +
√

x + 2)′ · (1 + 7x)33 − (1 +
√

x + 2) · ((1 + 7x)33)′

((1 + 7x)33)2
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by the quotient rule, which is then

( 1
2 (x + 2)−1/2) · (1 + 7x)33 − (1 +

√
x + 2) · ((1 + 7x)33)′

((1 + 7x)33)2

because our observations just above (chain rule! ) tell us that

d

dx

√
x + 2 =

1
2
(x + 2)−1/2 · (x + 2)′ =

1
2
(x + 2)−1/2

Then we use the chain rule again to take the derivative of that big power of 1+7x,
so the whole thing becomes

( 1
2 (x + 2)−1/2) · (1 + 7x)33 − (1 +

√
x + 2) · (33(1 + 7x)32 · 7)

((1 + 7x)33)2

Although we could simplify a bit here, let’s not. The point about having to do
several things in a row to take a derivative is pretty clear without doing algebra
just now.

Discussion.

[author=wikibooks, file =text_files/chain_rule]

We know how to differentiate regular polynomial functions. For example d
dx (3x3−

6x2 + x) = 9x2 − 12x + 1 However, we’ve not yet explored the derivative of an
unexpanded expression. If we are given the function y = (x + 5)2, we currently
have no choice but to expand it y = x2 + 10x + 25 f ′(x) = 2x + 10 However,
there is a useful rule known as the “chain rule’. The function above (y = (x+5)2)
can be consolidated into y = u2, where u = (x + 5). Therefore y = f(u) = u2

u = g(x) = x + 5 Therefore y = f(g(x))

Rule 3.6.2.

[author=wikibooks, file =text_files/chain_rule]

The chain rule states the following, in the situation described above ’Chain Rule’
dy
dx = dy

du ·
du
dx

Example 3.6.5.

[author=wikibooks, file =text_files/chain_rule]

We can now investigate the original function dy
dx = 2u · 1 dy

dx = 2(x + 5) = 2x + 10

Example 3.6.6.

[author=wikibooks, file =text_files/chain_rule]

This can be performed for more complicated equations. If we consider d
dx

√
1 + x2

and let y =
√

u and u = 1 + x2, so that dy/du = 1/2
√

u and du/dx = 2x, then,
by applying the chain rule, we find that d

dx

√
1 + x2 = 1

2

√
1 + x2 · 2x = x√

1+x2
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Rule 3.6.3.

[author=livshits, file =text_files/chain_rule]

Chain Rule: (f(g(x)))′ = f ′(g(x))g′(x)

In Leibniz notation it becomes df/dx = (df/dg)(dg/dx), so it looks like dg just
cancels out. To demonstrate the formula we notice that f(y)−f(b) = (y−b)p(y, b)
(because f is differentiable). By taking y = g(x) and b = g(a) we get f(g(x)) −
f(g(a)) = (g(x)− g(a))p(g(x), g(a)), where p(g(a), g(a)) = f ′(g(a)). On the other
hand, g(x) − g(a) = (x − a)r(x, a) where r(a, a) = g′(a). Putting it all together
and taking x = a gives the formula we wanted.

Exercises

1. Find d
dx ((1− x2)100)

2. Find d
dx

√
x− 3

3. Find d
dx (x2 −

√
x2 − 3)

4. Find d
dx (
√

x2 + x + 1)

5. Find d
dx ( 3
√

x3 + x2 + x + 1)

6. Find d
dx ((x3 +

√
x + 1)10)
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3.7 Hyperbolic functions

Definition 3.7.1.

[author=wikibooks, file =text_files/hyperbolics]

The hyperbolic functions are defined in analogy with the trigonometric functions

sinhx =
1
2
(ex − e−x)

coshx =
1
2
(ex + e−x)

tanh x =
ex − e−x

ex + e−x
=

sinhx

coshx

The reciprocal functions cosech, sech, coth are defined from these functions.

Facts.

[author=wikibooks, file =text_files/hyperbolics]

The hyperbolic trigonometric functions satisfy identities very similar to those sat-
isfied by the regular trigonometric functions.

cosh2 x− sinh2 x = 1

1− tanh2 x =
2

sech x

sinh 2x = sinh x coshx

cosh 2x = cosh2 x + sinh2 x

Rules 3.7.1.

[author=wikibooks, file =text_files/hyperbolics]

The hyperbolic trigonometric functions have very similar derivative rules as the
regular trigonometric functions.

d

dx
sinhx = coshx

d

dx
coshx = sinhx

d

dx
tanh x =

2

sech x

d

dx
cosechx = − cosechx coth x

d

dx
sechx = − sechx tanh x

d

dx
coth x =

2

cosechx
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Definition 3.7.2.

[author=wikibooks, file =text_files/hyperbolics]

We define inverse functions for the hyperbolic functions. As with the usual trigono-
metric functions, we sometimes need to restrict the domain to obtain a function
which is one-to-one.

• sinh(x) is one-to-one on the whole real number line, and its range is the whole
real number line. Therefore, sinh−1 is defined on the whole real number line.
The formula is given by sinh−1 = ln(z +

√
z2 + 1).

• cosh(x) is one-to-one on the domain [0,∞). It’s range is [1,∞). Therefore
cosh−1 is defined on the interval [1,∞). The formula is given by cosh−1 z =
ln(z +

√
z2 − 1).

• tanh(x) is one-to-one on the whole real number line and it’s range is the
interval (−1, 1). Thefore tanh−1 is defined on the interval (−1, 1). The

formula is given by tanh−1 z = ln
√

1+z
1−z .

Rules 3.7.2.

[author=wikibooks, file =text_files/hyperbolics]

Here are the derivative rules for the inverse hyperbolic trigonometric functions.

• d
dx sinh−1(x) = 1√

1+x2 .

• d
dx cosh−1(x) = 1√

x2−1
, x > 1.

• d
dx tanh−1(x) = 1√

1−x2 , −1 < x < 1.

• d
dx cosech−1(x) = − 1

|x|
√

1+x2 , x 6= 0.

• d
dx sech−1(x) = − 1

x
√

1−x2 , 0 < x < 1.

• d
dx coth−1(x) = 1

1−x2 , |x| > 1.

3.8 Tangent and Normal Lines

Comment.

[author=garrett, file =text_files/tangent_normal_lines]

One fundamental interpretation of the derivative of a function is that it is the slope
of the tangent line to the graph of the function. (Still, it is important to realize
that this is not the definition of the thing, and that there are other possible and
important interpretations as well).
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The precise statement of this fundamental idea is as follows. Let f be a func-
tion. For each fixed value xo of the input to f , the value f ′(xo) of the derivative
f ′ of f evaluated at xo is the slope of the tangent line to the graph of f at the
particular point (xo, f(xo)) on the graph.

Rule 3.8.1.

[author=garrett, file =text_files/tangent_normal_lines]

Recall the point-slope form of a line with slope m through a point (xo, yo):

y − yo = m(x− xo)

In the present context, the slope is f ′(xo) and the point is (xo, f(xo)), so the
equation of the tangent line to the graph of f at (xo, f(xo)) is

y − f(xo) = f ′(xo)(x− xo)

Rule 3.8.2.

[author=garrett, file =text_files/tangent_normal_lines]

The normal line to a curve at a particular point is the line through that point and
perpendicular to the tangent. A person might remember from analytic geometry
that the slope of any line perpendicular to a line with slope m is the negative
reciprocal −1/m. Thus, just changing this aspect of the equation for the tangent
line, we can say generally that the equation of the normal line to the graph of f at
(xo, f(xo)) is

y − f(xo) =
−1

f ′(xo)
(x− xo)

The main conceptual hazard is to mistakenly name the fixed point ‘x’, as well
as naming the variable coordinate on the tangent line ‘x’. This causes a person
to write down some equation which, whatever it may be, is not the equation of a
line at all.

Another popular boo-boo is to forget the subtraction −f(xo) on the left hand
side. Don’t do it.

Example 3.8.1.

[author=garrett, file =text_files/tangent_normal_lines]

So, as the simplest example: let’s write the equation for the tangent line to the
curve y = x2 at the point where x = 3. The derivative of the function is y′ = 2x,
which has value 2 · 3 = 6 when x = 3. And the value of the function is 3 · 3 = 9
when x = 3. Thus, the tangent line at that point is

y − 9 = 6(x− 3)

The normal line at the point where x = 3 is

y − 9 =
−1
6

(x− 3)
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So the question of finding the tangent and normal lines at various points of
the graph of a function is just a combination of the two processes: computing
the derivative at the point in question, and invoking the point-slope form of the
equation for a straight line.

Exercises

1. Write the equation for both the tangent line and normal line to the curve
y = 3x2 − x + 1 at the point where x = 1.

2. Write the equation for both the tangent line and normal line to the curve
y = (x− 1)/(x + 1) at the point where x = 0.
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3.9 End of chapter problems

Exercises
1. Derive multiplier rule from the Leibniz rule.

2. Find the formulas for (1/f)′ and (g/f)′ using Leibniz rule (Hint: differentiate
the identity (1/f)f = 1 and solve for (1/f)′).

3. To make our guess a theorem we observe that every time we turn the crank
to get from (xn)′ to (x(n+1))′ the pattern persists (exercise: check it).

4. Write x8 as ((x2)2)2 and use the chain rule 2 times to get (x8)′. Differentiate
x81 using a similar approach.

5. Use the chain rule to get an easy solution for ex.1.6

6. Use the fact that (x1/7)7=x and the chain rule to get (x1/7)′.

7. Differentiate some polynomials using the differentiation rules.

8. Do the calculations (Hint: use the chain rule to get d(x(t)5)/dt)

9. Redo problem 1.3 without solving for y (Hint: go implicit).

10. sin′ = cos (see section 2.4 for details). Compute arcsin′ (Hint: go implicit,
starting from sin(arcsin(x)) = x and use sin2 + cos2 = 1).

11. Differentiate everything that moves to get more practice.

12. For some f see how q(x, a) = (f(x)− f(a))/(x− a) behaves when x− a gets
small.

13. As in the example ??, More generally, the velocity at time t will be 32t
(exercise)

14. Differentiate x3, x5, x6, xn, c (= a constant).

15. Differentiate x1/3, x1/5, x1/7, x1/n.

16. Find the slope of the tangent to the unit circle at the point (a,
√

(1− a2)).
Hint: the equation of the unit circle is x2 + y2 = 1.

17. Differentiate x(m/n). Guess the formula for (xb)′, b real.

18. Give an argument that (f + g)′ = f ′ + g′ and for any constant c (cf)′ = cf ′.

19. Differentiate (1 + x)7 and find a neat formula for the answer.
Differentiate the following functions

20. x4 + 4x4 − 5x3 + x + 1 Use the constant multiplier rule, sums rule and the
formula dxn/dx = nxn−1 20x3 + 15x2 + 1

21. (x2 + 3x + 2)10 use chain rule 10(x2 + 3x + 2)9(2x + 3)

22. [(x3 + 2x + 1)6 + (x5 + x3 + 2)5]10

use chain rule

10[(x3 + 2x + 1)6 + (x5 + x3 + 2)5]9[6(x3 + 2x + 1)5(3x2 + 2) + 5(x5 + x3 +
2)4(5x4 + 3x2)]



3.9. END OF CHAPTER PROBLEMS 101

23. (3x3 + 5x + 2)(7x8 + 5x + 5)

Use the product rule

(9x2 + 5)(7x8 + 5x + 5) + (3x3 + 5x + 2)(56x7 + 5)

24. (5x7 + 3)/(8x9 − 3x− 1)

Use the quotient rule

(35x6(8x9 + 5x + 5)− (5x7 + 3)(72x9 + 5))/(8x9 + 5x + 1)2

25. (x3 + 1)
√

(x)

Product rule

3x2
√

x + (x3 + 1)/(2
√

x)

26. Suppose that x and t satsfy the equation x7 + x3 + 3t4 + 2t + 1 = 0 find a
formula for dx/dt in terms of x and t.

Use implicit differentiation (differentiate the equation with respect to t)

You get (7x6+3x2)(dx/dt)+12t3+2 = 0, so dx/dt = −(12t2+2)/(7x6+3x3)

27. Use implicit differentiation to derive the formula for d(xp/q)/dx where p and
q are integers.

Think about (xp/q)q = xp

By differentiating the equation (xp/q)q = xp we get q(xp/q)q−1(xp/q)′ =
pxp−1 which gives us (xp/q)′ = (p/q)xp−1−(q−1)p/q = (p/q)x(p/q)−1

28. The area of a disc of radius r is given by the formula A(r) = πr2 Does
the derivative A′(r) remind you of anything? Can you see any geometric
meaning of it?

29. The volume of a 3-dimensional ball of radius r is given by the formula V (r) =
4πr3/3 Does the derivative V ′(r)remind you of anything? Can you see any
geometric meaning of it?

30. Derive a formula for (f(x)g(x)h(x))′

Use the product rule twice

f(x)g(x)h(x) = f(x)(g(x)h(x)), so f(x)(g(x)h(x))′ = f ′(x)(g(x)h(x)) +
f(x)(g(x)h(x))′ = = f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x)

31. Try to generalize the previous problem to a product of more than 3 functions Find the derivatives of the following
functions32. tan(x) = sin(x)/cos(x)

Use the quotient rule and then some trig identities to simplify.

tan′ = (sin/cos)′ = (sin′cos− cos′sin)/cos2 = (cos2 + sin2)/cos2 = 1/cos2

2. Differentiate:

33. sin(5x)

Chain rule

5cos(5x)

34. cos(x3)

Chair rule

−sin(x3)3x2

35. (sin(x− 2) + 3cos(x2))3

Chain rule

3(sin(x− 2) + 3cos(x2))2(cos(x− 2)− 3sin(x2)2x)
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36. ln(x3 + 3)

Chain rule

(1/(x3 + 3))3x2

37. (1 + ln(x2 + 1))cos(x3)

Product rule then chain rule

(2x/(x2 + 1))cos(x3)− (1 + ln(x2 + 1))sin(x3)3x2

38. e10x

Chain rule

10e10x

39. exp(x3 + sin(x))

Chain rule

exp(x3 + sin(x))(3x2 + cos(x))

40. Find a solution to the equation y′′ = −y

Think of trig functions

sin(x) or cos(x) or a sin(x)+b cos(x) with any constants a and b or Asin(x+a)
with any constants A and a.

41. Find a solution to the equation y′′ = −y such that y(0) = 1 and y′(0) = 2.

Find a multiple of sin plus a multiple of cos which satisfy the extra conditions

cos(x) + 2sin(x)

Find the following integrals.

42.
∫

e5x dx

U -subst

(e5x/5) + C

43.
∫

xe−x2
dx

U -subst∫
xe−x2

dx = −(1/2)
∫

e−x2
d(−x2) = −e−x2

/2 +C

44.
∫

sin(x2)2x dx

U -subst∫
sin(x2)d(x2) = −cos(x2) + C

45.
∫

dx/(x + 1)

U -subst

ln|1 + x|+ C

46.
∫

x2dx/(x3 + 3)

U -subst

(1/3)
∫

d(x3 + 3)/(x3 + 3) = (1/3)ln|x3 + 3|+ C

47.
∫

x3exdx

Integration by parts, three times∫
x3(e3)′dx = x3ex −

∫
(x3)′exdx = x3ex − 3

∫
x2exdx, so the power of x

drops by 1, integrate by parts 2 times more to get the power of x down to 0.
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48.
∫

ex+ex

dx

Try U = ex∫
exeex

dx =
∫

eex

(ex)′dx =
∫

eex

d(ex) = eex

+ C

49.
∫

x2cos(x)dx

Integrate by parts 2 times, cos = sin′ etc.∫
x2sin′(x)dx = x2sin(x)−

∫
(x2)′sin(x)dx = x2sin(x)−2

∫
xsin(x)dx inte-

grate by parts once more to get the power of xdown to 0 (sin = −cos′).
Make up problems to go with these pic-
tures

50.

0

y(t)

y
rope_sliding

A rope sliding off a table

51.

v

Ma

M

Moon surface

−d/dt(Mv)

rocket

A lunar landing module

52. Consider the following picture of a mass with a spring and a shock absorber.

m 0

yshock_absorber
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Chapter 4

Applications of Derivatives

Discussion.

[author=wikibooks, file =text_files/intro_to_applications_of_derivatives]

Calculus Differentiation Basic Applications

One of the most useful applications of differentiation is the determination of
local extrema of a function. The derivative of a function at a local minimum
or maximum is zero, as the slope changes from negative to positive or positive
to negative, respectively. Specifically, you seperate the domain of the function
into ranges seperated by the points where the derivative is zero, and evaluate
the derivative at a point in each of the ranges, determining whether it is positive
or negative. If, between any two ranges, the derivative changes from positive to
negative, that point is a maximum. If it goes from negative to positive, it is
a minimum. Any point where the derivative is zero is called a critical number.
The local minimum can be defined as the lowest point on a graph relative to its
surroundings. The local maximum can be defined as the highest point on a graph
relative to its surroundings.

In physics, the derivative of a function giving position at a given point is the
instataneous velocity at that point. The derivative of a function giving velocity at
a given point is the instataneous acceleration at that point.

The second derivative of a function can be used to determine the concavity of a
function, or, specifically, points at which a function’s concavity changes (concavity
refers to how the graph is shaped it is concave up if the function curves like the
letter ”U”, and concave down if it is more like a lower case ”n”). These places
where concavity changes are called points of inflection, but they are only as such
if concavity actually changes there. Whether or not it does can be discovered by
a sign test, similar to that used for critical numbers. Additionally, the nature
of critical numbers can be determined using the second derivative. If the second
derivative evaluated at a critical number is positive, then the critical number is a
minimum, and it is a maximum if the second derivative is negative at this point (if
it is zero, then the critical number is not an extremum but a point of inflection).

105
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4.1 Critical points, monotone increase and de-
crease

Definition 4.1.1.

[author=garrett, file =text_files/derivs_and_graphs]

A function is called increasing if it increases as the input x moves from left to
right, and is called decreasing if it decreases as x moves from left to right.

Comment.

[author=garrett, file =text_files/derivs_and_graphs]

Of course, a function can be increasing in some places and decreasing in others:
that’s the complication.

We can notice that a function is increasing if the slope of its tangent is positive,
and decreasing if the slope of its tangent is negative. Continuing with the idea
that the slope of the tangent is the derivative: a function is increasing where its
derivative is positive, and is decreasing where its derivative is negative.

This is a great principle, because we don’t have to graph the function or oth-
erwise list lots of values to figure out where it’s increasing and decreasing. If
anything, it should be a big help in graphing to know in advance where the graph
goes up and where it goes down.

Definition 4.1.2.

[author=garrett, file =text_files/derivs_and_graphs]

And the points where the tangent line is horizontal, that is, where the derivative
is zero, are critical points. The points where the graph has a peak or a trough
will certainly lie among the critical points, although there are other possibilities
for critical points, as well.

Rule 4.1.1.

[author=garrett, file =text_files/derivs_and_graphs]

Further, for the kind of functions we’ll deal with here, there is a fairly systematic
way to get all this information: to find the intervals of increase and decrease of a
function f :

• Compute the derivative f ′ of f , and solve the equation f ′(x) = 0 for x to
find all the critical points, which we list in order as x1 < x2 < . . . < xn.

• (If there are points of discontinuity or non-differentiability, these points
should be added to the list! But points of discontinuity or non-differentiability
are not called critical points.)

• We need some auxiliary points: To the left of the leftmost critical point x1

pick any convenient point to, between each pair of consecutive critical points
xi, xi+1 choose any convenient point ti, and to the right of the rightmost
critical point xn choose a convenient point tn.

• Evaluate the derivative f ′ at all the auxiliary points ti.



4.1. CRITICAL POINTS, MONOTONE INCREASE AND DECREASE 107

• Conclusion: if f ′(ti+1) > 0, then f is increasing on (xi, xi+1), while if
f ′(ti+1) < 0, then f is decreasing on that interval.

• Conclusion: on the ‘outside’ interval (−∞, xo), the function f is increasing
if f ′(to) > 0 and is decreasing if f ′(to) < 0. Similarly, on (xn,∞), the
function f is increasing if f ′(tn) > 0 and is decreasing if f ′(tn) < 0.

Comment.

[author=garrett, file =text_files/derivs_and_graphs]

It is certainly true that there are many possible shortcuts to this procedure, es-
pecially for polynomials of low degree or other rather special functions. However,
if you are able to quickly compute values of (derivatives of!) functions on your
calculator, you may as well use this procedure as any other.

Exactly which auxiliary points we choose does not matter, as long as they fall
in the correct intervals, since we just need a single sample on each interval to find
out whether f ′ is positive or negative there. Usually we pick integers or some other
kind of number to make computation of the derivative there as easy as possible.

It’s important to realize that even if a question does not directly ask for critical
points, and maybe does not ask about intervals either, still it is implicit that we
have to find the critical points and see whether the functions is increasing or
decreasing on the intervals between critical points. Examples:

Example 4.1.1.

[author=garrett, file =text_files/derivs_and_graphs]

Find the critical points and intervals on which f(x) = x2 + 2x + 9 is increasing
and decreasing: Compute f ′(x) = 2x+2. Solve 2x+2 = 0 to find only one critical
point −1. To the left of −1 let’s use the auxiliary point to = −2 and to the right
use t1 = 0. Then f ′(−2) = −2 < 0, so f is decreasing on the interval (−∞,−1).
And f ′(0) = 2 > 0, so f is increasing on the interval (−1,∞).

Example 4.1.2.

[author=garrett, file =text_files/derivs_and_graphs]

Find the critical points and intervals on which f(x) = x3 − 12x + 3 is increasing,
decreasing. Compute f ′(x) = 3x2 − 12. Solve 3x2 − 12 = 0: this simplifies to
x2 − 4 = 0, so the critical points are ±2. To the left of −2 choose auxiliary point
to = −3, between −2 and = 2 choose auxiliary point t1 = 0, and to the right of
+2 choose t2 = 3. Plugging in the auxiliary points to the derivative, we find that
f ′(−3) = 27−12 > 0, so f is increasing on (−∞,−2). Since f ′(0) = −12 < 0, f is
decreasing on (−2,+2), and since f ′(3) = 27− 12 > 0, f is increasing on (2,∞).

Notice too that we don’t really need to know the exact value of the derivative
at the auxiliary points: all we care about is whether the derivative is positive or
negative. The point is that sometimes some tedious computation can be avoided by
stopping as soon as it becomes clear whether the derivative is positive or negative.
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Exercises

1. Find the critical points and intervals on which f(x) = x2+2x+9 is increasing,
decreasing.

2. Find the critical points and intervals on which f(x) = 3x2 − 6x + 7 is in-
creasing, decreasing.

3. Find the critical points and intervals on which f(x) = x3 − 12x + 3 is in-
creasing, decreasing.
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4.2 Minimization and Maximization

Definition 4.2.1.

[author=wikibooks, file =text_files/extreme_values]

A minimum or maximum is the function value at which a function has the lowest
or highest value or values. There are two types

Absolute minima and maxima, which are on the interval (−∞,∞). Local
minima and maxima, where there exists an interval such that the value is the
lowest or highest value.

Theorem 4.2.1.
[author= wikibooks , file =text_files/extreme_values]

The extreme value theorem states that for function f(x), continuous on the closed
interval [a,b], f(x) must attain its maximum and minimum value each at least
once. Mathematically, there exists numbers m and M such that m ≤ f(x) ≤ M
And there exist some c and d such that f(c) = m and f(d) = M

Comment.

[author=wikibooks, file =text_files/extreme_values]

To formulate a proof of the extreme value theorem is quite hard, because it is so
obviously true and that it almost seems a proof is unnecessary. However, various
proofs are available.

Corollary 4.2.1.
[author= wikibooks , file =text_files/extreme_values]

An important result that the extreme value theorem establishes is the following
Suppose that f is differentiable and that f has a local maximum or a local minimum
at x = c. Then f’(c) = 0.

Definition 4.2.2.

[author=duckworth, file =text_files/max_mins]

Let x = a be in the domain of f(x).

x = c is an absolute maximum if f(x) ≤ f(c) for all x in the domain.
x = c is a local maximum if f(x) ≤ f(c) for all x near c.

(c cannot be an endpoint)
x = c is an absolute minimum if f(x) ≥ f(c) for all x in the domain.
x = c is a local minimum if f(x) ≥ f(c) for all x near c.

(c cannot be an endpoint)

Example 4.2.1.

[author=duckworth, file =text_files/max_mins]

Make up graphs showing some of each kind of thing.

Theorem 4.2.2.
[author= duckworth , file =text_files/max_mins]
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If x = c is a local min/max then f ′(c) = 0 or f ′(c) is undefined. Look at some
pictures of local min/max. If f ′(c) = 0 or f ′(c) is undefined we call c a critical
point. This fact justifies our approach to finding local min/max’s which always
starts with finding the critical points.

Rule 4.2.1.

[author=duckworth, file =text_files/max_mins]

Finding absolute max/mins. Suppose you want to find the absolute max/mins
of f(x) on an interval [a, b]

1. Find f ′(x), solve f ′(x) = 0 and identify where f ′(x) is undefined (i.e. find
the critical numbers).

2. Plug the critical numbers (which you found in step 1) and a and b into f(x).
This makes a list of y-values. The biggest y-value on this list is the absolute
maximum. The smallest y-value on this list is the absolute mininum.

Rule 4.2.2.

[author=duckworth, file =text_files/max_mins]

Finding local min/maxs

• Find f ′(x), solve f ′(x) = 0 and identify where f ′(x) is undefined (i.e. find
the critical numbers).

• Test each critical number (which you found in step 1) using the first deriva-
tive test or the second derivative test.

Comment.

[author=duckworth, file =text_files/max_mins]

So now we need to learn about the first and second derivative tests. Allthough it’s
not 100% necessary, we first introduce some more vocabulary.

Definition 4.2.3.

[author=duckworth, file =text_files/max_mins]

If f ′(x) > 0 we say that f(x) is increasing. If f ′(x) < 0 we say that f(x) is
decreasing.

2

4

6

8

10

12

14

0 2 4 6 8 10 generic_increasing_function

f ′(x) > 0
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2

4

6

8

10

12

14

0 2 4 6 8 10 generic_increasing_function

f ′(x) < 0

If f ′′(x) > 0 we say that f(x) is concave up. This means that it is curving
more upwards (it does not mean that it is increasing). If f ′′(x) < 0 we say that
f(x) is concave down. This means that it is curving more downwards.

Comment.

[author=duckworth, file =text_files/max_mins]

Note that concavity is not related to whether or not the graph is increasing or
decreasing. In fact you can have any combination of concavity (up or down) with
increasing or decreasing. This gives four possible pictures which you might want
to keep in mind.

increasing_concave_down_graph

f ′′(x) < 0, f ′(x) > 0
conc. down, incr.

decreasing_concave_down_graph

f ′′(x) < 0, f ′(x) < 0
conc. down, decr.

increasing_concave_up_graph

f ′′(x) > 0, f ′(x) > 0
conc. up, incr.

decreasing_concave_up_graph

f ′′(x) > 0, f ′(x) < 0
conc. up, decr.

(Note, you can get these pictures from the four quadrants of a circle.)

Rule 4.2.3.

[author=duckworth, file =text_files/max_mins]

First and second derivative tests. You can see figure out what the tests should
be, just by looking at pictures of max and mins, and thinking about what the first
or second derivative is doing there.
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0

1

2

3

4

5

1 2 3 4 smooth_local_max

f ′ > 0 f ′ < 0

concave down

0

1

2

3

4

5

1 2 3 4 smooth_local_min

f ′ < 0 f ′ > 0

concave up

0

1

2

3

4

0.5 1 1.5 2 2.5 3 smooth_crit_pt_not_max_min

f ′ > 0

f ′ > 0

concavity ?

First derivative test.

• If f ′(x) changes from + on the left to − on the right at x = c then x = c is
a local min.

• If f ′(x) changes from − on the left to + on the right at x = c then x = c is
a local max.

• If f ′(x) stays the same sign on both sides of x = c then x = c is neither a
min or max.

Second derivative test.

• If f ′′(c) < 0 then x = c is a local max.

• If f ′′(c) > 0 then x = c is a local min.

• If f ′′(c) = 0 or f ′′(c) is undefined then the second derivative test tells us
nothing.

Comment.

[author=duckworth, file =text_files/max_mins]

We will almost never do both the first and the second derivative test. Only if we
want to practice both of them will we do both.

Rule 4.2.4.
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[author=duckworth, file =text_files/max_mins]

Finding changens of sign To use the first derivative test we need to be able to
take a function f ′(x) and say when it is positive and when it is negative. Here’s
how you do this:

1. Solve for when f ′(x) = 0 or is undefined. These are the only places when
f ′(x) can change signs. (By the Intermediate Value Theorem! Yay! You
thought you could forget about this. Not!)

2. Test a single value of x between each pair of numbers you found in step 1
(including a value to the right of all the numbers and a value to the left of
all the numbers)

Example 4.2.2.

[author=duckworth, file =text_files/max_mins]

Let f(x) = x− 2 sin(x).

(a) Find the critical points of f(x) in the interval 0 ≤ x ≤ 4π.

(b) Apply the first derivative test to each point in (a) and determine which
points are local mins/max.

(c) Apply the second derivative test to each point in (a) and determine which
points are local mins/max. (Usually we will not do both tests.)

(d) Find the absolute mins and maxs on the interval 0 ≤ x ≤ 4π.

textbfSolution. The derivative is f ′(x) = 1 − 2 cos(x). The equation f ′(x) =
0 has solutions on the interval 0 ≤ x ≤ 4π of x = π/3, 5π/3, 7π/3, 11π/3
which answers part (a). Testing values we find that f ′(x) is positive (so f is
increasing) on (π/3, 5π/5)∪(7π/3, 11π/3) and f ′(x) is negative (so f is decreasing)
on [0, π/3)∪(5π/3, 7π/3)∪(11π/3, 4π]. This shows that we have local max at 5π/3
and 11π/3 and local mins at π/3 and 7π/3. This answers part (b) (actually we did
more because we described the intervals where f is increasing and the intervals
where f is decreasing). The second derivative is f ′′(x) = 2 sin(x) and we have f ′′

is positive at π/3 and 7π/3 (so these are local mins) and f ′′ is negative at 5π/3
and 11π/3 (so these are local maxs). This answers part (c). To find the absolute
max and mins we compare y-values at x = 0, π/3, 5π/3, 7π/3, 11π/3 and 4π.
One finds that f(π/3) = −.6849 is the absolute min and f(11π/3) = 13.25 is the
absolute max. This answers part (d).

Example 4.2.3.

[author=duckworth, file =text_files/max_mins]

Let f(x) = 5x2/3 + x5/3.

(a) Find all the critical points of f(x).

(b) Apply the first derivative test to each point in (a) and determine which are
local min/max.

(c) Apply the second derivative test to each point in (a) and determine which
are local min/max.
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Solution. The derivative f ′(x) = 10
3 x−1/3+ 5

3x2/3. We see that f ′(x) is undefined
at x = 0 and f ′(x) = 0 at x = −2. This anwers part (a). Testing values we find
that f ′(x) is positive on (−∞,−2) ∪ (0,∞) and f ′(x) is negative on (−2, 0) so
x = −2 is a local max and x = 0 is a local max. This answers part (b). The
second derivative is f ′′(x) = − 10

9 x−4/3 + 10
9 x−1/3. We see that f ′′(−2) is − and

f ′′(0) is + so x = −2 is a local max and x = 0 is a local min. This answers part
(c).

Discussion.

[author=garrett, file =text_files/max_mins]

The fundamental idea which makes calculus useful in understanding problems of
maximizing and minimizing things is that at a peak of the graph of a function, or
at the bottom of a trough, the tangent is horizontal. That is, the derivative f ′(xo)
is 0 at points xo at which f(xo) is a maximum or a minimum.

Well, a little sharpening of this is necessary: sometimes for either natural or
artificial reasons the variable x is restricted to some interval [a, b]. In that case, we
can say that the maximum and minimum values of f on the interval [a, b] occur
among the list of critical points and endpoints of the interval.

And, if there are points where f is not differentiable, or is discontinuous, then
these have to be added in, too. But let’s stick with the basic idea, and just ignore
some of these complications.

Rule 4.2.5.

[author=garrett, file =text_files/max_mins]

Let’s describe a systematic procedure to find the minimum and maximum values
of a function f on an interval [a, b].

• Solve f ′(x) = 0 to find the list of critical points of f .

• Exclude any critical points not inside the interval [a, b].

• Add to the list the endpoints a, b of the interval (and any points of discon-
tinuity or non-differentiability!)

• At each point on the list, evaluate the function f : the biggest number that
occurs is the maximum, and the littlest number that occurs is the minimum.

Example 4.2.4.

[author=garrett, file =text_files/max_mins]

Find the minima and maxima of the function f(x) = x4 − 8x2 + 5 on the interval
[−1, 3]. First, take the derivative and set it equal to zero to solve for critical points:
this is

4x3 − 16x = 0

or, more simply, dividing by 4, it is x3− 4x = 0. Luckily, we can see how to factor
this: it is

x(x− 2)(x + 2)
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So the critical points are −2, 0,+2. Since the interval does not include −2, we
drop it from our list. And we add to the list the endpoints −1, 3. So the list
of numbers to consider as potential spots for minima and maxima are −1, 0, 2, 3.
Plugging these numbers into the function, we get (in that order) −2, 5,−11, 14.
Therefore, the maximum is 14, which occurs at x = 3, and the minimum is −11,
which occurs at x = 2.

Notice that in the previous example the maximum did not occur at a critical
point, but by coincidence did occur at an endpoint.

Example 4.2.5.

[author=garrett, file =text_files/max_mins]

You have 200 feet of fencing with which you wish to enclose the largest possible
rectangular garden. What is the largest garden you can have?

Let x be the length of the garden, and y the width. Then the area is simply
xy. Since the perimeter is 200, we know that 2x + 2y = 200, which we can solve
to express y as a function of x: we find that y = 100− x. Now we can rewrite the
area as a function of x alone, which sets us up to execute our procedure:

area = xy = x(100− x)

The derivative of this function with respect to x is 100− 2x. Setting this equal to
0 gives the equation

100− 2x = 0

to solve for critical points: we find just one, namely x = 50.

Now what about endpoints? What is the interval? In this example we must
look at ‘physical’ considerations to figure out what interval x is restricted to.
Certainly a width must be a positive number, so x > 0 and y > 0. Since y = 100−x,
the inequality on y gives another inequality on x, namely that x < 100. So x is in
[0, 100].

When we plug the values 0, 50, 100 into the function x(100−x), we get 0, 2500, 0,
in that order. Thus, the corresponding value of y is 100−50 = 50, and the maximal
possible area is 50 · 50 = 2500.

Definition 4.2.4.

[author=wikibooks, file =text_files/max_mins]

We say that the function f is differentiable at the point x if the derivative f’(x)
exists. Since the derivative f’(x) of f at x is defined as a limit, it’s quite possible
that it won’t exist. For example, if f is not even continuous at x then it can’t be
differentiable there (exercise). Continuity of f at x is not enough, though.

Example 4.2.6.

[author=wikibooks, file =text_files/max_mins]

For example, consider the function f(x) = |x|. The function f is differentiable
at every point x other than x = 0. To see that it’s differentiable at x for x 6= 0,
you can either informally draw a graph and ”see” it, or you can prove it with the
epsilon-delta definition of differentiability as a limiting process. At x=0, though,
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the direction of the graph changes suddenly at that point, so there is no well-
defined tangent line (and so no derivative) for f at 0. We call the point 0 a
”critical point” of f.

Definition 4.2.5.

[author=wikibooks, file =text_files/max_mins]

A critical number is defined, for the function f, as any number where the derivative
f’ is zero or undefined.

Example 4.2.7.

[author=wikibooks, file =text_files/max_mins]

For example, a critical point for the function f(x) = x2 is 0, since f’(x) = 2x and
f’(0) = 0. In fact, it is the only critcal number.

Comment.

[author=wikibooks, file =text_files/max_mins]

Critical numbers are significant because extrema only occur at critical numbers.
However, the converse is not true. An example of this is f(x) = x3, since it has
one critical number f ′(x) = 3x2, f’(0) = 0. However, it is not an extrema.

Example 4.2.8.

[author=wikibooks, file =text_files/max_mins]

Example What are the local extrema of f(x) = (x + 1)2/2x?

Find the critical numbers of f(x).

f(x) = (x+1)2

2x f ′(x) = (x−1)(x+1)
2x2

Set f ′ to zero to find the critical points.

f ′(x) = (x−1)(x+1)
2x2 = 0

Either find the zeros of the function...

x− 1 = 0, x = 1 x + 1 = 0, x = −1

...or do it symbolically and find (f ′)−1.

(f ′)−1(y) = ±
√

−1
2y−1 (f ′)−1(0) = ±

√
−1

2(0)−1 = ±1

We can also see that f’(x) will be undefined at x = 0 (divide by zero).

Now we know that this function may have minima or maxima at −1, 0, or
1. Since f is continuous except for at 0, we can use the Intermediate Value
Theorem find out whether they are minima, maxima, or nothing at all by picking
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intermediate values and checking them. We now pick intermediate values and test
to see whether they show that the function value indicates an extreme value. Use
convenient values when possible.

x = −2 −1 −1/2 0 1/2 1 2
f(x) = −1/4 0 −1/4 DNE 2.25 2 2.25

Since f(−1) is greater than the numbers around it, 0 is a local maximum. Also,
f(1) is lower than the numbers around it, it is a local minimum. However, since
f(0) is also undefined, it is not anything.

Exercises

1. Olivia has 200 feet of fencing with which she wishes to enclose the largest
possible rectangular garden. What is the largest garden she can have?

2. Find the minima and maxima of the function f(x) = 3x4 − 4x3 + 5 on the
interval [−2, 3].

3. The cost per hour of fuel to run a locomotive is v2/25 dollars, where v is
speed, and other costs are $100 per hour regardless of speed. What is the
speed that minimizes cost per mile?

4. The product of two numbers x, y is 16. We know x ≥ 1 and y ≥ 1. What is
the greatest possible sum of the two numbers?

5. Find both the minimum and the maximum of the function f(x) = x3+3x+1
on the interval [−2, 2].



118 CHAPTER 4. APPLICATIONS OF DERIVATIVES

4.3 Local minima and maxima (First Derivative
Test)

Definition 4.3.1.

[author=garrett, file =text_files/first_deriv_test]

A function f has a local maximum or relative maximum at a point xo if the
values f(x) of f for x ‘near’ xo are all less than f(xo). Thus, the graph of f near
xo has a peak at xo. A function f has a local minimum or relative minimum
at a point xo if the values f(x) of f for x ‘near’ xo are all greater than f(xo).
Thus, the graph of f near xo has a trough at xo. (To make the distinction clear,
sometimes the ‘plain’ maximum and minimum are called absolute maximum and
minimum.)

Comment.

[author=garrett, file =text_files/first_deriv_test]

Yes, in both these ‘definitions’ we are tolerating ambiguity about what ‘near’ would
mean, although the peak/trough requirement on the graph could be translated into
a less ambiguous definition. But in any case we’ll be able to execute the procedure
given below to find local maxima and minima without worrying over a formal
definition.

This procedure is just a variant of things we’ve already done to analyze the
intervals of increase and decrease of a function, or to find absolute maxima and
minima. This procedure starts out the same way as does the analysis of intervals
of increase/decrease, and also the procedure for finding (‘absolute’) maxima and
minima of functions.

Rule 4.3.1.

[author=garrett, file =text_files/first_deriv_test]

To find the local maxima and minima of a function f on an interval [a, b]:

• Solve f ′(x) = 0 to find critical points of f .

• Drop from the list any critical points that aren’t in the interval [a, b].

• Add to the list the endpoints (and any points of discontinuity or non-
differentiability): we have an ordered list of special points in the interval:

a = xo < x1 < . . . < xn = b

• Between each pair xi < xi+1 of points in the list, choose an auxiliary point
ti+1. Evaluate the derivative f ′ at all the auxiliary points.

• For each critical point xi, we have the auxiliary points to each side of it:
ti < xi < ti+1. There are four cases best remembered by drawing a picture! :

• if f ′(ti) > 0 and f ′(ti+1) < 0 (so f is increasing to the left of xi and
decreasing to the right of xi, then f has a local maximum at xo.

• if f ′(ti) < 0 and f ′(ti+1) > 0 (so f is decreasing to the left of xi and
increasing to the right of xi, then f has a local minimum at xo.
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• if f ′(ti) < 0 and f ′(ti+1) < 0 (so f is decreasing to the left of xi and also
decreasing to the right of xi, then f has neither a local maximum nor a local
minimum at xo.

• if f ′(ti) > 0 and f ′(ti+1) > 0 (so f is increasing to the left of xi and also
increasing to the right of xi, then f has neither a local maximum nor a local
minimum at xo.

The endpoints require separate treatment: There is the auxiliary point to just
to the right of the left endpoint a, and the auxiliary point tn just to the left of the
right endpoint b:

• At the left endpoint a, if f ′(to) < 0 (so f ′ is decreasing to the right of a)
then a is a local maximum.

• At the left endpoint a, if f ′(to) > (so f ′ is increasing to the right of a) then
a is a local minimum.

• At the right endpoint b, if f ′(tn) < 0 (so f ′ is decreasing as b is approached
from the left) then b is a local minimum.

• At the right endpoint b, if f ′(tn) > (so f ′ is increasing as b is approached
from the left) then b is a local maximum.

Comment.

[author=garrett, file =text_files/first_deriv_test]

The possibly bewildering list of possibilities really shouldn’t be bewildering after
you get used to them. We are already acquainted with evaluation of f ′ at auxiliary
points between critical points in order to see whether the function is increasing
or decreasing, and now we’re just applying that information to see whether the
graph peaks, troughs, or does neither around each critical point and endpoints.
That is, the geometric meaning of the derivative’s being positive or negative is
easily translated into conclusions about local maxima or minima.

Example 4.3.1.

[author=garrett, file =text_files/first_deriv_test]

Find all the local (=relative) minima and maxima of the function f(x) = 2x3 −
9x2 + 1 on the interval [−2, 2]: To find critical points, solve f ′(x) = 0: this is
6x2 − 18x = 0 or x(x− 3) = 0, so there are two critical points, 0 and 3. Since 3 is
not in the interval we care about, we drop it from our list. Adding the endpoints
to the list, we have

−2 < 0 < 2

as our ordered list of special points. Let’s use auxiliary points −1, 1. At −1 the
derivative is f ′(−1) = 24 > 0, so the function is increasing there. At +1 the
derivative is f ′(1) = −12 < 0, so the function is decreasing. Thus, since it is
increasing to the left and decreasing to the right of 0, it must be that 0 is a local
maximum. Since f is increasing to the right of the left endpoint −2, that left
endpoint must give a local minimum. Since it is decreasing to the left of the right
endpoint +2, the right endpoint must be a local minimum.
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Comment.

[author=garrett, file =text_files/first_deriv_test]

Notice that although the processes of finding absolute maxima and minima and
local maxima and minima have a lot in common, they have essential differences. In
particular, the only relations between them are that critical points and endpoints
(and points of discontinuity, etc.) play a big role in both, and that the absolute
maximum is certainly a local maximum, and likewise the absolute minimum is
certainly a local minimum.

For example, just plugging critical points into the function does not reliably
indicate which points are local maxima and minima. And, on the other hand,
knowing which of the critical points are local maxima and minima generally is
only a small step toward figuring out which are absolute: values still have to be
plugged into the funciton! So don’t confuse the two procedures!

(By the way: while it’s fairly easy to make up story-problems where the issue
is to find the maximum or minimum value of some function on some interval, it’s
harder to think of a simple application of local maxima or minima).

Exercises

1. Find all the local (=relative) minima and maxima of the function f(x) =
(x + 1)3 − 3(x + 1) on the interval [−2, 1].

2. Find the local (=relative) minima and maxima on the interval [−3, 2] of the
function f(x) = (x + 1)3 − 3(x + 1).

3. Find the local (relative) minima and maxima of the function f(x) = 1 −
12x + x3 on the interval [−3, 3].

4. Find the local (relative) minima and maxima of the function f(x) = 3x4 −
8x3 + 6x2 + 17 on the interval [−3, 3].
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4.4 An algebra trick

Rule 4.4.1.

[author=garrett, file =text_files/algebra_for_first_deriv_test]

The algebra trick here goes back at least 350 years. This is worth looking at if
only as an additional review of algebra, but is actually of considerable value in a
variety of hand computations as well.

The algebraic identity we use here starts with a product of factors each of
which may occur with a fractional or negative exponent. For example, with 3 such
factors:

f(x) = (x− a)k (x− b)` (x− c)m

The derivative can be computed by using the product rule twice:

f ′(x) =
= k(x− a)k−1(x− b)`(x− c)m + (x− a)k`(x− b)`−1(x− c)m + (x− a)k(x− b)`m(x− c)m−1

Now all three summands here have a common factor of

(x− a)k−1(x− b)`−1(x− c)m−1

which we can take out, using the distributive law in reverse: we have

f ′(x) =
= (x− a)k−1(x− b)`−1(x− c)m−1[k(x− b)(x− c) + `(x− a)(x− c) + m(x− a)(x− b)]

The minor miracle is that the big expression inside the square brackets is a mere
quadratic polynomial in x.

Then to determine critical points we have to figure out the roots of the equation
f ′(x) = 0: If k − 1 > 0 then x = a is a critical point, if k − 1 ≤ 0 it isn’t. If
`−1 > 0 then x = b is a critical point, if `−1 ≤ 0 it isn’t. If m−1 > 0 then x = c
is a critical point, if m − 1 ≤ 0 it isn’t. And, last but not least, the two roots of
the quadratic equation

k(x− b)(x− c) + `(x− a)(x− c) + m(x− a)(x− b) = 0

are critical points.

There is also another issue here, about not wanting to take square roots (and so
on) of negative numbers. We would exclude from the domain of the function any
values of x which would make us try to take a square root of a negative number.
But this might also force us to give up some critical points! Still, this is not the
main point here, so we will do examples which avoid this additional worry.

Example 4.4.1.

[author=garrett, file =text_files/algebra_for_first_deriv_test]

A very simple numerical example: suppose we are to find the critical points of
the function

f(x) = x5/2(x− 1)4/3

Implicitly, we have to find the critical points first. We compute the derivative by
using the product rule, the power function rule, and a tiny bit of chain rule:

f ′(x) =
5
2
x3/2(x− 1)4/3 + x5/2 4

3
(x− 1)1/3
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And now solve this for x? It’s not at all a polynomial, and it is a little ugly.

But our algebra trick transforms this issue into something as simple as solving
a linear equation: first figure out the largest power of x that occurs in all the
terms: it is x3/2, since x5/2 occurs in the first term and x3/2 in the second. The
largest power of x − 1 that occurs in all the terms is (x − 1)1/3, since (x − 1)4/3

occurs in the first, and (x− 1)1/3 in the second. Taking these common factors out
(using the distributive law ‘backward’), we rearrange to

f ′(x) =
5
2
x3/2(x− 1)4/3 + x5/2 4

3
(x− 1)1/3

= x3/2(x− 1)1/3

(
5
2
(x− 1) +

4
3
x

)
= x3/2(x− 1)1/3(

5
2
x− 5

2
+

4
3
x)

= x3/2(x− 1)1/3(
23
6

x− 5
2
)

Now to see when this is 0 is not so hard: first, since the power of x appearing
in front is positive, x = 0 make this expression 0. Second, since the power of x + 1
appearing in front is positive, if x − 1 = 0 then the whole expression is 0. Third,
and perhaps unexpectedly, from the simplified form of the complicated factor, if
23
6 x − 5

2 = 0 then the whole expression is 0, as well. So, altogether, the critical
points would appear to be

x = 0,
15
23

, 1

Many people would overlook the critical point 15
23 , which is visible only after the

algebra we did.

Exercises

1. Find the critical points and intervals of increase and decrease of f(x) =
x10(x− 1)12.

2. Find the critical points and intervals of increase and decrease of f(x) =
x10(x− 2)11(x + 2)3.

3. Find the critical points and intervals of increase and decrease of f(x) =
x5/3(x + 1)6/5.

4. Find the critical points and intervals of increase and decrease of f(x) =
x1/2(x + 1)4/3(x− 1)−11/3.
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4.5 Linear approximations: approximation by dif-
ferentials

Discussion.

[author=garrett, file =text_files/linear_approximation]

The idea here in ‘geometric’ terms is that in some vague sense a curved line can
be approximated by a straight line tangent to it. Of course, this approximation
is only good at all ‘near’ the point of tangency, and so on. So the only formula
here is secretly the formula for the tangent line to the graph of a function. There
is some hassle due to the fact that there are so many different choices of symbols
to write it.

Rule 4.5.1.

[author=duckworth, file =text_files/linear_approximation]

Linearization. Let f be a function, fix an x-value x = a and let L(x) be the
tangent line of f(x) at x = a. Then f(x) and L(x) are approximately equal for
those x-values near x = a. In symbols:

for x near a =⇒ f(x) ≈ L(x)

In this context we call L(x) the linearization of f(x) at x = a.

Comment.

[author=garrett,author=duckworth, file =text_files/linear_approximation]

We note the following:

• One formula for L(x) is given by L(x) = f ′(a)(x − a) + f(a). One really
important thing abouth this formula is that to make it explicit, we only need
to know two numbers: f(a) and f ′(a).

• The purpose of linearization is that L(x) might be easier to calculate or work
with than f(x). In this sense, we use L(x) to tell us about f(x).

• We will not spend time making precise what “near” means in this definition
or how good the approximation “≈” is. However we note that f(a) = L(a),
so that at x = a the L(x) is an exact approximation of f(x). Also, f ′(a) =
d
dxL(x)

∣∣∣
x=a

, i.e. the derivative of f at x = a equals the derivative of L(x) at

x = a. So again, at x = a, the slope of L(x) is an exact approximation of
f(x).

Notation.

[author=garrett, file =text_files/linear_approximation]

The aproximation statement has many paraphrases in varying choices of symbols,
and a person needs to be able to recognize all of them. For example, one of
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the more traditional paraphrases, which introduces some slightly silly but oh-so-
traditional notation, is the following one. We might also say that y is a function
of x given by y = f(x). Let

∆x = small change in x

∆y = corresponding change in y = f(x + ∆x)− f(x)

Then the assertion is that

∆y ≈ f ′(x) ∆x

Sometimes some texts introduce the following questionable (but traditionally
popular!) notation:

dy = f ′(x) dx = approximation to change in y

dx = ∆x

and call the dx and dy ‘differentials’. And then this whole procedure is ‘approxi-
mation by differentials’. A not particularly enlightening paraphrase, using the
previous notation, is

dy ≈ ∆y

Even though you may see people writing this, don’t do it.

More paraphrases, with varying symbols:

f(x + ∆x) ≈ f(x) + f ′(x)∆x

f(x + δ) ≈ f(x) + f ′(x)δ

f(x + h) ≈ f(x) + f ′(x)h

f(x + ∆x)− f(x) ≈ f ′(x)∆x

y + ∆y ≈ f(x) + f ′(x)∆x

∆y ≈ f ′(x)∆x

Comment.

[author=garrett, file =text_files/linear_approximation]

A little history: Until just 20 or 30 years ago, calculators were not widely available,
and especially not typically able to evaluate trigonometric, exponential, and loga-
rithm functions. In that context, the kind of vague and unreliable ‘approximation’
furnished by ‘differentials’ was certainly worthwhile in many situations.

By contrast, now that pretty sophisticated calculators are widely available,
some things that once seemed sensible are no longer. For example, a very tra-
ditional type of question is to ‘approximate

√
10 by differentials’. A reasonable

contemporary response would be to simply punch in ‘1, 0,
√’ on your calculator

and get the answer immediately to 10 decimal places. But this was possible only
relatively recently.
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Comment.

[author=duckworth, file =text_files/linear_approximation]

Try to keep the following in mind as we do some examples. We will start with
examples that are easy, or historically relevant, but do not show you, a modern
reader, why linearization is a useful thing. These examples include anything where
we have a formula for f(x), and we are trying to approximate f(b) for some number
b. The examples that are useful to us today will came later.

Historically, using linearizaton to approximate
√

10 would have been a useful
trick for most of the last 1000 years. Today, we (or our machines) can calculate√

10; we will do this example just as a means of practicing linearization.

However, linearization is still very useful today. The following applications are
incredibly important and we’ll return to them later in these notes.

1. Solving an equation of the form f(x) = 0.

Let f(x) = ex+x and consider solving ex+x = 0. I cannot solve this equation
exactly, but I can find an approximation using linearization. Let L(x) be
the tangent line at x = 0. It is easy to show that L(x) = 2x + 1. Instead of
solving f(x) = 0 I solve L(x) = 0 to get 2x + 1 = 0, x = −1/2. Since f(x)
and L(x) are approximately the same thing, x = −1/2 is approximately a
solution of f(x) = 0.

Repeating this process will (usually) give you a more accurate approximation
of f(x) = 0, and is called Newton’s Method.

2. Suppose that we know only a little bit about a function. For example,
suppose that we know that some moving object has position p(t) satisfying
p(0) = 7, and that the velocity is given by v(t) = (t − 1) cos(t). Can we
approximate p(.5), p(1), etc.?

Let L(t) be the linear approximation of p(t) at t = 0. To write down a
formula for L(t) we only need to know two numbers: p(0) and p′(0). Well,
we were explicitly told that p(0) = 7, and we can find p′(0) = v(0) =
(0− 1) cos(0) = −1. Therefore L(t) = −t + 7. Therefore p(.5) ≈ L(.5) = 6.5
and p(1) ≈ L(1) = 6.

Example 4.5.1.

[author=garrett, file =text_files/linear_approximation]

For example let’s approximate
√

17 by differentials. For this problem to make sense
at all you should imagine that you have no calculator. We take f(x) =

√
x = x1/2.

The idea here is that we can easily evaluate ‘by hand’ both f and f ′ at the point
x = 16 which is ‘near’ 17. (Here f ′(x) = 1

2x−1/2). Thus, here

∆x = 17− 16 = 1

and √
17 = f(17) ≈ f(16) + f ′(16)∆x =

√
16 +

1
2

1√
16
· 1 = 4 + 18

Similarly, if we wanted to approximate
√

18 ‘by differentials’, we’d again take
f(x) =

√
x = x1/2. Still we imagine that we are doing this ‘by hand’, and then
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of course we can ‘easily evaluate’ the function f and its derivative f ′ at the point
x = 16 which is ‘near’ 18. Thus, here

∆x = 18− 16 = 2

and √
18 = f(18) ≈ f(16) + f ′(16)∆x =

√
16 +

1
2

1√
16
· 2 = 4 +

1
4

Why not use the ‘good’ point 25 as the ‘nearby’ point to find
√

18? Well, in
broad terms, the further away your ‘good’ point is, the worse the approximation
will be. Yes, it is true that we have little idea how good or bad the approximation
is anyway.

Comment.

[author=garrett, file =text_files/linear_approximation]

It is somewhat more sensible to not use this idea for numerical work, but rather
to say things like

√
x + 1 ≈

√
x +

1
2

1√
x

and √
x + h ≈

√
x +

1
2

1√
x
· h

This kind of assertion is more than any particular numerical example would give,
because it gives a relationship, telling how much the output changes for given
change in input, depending what regime (=interval) the input is generally in. In
this example, we can make the qualitative observation that as x increases the
difference

√
x + 1−

√
x decreases.

Example 4.5.2.

[author=garrett, file =text_files/linear_approximation]

Another numerical example: Approximate sin 31o ‘by differentials’. Again, the
point is not to hit 3, 1, sin on your calculator (after switching to degrees), but
rather to imagine that you have no calculator. And we are supposed to remember
from pre-calculator days the ‘special angles’ and the values of trig functions at
them: sin 30o = 1

2 and cos 30o =
√

3
2 . So we’d use the function f(x) = sin x, and

we’d imagine that we can evaluate f and f ′ easily by hand at 30o. Then

∆x = 31o − 30o = 1o = 1o · 2π radians
360o

=
2π

360
radians

We have to rewrite things in radians since we really only can compute derivatives of
trig functions in radians. Yes, this is a complication in our supposed ‘computation
by hand’. Anyway, we have

sin 31o = f(31o) = f(30o) + f ′(30o)∆x = sin 30o + cos 30o · 2π

360

=
1
2

+
√

3
2

2π360

Evidently we are to also imagine that we know or can easily find
√

3 (by differen-
tials?) as well as a value of π. Yes, this is a lot of trouble in comparison to just
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punching the buttons, and from a contemporary perspective may seem senseless.

Example 4.5.3.

[author=garrett, file =text_files/linear_approximation]

Approximate ln(x+2) ‘by differentials’, in terms of lnx and x: This non-numerical
question is somewhat more sensible. Take f(x) = ln x, so that f ′(x) = 1

x . Then

∆x = (x + 2)− x = 2

and by the formulas above

ln(x + 2) = f(x + 2) ≈ f(x) + f ′(x) · 2 = ln x +
2
x

Example 4.5.4.

[author=garrett, file =text_files/linear_approximation]

Approximate ln (e+2) in terms of differentials: Use f(x) = ln x again, so f ′(x) =
1
x . We probably have to imagine that we can ‘easily evaluate’ both ln x and 1

x at
x = e. (Do we know a numerical approximation to e?). Now

∆x = (e + 2)− e = 2

so we have

ln(e + 2) = f(e + 2) ≈ f(e) + f ′(e) · 2 = ln e +
2
e

= 1 +
2
e

since ln e = 1.

Exercises

1. Approximate
√

101 ‘by differentials’ in terms of
√

100 = 10.

2. Approximate
√

x + 1 ‘by differentials’, in terms of
√

x.

3. Granting that d
dx lnx = 1

x , approximate ln(x + 1) ‘by differentials’, in terms
of lnx and x.

4. Granting that d
dxex = ex, approximate ex+1 in terms of ex.

5. Granting that d
dx cos x = − sinx, approximate cos(x + 1) in terms of cos x

and sin x.
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4.6 Implicit differentiation

Discussion.

[author=garrett, file =text_files/implicit_derivatives]

There is nothing ‘implicit’ about the differentiation we do here, it is quite ‘explicit’.
The difference from earlier situations is that we have a function defined ‘implicitly’.
What this means is that, instead of a clear-cut (if complicated) formula for the
value of the function in terms of the input value, we only have a relation between
the two. This is best illustrated by examples.

Example 4.6.1.

[author=garrett, file =text_files/implicit_derivatives]

For example, suppose that y is a function of x and

y5 − xy + x5 = 1

and we are to find some useful expression for dy/dx. Notice that it is not likely
that we’d be able to solve this equation for y as a function of x (nor vice-versa,
either), so our previous methods do not obviously do anything here! But both
sides of that equality are functions of x, and are equal, so their derivatives are
equal, surely. That is,

5y4 dy

dx
− 1 · y − x

dy

dx
+ 5x4 = 0

Here the trick is that we can ‘take the derivative’ without knowing exactly what
y is as a function of x, but just using the rules for differentiation.

Specifically, to take the derivative of the term y5, we view this as a composite
function, obtained by applying the take-the-fifth-power function after applying the
(not clearly known!) function y. Then use the chain rule!

Likewise, to differentiate the term xy, we use the product rule

d

dx
(x · y) =

dx

dx
· y + x · dy

dx
= y + x · dy

dx

since, after all,
dy

dx
= 1

And the term x5 is easy to differentiate, obtaining the 5x4. The other side of
the equation, the function ‘1’, is constant, so its derivative is 0. (The fact that this
means that the left-hand side is also constant should not be mis-used: we need
to use the very non-trivial looking expression we have for that constant function,
there on the left-hand side of that equation!).

Now the amazing part is that this equation can be solved for y′, if we tolerate
a formula involving not only x, but also y: first, regroup terms depending on
whether they have a y′ or not:

y′(5y4 − x) + (−y + 5x4) = 0

Then move the non-y′ terms to the other side

y′(5y4 − x) = y − 5x4
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and divide by the ‘coefficient’ of the y′:

y′ =
y − 5x4

5y4 − x

Yes, this is not as good as if there were a formula for y′ not needing the y. But,
on the other hand, the initial situation we had did not present us with a formula
for y in terms of x, so it was necessary to lower our expectations.

Yes, if we are given a value of x and told to find the corresponding y′, it would
be impossible without luck or some additional information. For example, in the
case we just looked at, if we were asked to find y′ when x = 1 and y = 1, it’s easy:
just plug these values into the formula for y′ in terms of both x and y: when x = 1
and y = 1, the corresponding value of y′ is

y′ =
1− 5 · 14

5 · 14 − 1
= −4/4 = −1

If, instead, we were asked to find y and y′ when x = 1, not knowing in advance
that y = 1 fits into the equation when x = 1, we’d have to hope for some luck.
First, we’d have to try to solve the original equation for y with x replace by its
value 1: solve

y5 − y + 1 = 1

By luck indeed, there is some cancellation, and the equation becomes

y5 − y = 0

By further luck, we can factor this ‘by hand’: it is

0 = y(y4 − 1) = y(y2 − 1)(y2 + 1) = y(y − 1)(y + 1)(y2 + 1)

So there are actually three real numbers which work as y for x = 1: the values
−1, 0,+1. There is no clear way to see which is ‘best’. But in any case, any one
of these three values could be used as y in substituting into the formula

y′ =
y − 5x4

5y4 − x

we obtained above.

Yes, there are really three solutions, three functions, etc.

Note that we could have used the Intermediate Value Theorem and/or New-
ton’s Method to numerically solve the equation, even without too much luck. In
‘real life’ a person should be prepared to do such things.

Discussion.

[author=livshits, file =text_files/implicit_derivatives]

We sometimes can calculate the derivative of a function without knowing an explicit
expression of this function. This approach is called implicit differentiation. We
already saw some simple examples of it in the exercises.

Example 4.6.2.
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[author=livshits, file =text_files/implicit_derivatives]

Let x(t) be the real root of the equation x5 + x = t2 + t (you can sketch the curve
y = x5 + x or notice that x5 + x is an increasing function of x to see that there
is only one such solution, so the function x(t) is well defined). It turns out that it
is impossible to write an expression for x(t) in terms of the familiar functions, so
we are stuck. But if we differentiate our equation (with respect to t) we will get a
linear equation for x′(t) that is easy to solve. Doing that will give us an expression
for x′(t) in terms of x(t) and t. Remembering that x(0) = 0, we can figure out
that x′(0) = 1.

Comment.

[author=livshits, file =text_files/implicit_derivatives]

This example illustrates the following phenomenon: the equations usually simplify
when we differentiate them (but at a price of the derivatives popping up in the
resulting equation). As another example, you can think of the planetary motions
in the solar system. They are very complicated, but if we differentiate 2 times, we
get Newton’s second law of dymnamics and his law of gravitation, both of which
can be written in one line. We will touch upon these matters more later.

There is one subtlety here: we assumed that x(t) is a differentiable function.
This assumption has to be justified even if we could compute x′(t). To illustrate
what can go wrong, let us assume that there is a biggest natural number N . Then
N2 ≤ N , but 1 is the only such natural number, therefore N = 1. Of course it
is a joke (it’s called Perron’s paradox), but it shows that you can end up with
the wrong thing even if you find it, if you assume the existence of a thing that
doesn’t exist. We will encounter less ridiculous examples of this phenomenon when
we treat maxima and minima. We will return to this particular question of the
existence of x′(0) later.

Meanwhile, there is a comforting fact that as long as we don’t have to divide
by zero to carry out the implicit differentiation, the derivative that we are looking
for indeed exists under some very mild assumptions about the equation. This fact
is called the implicit function theorem.

Rule 4.6.1.

[author=wikibooks, file =text_files/derivatives_inverse_trig]

Arccsine, arccosine, arctangent. These are the functions that allow you to deter-
mine the angle given the sine, cosine, or tangent of that angle.

First, let us start with the arcsine such that

y = arcsin(x)

To find dy/dx we first need to break this down into a form we can work with

x = sin(y)

Then we can take the derivative of that

1 = cos(y) · dy
dx

...and solve for dy / dx
dy
dx = 1

cos(y)

At this point we need to go back to the unit triangle. Since y is the angle and
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the opposite side is sin(y) (which is equal to x), the adjacent side is cos(y) (which
is equal to the square root of 1 minus x2, based on the pythagorean theorem), and
the hypotenuse is 1. Since we have determined the value of cos(y) based on the
unit triangle, we can substitute it back in to the above equation and get

Derivative of the Arcsine d
dx arcsin(x) = 1√

1+x2

Rule 4.6.2.

[author=wikibooks, file =text_files/derivatives_inverse_trig]

We can use an identical procedure for the arccosine and arctangent

Derivative of the Arccosine d
dx arccos(x) = −1√

1−x2

Derivative of the Arctangent d
dx arctan(x) = 1

1+x2

Exercises

1. Suppose that y is a function of x and

y5 − xy + x5 = 1

Find dy/dx at the point x = 1, y = 0.

2. Suppose that y is a function of x and

y3 − xy2 + x2y + x5 = 7

Find dy/dx at the point x = 1, y = 2. Find d2y
dx2 at that point.
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4.7 Related rates

Discussion.

[author=garrett, file =text_files/related_rates]

In this section, most functions will be functions of a parameter t which we will
think of as time. There is a convention coming from physics to write the derivative
of any function y of t as ẏ = dy/dt, that is, with just a dot over the functions,
rather than a prime.

The issues here are variants and continuations of the previous section’s idea
about implicit differentiation. Traditionally, there are other (non-calculus!) issues
introduced at this point, involving both story-problem stuff as well as requirement
to be able to deal with similar triangles, the Pythagorean Theorem, and to recall
formulas for volumes of cones and such.

Example 4.7.1.

[author=garrett, file =text_files/related_rates]

Continuing with the idea of describing a function by a relation, we could have two
unknown functions x and y of t, related by some formula such as

x2 + y2 = 25

A typical question of this genre is ‘What is ẏ when x = 4 and ẋ = 6?’

The fundamental rule of thumb in this kind of situation is differentiate the
relation with respect to t: so we differentiate the relation x2 +y2 = 25 with respect
to t, even though we don’t know any details about those two function x and y of
t:

2xẋ + 2yẏ = 0

using the chain rule. We can solve this for ẏ:

ẏ = −xẋ

y

So at any particular moment, if we knew the values of x, ẋ, y then we could find ẏ
at that moment.

Here it’s easy to solve the original relation to find y when x = 4: we get y = ±3.
Substituting, we get

ẏ = −4 · 6
±3

= ±8

(The ± notation means that we take + chosen if we take y = −3 and − if we take
y = +3).

Discussion.

[author=duckworth, file =text_files/related_rates]

The basic ideas of related rates are these:

• You have a formula which has more than one independant variable in it.
Each variable is a letter. You let each letter represent a function of t, and
then you take the derivative with respect to t. For instance, if you have
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A = fg where f and g are each functions of t, then the product rule says
that dA

dt = df
dtg + f dg

dt .

• Now you look at the information in the problem and plug in numbers for
everything in the formula except one unknown quantity, which you can solve
for.

• We interpret df
dt as the rate of change of f with respect to t. Similarly for

dA
dt and dg

dt .

• Often, the hardest part is just figuring out what formula to start with.

Example 4.7.2.

[author=duckworth, file =text_files/related_rates]

Let A = fg so dA
dt = df

dtg + f dg
dt as above.

1. f = t2 and g = cos(t). Find df
dt and dg

dt . If you plug all of this into the formula
for dA

dt just given do you get the same thing as if you found d
dt t

2 cos(t) in one
step?

2. Now suppose that instead of part (a) you know that f(0) = 10, df
dt

∣∣∣0 = 1,

g(0) = 1 and dg
dt

∣∣∣0 = 0. What is dA
dt

∣∣∣0?

3. Suppose now that you know f = t + 10 and g = cos(t). Find dA
dt

∣∣∣0 by taking
the derivative of (t + 10) cos(t) and evaluating at 0.

4. Suppose now that you know f(1) = 7, df
dt

∣∣∣1 = 3, g(1) = 5, dA
dt

∣∣∣1 = 2. What

is dg
dt

∣∣∣1?

Example 4.7.3.

[author=duckworth, file =text_files/related_rates]

The formula for the volume of a sphere is V = 4
3πr3.

1. Find the formula for dV
dt .

2. Suppose you know that the radius of the sphere is 5, and it is increasing at
a rate of 10m/s. How fast is the volume increasing?

3. Suppose that you know that the radius of the sphere is 10, and that the
volume is decreasing at a rate of −3m3/s. How fast is the radius decreasing?

Example 4.7.4.
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[author=duckworth, file =text_files/related_rates]

There are two cars, one going east and one going south.

1. Find a formula for the distance D between the cars in terms of x and y.

2. Find a formula for dD
dt . (Hint: if you can’t figure out where to put dx

dt and
dy
dt think about where the chain rule says you should put the derivative of
the inside.)

3. Suppose you know that car A is travelling at 60 m/h and is 100 miles from
the starting point. Suppose you know that car B is travelling 30 m/h and
is 50 miles from the starting point. Find how fast the distance between the
cars is increasing.

4. Suppose you know that the distance between the cars is increasing at the
rate of 37 m/h. Suppose you know that car A is 75 miles from the starting
point and going 30 m/h. Suppose you know that car B is 55 miles from the
starting point. How fast is car B going

Example 4.7.5.

[author=duckworth, file =text_files/related_rates]

The volume of a cone is given by V = 1
3πr2h where r is the radius of the cone and

h is the height.

1. Find a formula for dV
dt .

2. Suppose dV
dt = 3, r = 2, dr

dt = 5 and h = 7. Find dh
dt .

3. Suppose you know that the volume of water is 1000, and that the height is
10. Suppose also that you know that the radius is increasing at a rate of
1 and that the volume is increasing at a rate of 5. How fast is the height
increasing?

Discussion.

[author=duckworth, file =text_files/related_rates]

The basic idea here is that we have a formula, and the letters in the formula stand
for some function of t. We can take d

dt of both sides of the formula and treat every
letter as a function of time. Then you plug numbers into every spot except the
one you’re solving for. Then you solve for the unknown.

In general, I emphasize the formula first, and taking the derivative. Afterwards
I go back to the problem and see how to plug the numbers in.

Example 4.7.6.

[author=duckworth, file =text_files/related_rates]
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A ladder is leaning against the wall, and sliding downwards. The ladder is 10 feet
long.

The equation is x2 + y2 = 10. Taking d
dt of both sides gives 2xdx

dt + 2y dy
dt = 0.

(Note, we need dx
dt because x is some function of t. If we knew the formula for x

we could write the formula for dx
dt .)

Now suppose that you know the base is 2 feet from the wall and moving at the
rate of 1

4 ft/sec. How fast is the top sliding down? We plug these numbers in and
we have 2 · 2 · 1

4 + 2y dy
dt = 0. We need to get rid of y before we can solve for dy

dt .
Use the Pythagorean theorem: 22 + y2 = 102 so y =

√
100− 4 = 9.8. Then we

have 2 · 2 · 1
4 + 2 · 9.8 · dy

dt = 0 whence dy
dt = −.05 ft/sec.

Notice that we took d
dt of both sides first, and then plugged in numbers. In

general, you cannot plug in any numbers before taking d
dt unless they are numbers

which cannot change in the problem.

Exercises

1. Suppose that x, y are both functions of t, and that x2 + y2 = 25. Express
dx
dt in terms of x, y, and dy

dt . When x = 3 and y = 4 and dy
dt = 6, what is dx

dt ?

2. A 2-foot tall dog is walking away from a streetlight which is on a 10-foot
pole. At a certain moment, the tip of the dog’s shadow is moving away from
the streetlight at 5 feet per second. How fast is the dog walking at that
moment?

3. A ladder 13 feet long leans against a house, but is sliding down. How fast is
the top of the ladder moving at a moment when the base of the ladder is 12
feet from the house and moving outward at 10 feet per second?
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4.8 The intermediate value theorem and finding
roots

Theorem 4.8.1.
[author= Garret , file =text_files/intermediate_value_theorem]

If a function f is continuous on an interval [a, b] and if f(a) < 0 and f(b) > 0
(or vice-versa), then there is some third point c with a < c < b so that f(c) = 0.

Comment.

[author=garrett, file =text_files/intermediate_value_theorem]

The assertion of the Intermediate Value Theorem is something which is probably
‘intuitively obvious’, and is also provably true.

This result has many relatively ‘theoretical’ uses, but for our purposes can be
used to give a crude but simple way to locate the roots of functions. There is a
lot of guessing, or trial-and-error, involved here, but that is fair. Again, in this
situation, it is to our advantage if we are reasonably proficient in using a calculator
to do simple tasks like evaluating polynomials! If this approach to estimating roots
is taken to its logical conclusion, it is called the method of interval bisection, for
a reason we’ll see below. We will not pursue this method very far, because there
are better methods to use once we have invoked this just to get going.

Example 4.8.1.

[author=garrett, file =text_files/intermediate_value_theorem]

For example, we probably don’t know a formula to solve the cubic equation

x3 − x + 1 = 0.

But the function f(x) = x3 − x + 1 is certainly continuous, so we can invoke the
Intermediate Value Theorem as much as we’d like. For example, f(2) = 7 > 0
and f(−2) = −5 < 0, so we know that there is a root in the interval [−2, 2].
We’d like to cut down the size of the interval, so we look at what happens at the
midpoint, bisecting the interval [−2, 2]: we have f(0) = 1 > 0. Therefore, since
f(−2) = −5 < 0, we can conclude that there is a root in [−2, 0]. Since both
f(0) > 0 and f(2) > 0, we can’t say anything at this point about whether or not
there are roots in [0, 2]. Again bisecting the interval [−2, 0] where we know there
is a root, we compute f(−1) = 1 > 0. Thus, since f(−2) < 0, we know that there
is a root in [−2,−1] (and have no information about [−1, 0]).

Example 4.8.2.

[author=garrett, file =text_files/intermediate_value_theorem]

If we continue with this method, we can obtain as good an approximation as we
want! But there are faster ways to get a really good approximation, as we’ll see.

Unless a person has an amazing intuition for polynomials, there is really no
way to anticipate what guess is better than any other in getting started.

Invoke the Intermediate Value Theorem to find an interval of length 1 or less
in which there is a root of x3 +x+3 = 0: Let f(x) = x3 +x+3. Just, guessing, we
compute f(0) = 3 > 0. Realizing that the x3 term probably ‘dominates’ f when
x is large positive or large negative, and since we want to find a point where f is
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negative, our next guess will be a ‘large’ negative number: how about −1? Well,
f(−1) = 1 > 0, so evidently −1 is not negative enough. How about −2? Well,
f(−2) = −7 < 0, so we have succeeded. Further, the failed guess −1 actually was
worthwhile, since now we know that f(−2) < 0 and f(−1) > 0. Then, invoking
the Intermediate Value Theorem, there is a root in the interval [−2,−1].

Of course, typically polynomials have several roots, but the number of roots of
a polynomial is never more than its degree. We can use the Intermediate Value
Theorem to get an idea where all of them are.

Invoke the Intermediate Value Theorem to find three different intervals of
length 1 or less in each of which there is a root of x3 − 4x + 1 = 0: first, just
starting anywhere, f(0) = 1 > 0. Next, f(1) = −2 < 0. So, since f(0) > 0 and
f(1) < 0, there is at least one root in [0, 1], by the Intermediate Value Theorem.
Next, f(2) = 1 > 0. So, with some luck here, since f(1) < 0 and f(2) > 0, by the
Intermediate Value Theorem there is a root in [1, 2]. Now if we somehow imagine
that there is a negative root as well, then we try −1: f(−1) = 4 > 0. So we know
nothing about roots in [−1, 0]. But continue: f(−2) = 1 > 0, and still no new
conclusion. Continue: f(−3) = −14 < 0. Aha! So since f(−3) < 0 and f(2) > 0,
by the Intermediate Value Theorem there is a third root in the interval [−3,−2].

Notice how even the ‘bad’ guesses were not entirely wasted.

4.9 Newton’s method

Discussion.

[author=duckworth, file =text_files/newtons_method]

Recall: The equation of the tangent line of f(x) at x = a is given by:

y = f ′(a)(x− a) + f(a).

Definition 4.9.1.

[author=duckworth,uses=linear_approximation, file =text_files/newtons_method]

Linear approximation. Let f(x) be a function and L(x) the equation of it’s
tangent line at x = a. Then linear approximation states that

f(x) ∼= L(x) for x near a.

Example 4.9.1.

[author=duckworth,uses=sin,uses=linear_approximation, file =text_files/newtons_

method]

Let f(x) = sin(x). Then the equation of the tangent line at x = 0 is L(x) = x.
Then sin(x) ∼= x for x near 0. If you like, make a table of some values of y1 = sin(x)
and y2 = x for x near 0. (By the way, this explains why limx→0

sin(x)
x = 1.)
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Rule 4.9.1.

[author=duckworth,uses=newtons_method, file =text_files/newtons_method]

One step Newton’s method. Let f(x) be a function and L(x) the equation of
the tangent line at x = a. Suppose f(x) has a x-intercept near x = a. Then

the solution of f(x) = 0 is approximately the solution of L(x) = 0.

Notice that it may be hard to solve f(x) = 0 but it is always easy to solve L(x) = 0
because this is a line.

Example 4.9.2.

[author=duckworth,uses=cos,uses=newtons_method, file =text_files/newtons_method]

Let f(x) = x + cos(x). Then f(x) = 0 has a solution near x = 0. The equation
of the tangent line at x = 0 is L(x) = x + 1. I can’t solve x + cos(x) = 0,
but I can solve x + 1 = 0. This gives x = −1. This is close to the solution of
x + cos(x) = 0. To make it more accurate, repeat this whole process, starting at
x = −1. The equation of the tangent line is L(x) = 1.841(x + 1) − .459. Solving
1.841(x + 1)− .459 = 0 gives x = −.75 which is very close to the exact solution of
f(x) = 0.

Rule 4.9.2.

[author=duckworth,uses=newtons_method, file =text_files/newtons_method]

Multi-step Newton’s method. Any tangent line at x = a has equation y =
f ′(a)(x− a) + f(a). Solving this for the x-intercept gives

x = a− f(a)
f ′(a)

.

You can iterate this process. Start with any x = a1, then a2 = a1 − f(a1)/f ′(a1).
Now that you have a2 you can get a3 = a2 − f(a2)/f ′(a2). Etc.

Note that this formula can easily be adapted to being run on a computer.

Program.

[author=duckworth,uses=program, file =text_files/newtons_method]

These directions are for the TI-83, although similar directions would work on a
variet of calculators and even computer systems.

To use the following program you must enter y1 = f(x) before running the
program.

Hit PRGRM , choose NEW , and enter the name “NEWT” or something like
that. To get Input you hit (while editing a program) PRGRM , choose I/O ,
then hit 1. (To get out of a menu while editing a program you can hit QUIT

, which takes you back to the main screen, or CLEAR , which takes you back
to the program.) To get a space after “GUESS” and “STEPS” you hit the green
symbol right above the 0 button. To get For you hit PRGRM , then choose 4.
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To get → you hit the STO→ button (right above ON ). To get End you hit
PRGRM and choose 7. To get Disp you hit PRGRM and choose I/O and then

choose 3. To get y1 you hit VARS , then choose y-vars, then choose 1. To get
nDeriv( you hit MATH , then choose nDeriv( .

:Input ‘‘GUESS ’’,X
:Input ‘‘STEPS ’’,N
:For(I,1,N)
:X-Y1/nDeriv( (Y1,X,X)→X
:Disp X
:End

Example 4.9.3.

[author=duckworth,uses=e^x,uses=newtons_method, file =text_files/newtons_method]

Using the program, find an approximation of the solution of x + ex = 0. Start
with x = 0 and run five steps. , y2 = 1 + ex. Run NEWT with an initial guess of
x = 0, and try 5 steps. You should get −.567 . If you look at the graph of y1 this
should be very close to the x-intercept.

By the way, if you want to run it again you can just hit enter after you’ve run
the program, but before you hit anything else.

Discussion.

[author=garrett,uses=newtons_method, file =text_files/newtons_method]

This is a method which, once you get started, quickly gives a very good approxi-
mation to a root of polynomial (and other) equations. The idea is that, if xo is not
a root of a polynomial equation, but is pretty close to a root, then sliding down
the tangent line at xo to the graph of f gives a good approximation to the actual
root. The point is that this process can be repeated as much as necessary to give
as good an approximation as you want.

Derivation.

[author=garrett,uses=newtons_method, file =text_files/newtons_method]

Let’s derive the relevant formula: if our blind guess for a root of f is xo, then the
tangent line is

y − f(xo) = f ′(xo)(x− xo)

‘Sliding down’ the tangent line to hit the x-axis means to find the intersection of
this line with the x-axis: this is where y = 0. Thus, we solve for x in

0− f(xo) = f ′(xo)(x− xo)

to find

x = xo −
f(xo)
f ′(xo)

Well, let’s call this first serious guess x1. Then, repeating this process, the
second serious guess would be

x2 = x1 −
f(x1)
f ′(x1)
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and generally, if we have the nth guess xn then the n + 1th guess xn+1 is

xn+1 = xn −
f(xn)
f ′(xn)

OK, that’s the formula for improving our guesses. How do we decide when to
quit? Well, it depends upon to how many decimal places we want our approxima-
tion to be good. Basically, if we want, for example, 3 decimal places accuracy, then
as soon as xn and xn+1 agree to three decimal places, we can presume that those
are the true decimals of the true root of the equation. This will be illustrated in
the examples below.

Comment.

[author=garrett, file =text_files/newtons_method]

It is important to realize that there is some uncertainty in Newton’s method, both
because it alone cannot assure that we have a root, and also because the idea just
described for approximating roots to a given accuracy is not foolproof. But to
worry about what could go wrong here is counter-productive.

Example 4.9.4.

[author=garrett,uses=newtons_method, file =text_files/newtons_method]

Approximate a root of x3− x + 1 = 0 using the intermediate value theorem to get
started, and then Newton’s method:

First let’s see what happens if we are a little foolish here, in terms of the ‘blind’
guess we start with. If we ignore the advice about using the intermediate value
theorem to guarantee a root in some known interval, we’ll waste time. Let’s see:
The general formula

xn+1 = xn −
f(xn)
f ′(xn)

becomes

xn+1 = xn −
x3 − x + 1
3x2 − 1

If we take x1 = 1 as our ‘blind’ guess, then plugging into the formula gives

x2 = 0.5

x3 = 3

x4 = 2.0384615384615383249

This is discouraging, since the numbers are jumping around somewhat. But if we
are stubborn and can compute quickly with a calculator (not by hand!), we’d see
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what happens:
x5 = 1.3902821472167361527
x6 = 0.9116118977179270555
x7 = 0.34502849674816926662
x8 = 1.4277507040272707783
x9 = 0.94241791250948314662
x10 = 0.40494935719938018881
x11 = 1.7069046451828553401
x12 = 1.1557563610748160521
x13 = 0.69419181332954971175
x14 = −0.74249429872066285974
x15 = −2.7812959406781381233
x16 = −1.9827252470441485421
x17 = −1.5369273797584126484
x18 = −1.3572624831877750928
x19 = −1.3256630944288703144
x20 = −1.324718788615257159
x21 = −1.3247179572453899876

Well, after quite a few iterations of ‘sliding down the tangent’, the last two
numbers we got, x20 and x21, agree to 5 decimal places. This would make us think
that the true root is approximated to five decimal places by −1.32471.

The stupid aspect of this little scenario was that our initial ‘blind’ guess was
too far from an actual root, so that there was some wacky jumping around of the
numbers before things settled down. If we had been computing by hand this would
have been hopeless.

Let’s try this example again using the Intermediate Value Theorem to pin down
a root with some degree of accuracy: First, f(1) = 1 > 0. Then f(0) = +1 > 0
also, so we might doubt that there is a root in [0, 1]. Continue: f(−1) = 1 > 0
again, so we might doubt that there is a root in [−1, 0], either. Continue: at last
f(−2) = −5 < 0, so since f(−1) > 0 by the Intermediate Value Theorem we do
indeed know that there is a root between −2 and −1. Now to start using Newton’s
Method, we would reasonably guess

xo = −1.5

since this is the midpoint of the interval on which we know there is a root. Then
computing by Newton’s method gives:

x1 = −1.3478260869565217295
x2 = −1.3252003989509069104
x3 = −1.324718173999053672
x4 = −1.3247179572447898011

so right away we have what appears to be 5 decimal places accuracy, in 4 steps
rather than 21. Getting off to a good start is important.

Example 4.9.5.

[author=garrett,uses=newtons_method, file =text_files/newtons_method]

Approximate all three roots of x3−3x+1 = 0 using the intermediate value theorem
to get started, and then Newton’s method. Here you have to take a little care in
choice of beginning ‘guess’ for Newton’s method:
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In this case, since we are told that there are three roots, then we should
certainly be wary about where we start: presumably we have to start in dif-
ferent places in order to successfully use Newton’s method to find the different
roots. So, starting thinking in terms of the intermediate value theorem: letting
f(x) = x3 − 3x + 1, we have f(2) = 3 > 0. Next, f(1) = −1 < 0, so we by
the Intermediate Value Theorem we know there is a root in [1, 2]. Let’s try to
approximate it pretty well before looking for the other roots: The general formula
for Newton’s method becomes

xn+1 = xn −
x3 − 3x + 1

3x2 − 3

Our initial ‘blind’ guess might reasonably be the midpoint of the interval in which
we know there is a root: take

xo = 1.5

Then we can compute

x1 = 1.533333333333333437
x2 = 1.5320906432748537807
x3 = 1.5320888862414665521
x4 = 1.5320888862379560269
x5 = 1.5320888862379560269
x6 = 1.5320888862379560269

So it appears that we have quickly approximated a root in that interval! To what
looks like 19 decimal places!

Continuing with this example: f(0) = 1 > 0, so since f(1) < 0 we know by the
intermediate value theorem that there is a root in [0, 1], since f(1) = −1 < 0. So
as our blind gues let’s use the midpoint of this interval to start Newton’s Method:
that is, now take xo = 0.5:

x1 = 0.33333333333333337034
x2 = 0.3472222222222222654
x3 = 0.34729635316386797683
x4 = 0.34729635533386071788
x5 = 0.34729635533386060686
x6 = 0.34729635533386071788
x7 = 0.34729635533386060686
x8 = 0.34729635533386071788

so we have a root evidently approximated to 3 decimal places after just 2 appli-
cations of Newton’s method. After 8 applications, we have apparently 15 correct
decimal places.

Discussion.

[author=livshits,uses=newtons_method,uses=sqrt, file =text_files/newtons_method]

We will consider first a well known method for calculating an approximate value
of
√

a. The idea is to start with a crude guess x1 and then to improve the ap-
proximation by taking x2 = (x1 + a/x1)/2, then to improve it again by taking
x3 = (x2 + 2/x2)/2 and so on, in general we take

xn+1 = (xn + a/xn)/2.

Let us try to figure out how fast the approximation improves. We get: x2
n+1−

a = (xn + a/xn)2/4 − a = (x2
n + 2a + a2/x2

n)/4 − a = (x2
n − 2a + a2/x2

n)/4 =
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(x2
n − a)2/(4x2

n), and therefore, assuming that x2
n ≈ a,

x2
n+1 − a ≈ (x2

n − a)2/(4a).

So, roughly speaking, every iteration doubles the number of accurate decimal
places in the approximation if the approximation is good enough to begin with. If
the approximation is not good – then, starting with the second iteration, we will
get twice closer to the solution every time we turn the crank.

This trick was already known to the Babylonians about 4000 years ago (see pp.
21-23 in Analysis by Its History). By looking at it from a more modern perspective
we will arrive at the Newton’s method. Here is how.

Derivation.

[author=livshits,uses=newtons_method, file =text_files/newtons_method]

Assume that we have an approximate solution xn to the equation t

f(x) = 0 (4.1)

where f is ULD. For x close to xn f(x) is well approximated by f(xn)+f ′(xn)(x−
xn), so we may hope that the solution to the approximate equation

f(xn) + f ′(xn)(x− xn) = 0 (4.2)

will be a good approximation to the solution of our original equation. But the
approximate equation is easy to solve because it is linear. Its solution is

xn+1 = xn − f(xn)/f ′(xn) (4.3)

x x

x

y

n n-1

2
y=x - a

parab_newtons_method

Discussion.

[author=livshits, file =text_files/newtons_method]

Now we want to show that Newton’s method always works for a ULD f that
changes sign and has a positive and increasing derivative.

Assume that we start with the original guess x0, then calculate x1 using 4.3
with n = 0, then by taking n = 1 in 4.3 we get x2, then x3 by taking n = 2 and
so on. Notice that f(x1) ≥ 0 no matter what x0 is.
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We can see next that for n ≥ 1 we will have xn+1 ≤ xn, so the sequence
x1, x2, ..., xn... will be decreasing.

On the other hand, there is b such that f(b) < 0 (we assumed that f changes
sign), therefore, since f is increasing (because f ′ > 0), we can conclude that
b < xn. It follows that for any given t > 0 there will be m such that xm−xm+1 < t
(otherwise b < xn will break), whence we will have f(xm) = (xm−xm+1)f ′(xm) <
tf ′(xm) ≤ tf ′(x1), and for any n > m it will be 0 ≤ f(xn) ≤ f(xm) ≤ tf ′(x1).
Now we can take t small enough for the fast convergence mentioned in exercise 3
to kick in and demonstrate that Newton’s method works. Here are some details.
By taking a = xn and x = xn+1 in estimate ?? from section 2.4, and taking into
account the equation 4.2 and the formula 4.3, we get

|f(xn+1)| ≤ K(xn − xn+1)2 = K

(
f(xn)
f ′(xn)

)2

<
K

f ′(b)2
f(xn)2 = Mf(xn)2,

where M = K/f ′(b)2 is a (positive) constant. Now, if M < 10k and |f(xn)| < 10−l,
then |f(xn+1)| < 10k−2l. To estimate how well xn approximates the true solution
we notice that f(xn − f(xn)/f ′(b)) ≤ 0, while f(xn) ≥ 0 (for n > 0), therefore
the true solution will be between xn− f(xn)/f ′(b) and xn, and will be not farther
than f(xn)/f ′(b) from xn.

Comment.

[author=livshits, file =text_files/newtons_method]

A few remarks are in order here.

1. As you may have noticed, all the action took place on the segment [b, x1], so
we can assume that the constant K that appeared in our finite analysis of
approximation, is good only for this segment.

2. We assumed that the (there can be only one) true solution to the eqution was
between xn − f(xn)/f ′(b) and xn without justifying that assumption. It is
clear that the solution can not be anywhere outside of [xn−f(xn)/f ′(b), xn],
but we haven’t shown that it exists. To do it requires some properties of
the real numbers that we will discuss later. For now we can be content that
Newton’s method allows us to get an approximate solution of as high quality
as we want, and rather quickly at the final stage of the computation.

3. The whole argument was a bit heavy, it can be made more elegant by using
convergence of sequences, we will learn later about this powerful tool.
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4. While Newton’s method is really good for making a good approximation to
the solution much better, its perfomance may become very sluggish if the
original approximation is not good.

Exercises

1. Approximate a root of x3 − x + 1 = 0 using the intermediate value theorem
to get started, and then Newton’s method.

2. Approximate a root of 3x4−16x3+18x2+1 = 0 using the intermediate value
theorem to get started, and then Newton’s method. You might have to be
sure to get sufficiently close to a root to start so that things don’t ‘blow up’.

3. Approximate all three roots of x3 − 3x + 1 = 0 using the intermediate value
theorem to get started, and then Newton’s method. Here you have to take
a little care in choice of beginning ‘guess’ for Newton’s method.

4. Approximate the unique positive root of cos x = x.

5. Approximate a root of ex = 2x.

6. Approximate a root of sinx = ln x. Watch out.

7. Try to prove that the algorithm given in the text gives better and better
approxmiations of the squar root of a number. Try to prove it, also see what
happens when a = 0, play with a calculator and try to understand what is
going on).

8. Check that if we take f(x) = x2 − a we will arrive at the same Babylonian
formula that we started with.

9. Investigate how Newton’s iteration will improve the approximate solution,
assuming that f ′ > c > 0 and the approximation that we start with is
good enough. Do some calculations to get a feel for the performance of the
method. Hint: use the inequality ?? from section 2.4 together with 4.3 to
estimate f(xn+1) and then to estimate |xn+1−xn+2| in terms of |xn−xn+1|.

10. Now we want to show that Newton’s method always works for a ULD f that
changes sign and has a positive and increasing derivative.

Assume that we start with the original guess x0, then calculate x1 using 4.3
with n = 0, then by taking n = 1 in 4.3 we get x2, then x3 by taking n = 2
and so on. Notice that f(x1) ≥ 0 no matter what x0 is.

Look at the diagram and see why, then prove it.

11. We can see next that for n ≥ 1 we will have xn+1 ≤ xn, so the sequence
x1, x2, ..., xn... will be decreasing. Prove it

12. 4) While Newton’s method is really good for making a good approximation
to the solution much better, its perfomance may become very sluggish if the
original approximation is not good.

Play with the equation ex = 2 to see that.



146 CHAPTER 4. APPLICATIONS OF DERIVATIVES

13. See what can go wrong when different conditions on f don’t hold, for exam-
ple, when f(x) = ex or f(x) = x +

√
x2 + 1 or f(x) = x2 + 1 or f(x) = x1/3.
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4.10 L’Hospital’s rule

Discussion.

[author=garrett, file =text_files/lhospitals_rule]

L’Hospital’s rule is the definitive way to simplify evaluation of limits. It does not
directly evaluate limits, but only simplifies evaluation if used appropriately.

In effect, this rule is the ultimate version of ‘cancellation tricks’, applicable
in situations where a more down-to-earth genuine algebraic cancellation may be
hidden or invisible.

Rule 4.10.1.

[author=garrett, file =text_files/lhospitals_rule]

Suppose we want to evaluate

lim
x→a

f(x)
g(x)

where the limit a could also be +∞ or −∞ in addition to ‘ordinary’ numbers.
Suppose that either

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

or
lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞

(The ±’s don’t have to be the same sign). Then we cannot just ‘plug in’ to
evaluate the limit, and these are traditionally called indeterminate forms. The
unexpected trick that works often is that (amazingly) we are entitled to take the
derivative of both numerator and denominator:

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

No, this is not the quotient rule. No, it is not so clear why this would help, either,
but we’ll see in examples.

Example 4.10.1.

[author=garrett, file =text_files/lhospitals_rule]

Find limx→0 (sin x)/x: both numerator and denominator have limit 0, so we are
entitled to apply L’Hospital’s rule:

lim
x→0

sin x

x
= lim

x→0

cos x

1
In the new expression, neither numerator nor denominator is 0 at x = 0, and we
can just plug in to see that the limit is 1.

Example 4.10.2.

[author=garrett, file =text_files/lhospitals_rule]

Find limx→0 x/(e2x − 1): both numerator and denominator go to 0, so we are
entitled to use L’Hospital’s rule:

lim
x→0

x

e2x − 1
= lim

x→0

1
2e2x
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In the new expression, the numerator and denominator are both non-zero when
x = 0, so we just plug in 0 to get

lim
x→0

x

e2x − 1
= lim

x→0

1
2e2x

=
1

2e0
=

1
2

Example 4.10.3.

[author=garrett, file =text_files/lhospitals_rule]

Find limx→0+ x lnx: The 0+ means that we approach 0 from the positive side,
since otherwise we won’t have a real-valued logarithm. This problem illustrates
the possibility as well as necessity of rearranging a limit to make it be a ratio of
things, in order to legitimately apply L’Hospital’s rule. Here, we rearrange to

lim
x→0+

x lnx = lim
x→0

ln x

1/x

In the new expressions the top goes to −∞ and the bottom goes to +∞ as x goes
to 0 (from the right). Thus, we are entitled to apply L’Hospital’s rule, obtaining

lim
x→0+

x lnx = lim
x→0

ln x

1/x
= lim

x→0

1/x

−1/x2

Now it is very necessary to rearrange the expression inside the last limit: we have

lim
x→0

1/x

−1/x2
= lim

x→0
−x

The new expression is very easy to evaluate: the limit is 0.

Comment.

[author=garrett, file =text_files/lhospitals_rule]

It is often necessary to apply L’Hospital’s rule repeatedly: Let’s find limx→+∞ x2/ex:
both numerator and denominator go to ∞ as x → +∞, so we are entitled to apply
L’Hospital’s rule, to turn this into

lim
x→+∞

2x

ex

But still both numerator and denominator go to ∞, so apply L’Hospital’s rule
again: the limit is

lim
x→+∞

2
ex

= 0

since now the numerator is fixed while the denominator goes to +∞.

Example 4.10.4.

[author=garrett, file =text_files/lhospitals_rule]

Now let’s illustrate more ways that things can be rewritten as ratios, thereby
possibly making L’Hospital’s rule applicable. Let’s evaluate

lim
x→0

xx
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It is less obvious now, but we can’t just plug in 0 for x: on one hand, we are taught
to think that x0 = 1, but also that 0x = 0; but then surely 00 can’t be both at
once. And this exponential expression is not a ratio.

The trick here is to take the logarithm:

ln( lim
x→0+

xx) = lim
x→0+

ln(xx)

The reason that we are entitled to interchange the logarithm and the limit is that
logarithm is a continuous function (on its domain). Now we use the fact that
ln(ab) = b ln a, so the log of the limit is

lim
x→0+

x lnx

Aha! The question has been turned into one we already did! But ignoring that,
and repeating ourselves, we’d first rewrite this as a ratio

lim
x→0+

x lnx = lim
x→0+

lnx

1/x

and then apply L’Hospital’s rule to obtain

lim
x→0+

1/x

−1/x2
= lim

x→0+
−x = 0

But we have to remember that we’ve computed the log of the limit, not the limit.
Therefore, the actual limit is

lim
x→0+

xx = e log of the limit = e0 = 1

This trick of taking a logarithm is important to remember.

Example 4.10.5.

[author=garrett, file =text_files/lhospitals_rule]

Here is another issue of rearranging to fit into accessible form: Find

lim
x→+∞

√
x2 + x + 1−

√
x2 + 1

This is not a ratio, but certainly is ‘indeterminate’, since it is the difference of two
expressions both of which go to +∞. To make it into a ratio, we take out the
largest reasonable power of x:

lim
x→+∞

√
x2 + x + 1−

√
x2 + 1 = lim

x→+∞
x · (

√
1 +

1
x

+
1
x2
−
√

1 +
1
x2

)

= lim
x→+∞

√
1 + 1

x + 1
x2

−

√
1 + 1

x2

1/x

The last expression here fits the requirements of the L’Hospital rule, since both
numerator and denominator go to 0. Thus, by invoking L’Hospital’s rule, it be-
comes

= lim
x→+∞

1
2

− 1
x2 − 2

x3

√
1 + 1

x + 1
x2 −

−2
x3q
1+ 1

x2

−1/x2
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This is a large but actually tractable expression: multiply top and bottom by
x2, so that it becomes

= lim
x→+∞

12 + 1x
√

1 + 1x + 1x2 +
−1
x

√
1 +

1
x2

At this point, we can replace every 1
x by 0, finding that the limit is equal to

1
2 + 0

√
1 + 0 + 0

+
0√

1 + 0
=

1
2

It is important to recognize that in additional to the actual application of
L’Hospital’s rule, it may be necessary to experiment a little to get things to settle
out the way you want. Trial-and-error is not only ok, it is necessary.

Exercises

1. Find limx→0 (sin x)/x

2. Find limx→0 (sin 5x)/x

3. Find limx→0 (sin (x2))/x2

4. Find limx→0 x/(e2x − 1)

5. Find limx→0 x lnx

6. Find
lim

x→0+
(ex − 1) ln x

7. Find
lim
x→1

lnx

x− 1

8. Find
lim

x→+∞

ln x

x

9. Find
lim

x→+∞

lnx

x2

10. Find limx→0 (sinx)x
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4.11 Exponential growth and decay: a differential
equation

Discussion.

[author=garrett, file =text_files/expon_growth_diffeq]

This little section is a tiny introduction to a very important subject and bunch
of ideas: solving differential equations. We’ll just look at the simplest possible
example of this.

The general idea is that, instead of solving equations to find unknown numbers,
we might solve equations to find unknown functions. There are many possibilities
for what this might mean, but one is that we have an unknown function y of x
and are given that y and its derivative y′ (with respect to x) satisfy a relation

y′ = ky

where k is some constant. Such a relation between an unknown function and its
derivative (or derivatives) is what is called a differential equation. Many basic
‘physical principles’ can be written in such terms, using ‘time’ t as the independent
variable.

Having been taking derivatives of exponential functions, a person might re-
member that the function f(t) = ekt has exactly this property:

d

dt
ekt = k · ekt

For that matter, any constant multiple of this function has the same property:

d

dt
(c · ekt) = k · c · ekt

And it turns out that these really are all the possible solutions to this differential
equation.

There is a certain buzz-phrase which is supposed to alert a person to the occur-
rence of this little story: if a function f has exponential growth or exponential
decay then that is taken to mean that f can be written in the form

f(t) = c · ekt

If the constant k is positive it has exponential growth and if k is negative then it
has exponential decay.

Since we’ve described all the solutions to this equation, what questions remain
to ask about this kind of thing? Well, the usual scenario is that some story problem
will give you information in a way that requires you to take some trouble in order
to determine the constants c, k. And, in case you were wondering where you get
to take a derivative here, the answer is that you don’t really: all the ‘calculus
work’ was done at the point where we granted ourselves that all solutions to that
differential equation are given in the form f(t) = cekt.

First to look at some general ideas about determining the constants before
getting embroiled in story problems: One simple observation is that

c = f(0)

that is, that the constant c is the value of the function at time t = 0. This is true
simply because

f(0) = cek·0 = ce0 = c · 1 = c
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from properties of the exponential function.

Example 4.11.1.

[author=garrett, file =text_files/expon_growth_diffeq]

More generally, suppose we know the values of the function at two different times:

y1 = cekt1

y2 = cekt2

Even though we certainly do have ‘two equations and two unknowns’, these equa-
tions involve the unknown constants in a manner we may not be used to. But it’s
still not so hard to solve for c, k: dividing the first equation by the second and
using properties of the exponential function, the c on the right side cancels, and
we get

y1

y2
= ek(t1−t2)

Taking a logarithm (base e, of course) we get

ln y1 − ln y2 = k(t1 − t2)

Dividing by t1 − t2, this is

k =
ln y1 − ln y2

t1 − t2

Substituting back in order to find c, we first have

y1 = ce
ln y1−ln y2

t1−t2
t1

Taking the logarithm, we have

ln y1 = ln c +
ln y1 − ln y2

t1 − t2
t1

Rearranging, this is

ln c = ln y1 −
ln y1 − ln y2

t1 − t2
t1 =

t1 ln y2 − t2 ln y1

t1 − t2

Therefore, in summary, the two equations

y1 = cekt1

y2 = cekt2

allow us to solve for c, k, giving

k =
ln y1 − ln y2

t1 − t2

c = e
t1 ln y2−t2 ln y1

t1−t2

A person might manage to remember such formulas, or it might be wiser to
remember the way of deriving them.
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Example 4.11.2.

[author=garrett, file =text_files/expon_growth_diffeq]

A herd of llamas has 1000 llamas in it, and the population is growing exponentially.
At time t = 4 it has 2000 llamas. Write a formula for the number of llamas at
arbitrary time t.

Here there is no direct mention of differential equations, but use of the buzz-
phrase ‘growing exponentially’ must be taken as indicator that we are talking
about the situation

f(t) = cekt

where here f(t) is the number of llamas at time t and c, k are constants to be
determined from the information given in the problem. And the use of language
should probably be taken to mean that at time t = 0 there are 1000 llamas, and at
time t = 4 there are 2000. Then, either repeating the method above or plugging
into the formula derived by the method, we find

c = value of f at t = 0 = 1000

k =
ln f(t1)− ln f(t2)

t1 − t2
=

ln 1000− ln 2000
0− 4

= ln
1000
2000

−4 =
ln 1

2

−4
= (ln 2)/4

Therefore,
f(t) = 1000 e

ln 2
4 t = 1000 · 2t/4

This is the desired formula for the number of llamas at arbitrary time t.

Example 4.11.3.

[author=garrett, file =text_files/expon_growth_diffeq]

A colony of bacteria is growing exponentially. At time t = 0 it has 10 bacteria in
it, and at time t = 4 it has 2000. At what time will it have 100, 000 bacteria?

Even though it is not explicitly demanded, we need to find the general formula
for the number f(t) of bacteria at time t, set this expression equal to 100, 000, and
solve for t. Again, we can take a little shortcut here since we know that c = f(0)
and we are given that f(0) = 10. (This is easier than using the bulkier more
general formula for finding c). And use the formula for k:

k =
ln f(t1)− ln f(t2)

t1 − t2
=

ln 10− ln 2, 000
0− 4

=
ln 10

2,000

−4
=

ln 200
4

Therefore, we have
f(t) = 10 · e ln 200

4 t = 10 · 200t/4

as the general formula. Now we try to solve

100, 000 = 10 · e ln 200
4 t

for t: divide both sides by the 10 and take logarithms, to get

ln 10, 000 =
ln 200

4
t

Thus,

t = 4
ln 10, 000

ln 200
≈ 6.953407835
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Exercises

1. A herd of llamas is growing exponentially. At time t = 0 it has 1000 llamas
in it, and at time t = 4 it has 2000 llamas. Write a formula for the number
of llamas at arbitrary time t.

2. A herd of elephants is growing exponentially. At time t = 2 it has 1000
elephants in it, and at time t = 4 it has 2000 elephants. Write a formula for
the number of elephants at arbitrary time t.

3. A colony of bacteria is growing exponentially. At time t = 0 it has 10
bacteria in it, and at time t = 4 it has 2000. At what time will it have
100, 000 bacteria?

4. A colony of bacteria is growing exponentially. At time t = 2 it has 10
bacteria in it, and at time t = 4 it has 2000. At what time will it have
100, 000 bacteria?
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4.12 The second and higher derivatives

Definition 4.12.1.

[author=garrett, file =text_files/higher_derivs]

The second derivative of a function is simply the derivative of the derivative.
The third derivative of a function is the derivative of the second derivative. And
so on.

The second derivative of a function y = f(x) is written as

y′′ = f ′′(x) =
d2

dx2
f =

d2f

dx2
=

d2y

dx2

The third derivative is

y′′′ = f ′′′(x) =
d3

dx3
f =

d3f

dx3
=

d3y

dx3

And, generally, we can put on a ‘prime’ for each derivative taken. Or write

dn

dxn
f =

dnf

dxn
=

dny

dxn

for the nth derivative. There is yet another notation for high order derivatives
where the number of ‘primes’ would become unwieldy:

dnf

dxn
= f (n)(x)

as well.

The geometric interpretation of the higher derivatives is subtler than that of
the first derivative, and we won’t do much in this direction, except for the next
little section.

Exercises

1. Find f”(x) for f(x) = x3 − 5x + 1.

2. Find f”(x) for f(x) = x5 − 5x2 + x− 1.

3. Find f”(x) for f(x) =
√

x2 − x + 1.

4. Find f”(x) for f(x) =
√

x.
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4.13 Inflection points, concavity upward and down-
ward

Definition 4.13.1.

[author=garrett, file =text_files/concavity_etc]

A point of inflection of the graph of a function f is a point where the second
derivative f ′′ is 0. We have to wait a minute to clarify the geometric meaning of
this.

A piece of the graph of f is concave upward if the curve ‘bends’ upward. For
example, the popular parabola y = x2 is concave upward in its entirety.

A piece of the graph of f is concave downward if the curve ‘bends’ downward.
For example, a ‘flipped’ version y = −x2 of the popular parabola is concave
downward in its entirety.

The relation of points of inflection to intervals where the curve is concave up
or down is exactly the same as the relation of critical points to intervals where
the function is increasing or decreasing. That is, the points of inflection mark the
boundaries of the two different sort of behavior Further, only one sample value of
f ′′ need be taken between each pair of consecutive inflection points in order to see
whether the curve bends up or down along that interval.

Rule 4.13.1.

[author=garrett, file =text_files/concavity_etc]

Expressing this as a systematic procedure: to find the intervals along which f is
concave upward and concave downward:

• Compute the second derivative f ′′ of f , and solve the equation f ′′(x) = 0 for
x to find all the inflection points, which we list in order as x1 < x2 < . . . < xn.
(Any points of discontinuity, etc., should be added to the list!)

• We need some auxiliary points: To the left of the leftmost inflection point
x1 pick any convenient point to, between each pair of consecutive inflec-
tion points xi, xi+1 choose any convenient point ti, and to the right of the
rightmost inflection point xn choose a convenient point tn.

• Evaluate the second derivative f ′′ at all the auxiliary points ti.

• Conclusion: if f ′′(ti+1) > 0, then f is concave upward on (xi, xi+1), while if
f ′′(ti+1) < 0, then f is concave downward on that interval.

• Conclusion: on the ‘outside’ interval (−∞, xo), the function f is concave
upward if f ′′(to) > 0 and is concave downward if f ′′(to) < 0. Similarly,
on (xn,∞), the function f is concave upward if f ′′(tn) > 0 and is concave
downward if f ′′(tn) < 0.

Example 4.13.1.
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[author=garrett, file =text_files/concavity_etc]

Find the inflection points and intervals of concavity up and down of

f(x) = 3x2 − 9x + 6

First, the second derivative is just f ′′(x) = 6. Since this is never zero, there are
not points of inflection. And the value of f ′′ is always 6, so is always > 0, so the
curve is entirely concave upward.

Example 4.13.2.

[author=garrett, file =text_files/concavity_etc]

Find the inflection points and intervals of concavity up and down of

f(x) = 2x3 − 12x2 + 4x− 27

First, the second derivative is f ′′(x) = 12x−24. Thus, solving 12x−24 = 0, there
is just the one inflection point, 2. Choose auxiliary points to = 0 to the left of
the inflection point and t1 = 3 to the right of the inflection point. Then f ′′(0) =
−24 < 0, so on (−∞, 2) the curve is concave downward. And f ′′(2) = 12 > 0, so
on (2,∞) the curve is concave upward.

Example 4.13.3.

[author=garrett, file =text_files/concavity_etc]

Find the inflection points and intervals of concavity up and down of

f(x) = x4 − 24x2 + 11

the second derivative is f ′′(x) = 12x2−48. Solving the equation 12x2−48 = 0, we
find inflection points ±2. Choosing auxiliary points −3, 0, 3 placed between and
to the left and right of the inflection points, we evaluate the second derivative:
First, f ′′(−3) = 12 · 9 − 48 > 0, so the curve is concave upward on (−∞,−2).
Second, f ′′(0) = −48 < 0, so the curve is concave downward on (−2, 2). Third,
f ′′(3) = 12 · 9− 48 > 0, so the curve is concave upward on (2,∞).

Exercises

1. Find the inflection points and intervals of concavity up and down of f(x) =
3x2 − 9x + 6.

2. Find the inflection points and intervals of concavity up and down of f(x) =
2x3 − 12x2 + 4x− 27.

3. Find the inflection points and intervals of concavity up and down of f(x) =
x4 − 2x2 + 11.
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4.14 Another differential equation: projectile mo-
tion

Discussion.

[author=garrett, file =text_files/projectile_motion_diffeq]

Here we encounter the fundamental idea that if s = s(t) is position, then ṡ is
velocity, and ṡ̇ is acceleration. This idea occurs in all basic physical science and
engineering.

Derivation.

[author=garrett, file =text_files/projectile_motion_diffeq]

In particular, for a projectile near the earth’s surface travelling straight up and
down, ignoring air resistance, acted upon by no other forces but gravity, we have

acceleration due to gravity = −32 feet/sec 2

Thus, letting s(t) be position at time t, we have

s̈(t) = −32.

We take this (approximate) physical fact as our starting point.

From s̈ = −32 we integrate (or anti-differentiate) once to undo one of the
derivatives, getting back to velocity :

v(t) = ṡ = ṡ(t) = −32t + vo

where we are calling the constant of integration ‘vo’. (No matter which constant
vo we might take, the derivative of −32t + vo with respect to t is −32.)

Specifically, when t = 0, we have

v(o) = vo

Thus, the constant of integration vo is initial velocity. And we have this formula
for the velocity at any time in terms of initial velocity.

We integrate once more to undo the last derivative, getting back to the position
function itself:

s = s(t) = −16t2 + vot + so

where we are calling the constant of integration ‘so’. Specifically, when t = 0, we
have

s(0) = so

so so is initial position. Thus, we have a formula for position at any time in
terms of initial position and initial velocity.

Of course, in many problems the data we are given is not just the initial position
and initial velocity, but something else, so we have to determine these constants
indirectly.

Exercises
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1. You drop a rock down a deep well, and it takes 10 seconds to hit the bottom.
How deep is it?

2. You drop a rock down a well, and the rock is going 32 feet per second when
it hits bottom. How deep is the well?

3. If I throw a ball straight up and it takes 12 seconds for it to go up and come
down, how high did it go?
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4.15 Graphing rational functions, asymptotes

Discussion.

[author=garrett, file =text_files/graphing_with_calculus]

This section shows another kind of function whose graphs we can understand
effectively by our methods.

Definition 4.15.1.

[author=garrett, file =text_files/graphing_with_calculus]

There is one new item here, the idea of asymptote of the graph of a function.

A vertical asymptote of the graph of a function f most commonly occurs
when f is defined as a ratio f(x) = g(x)/h(x) of functions g, h continuous at a
point xo, but with the denominator going to zero at that point while the numerator
doesn’t. That is, h(xo) = 0 but g(xo) 6= 0. Then we say that f blows up at xo,
and that the line x = xo is a vertical asymptote of the graph of f .

And as we take x closer and closer to xo, the graph of f zooms off (either up
or down or both) closely to the line x = xo.

Example 4.15.1.

[author=garrett, file =text_files/graphing_with_calculus]

A very simple example of this is f(x) = 1/(x − 1), whose denominator is 0 at
x = 1, so causing a blow-up at that point, so that x = 1 is a vertical asymptote.
And as x approaches 1 from the right, the values of the function zoom up to +∞.
When x approaches 1 from the left, the values zoom down to −∞.

Definition 4.15.2.

[author=garrett, file =text_files/graphing_with_calculus]

A horizontal asymptote of the graph of a function f occurs if either limit

lim
x→+∞

f(x)

or
lim

x→−∞
f(x)

exists. If R = limx→+∞ f(x), then y = R is a horizontal asymptote of the
function, and if L = limx→−∞ f(x) exists then y = L is a horizontal asymptote.

As x goes off to +∞ the graph of the function gets closer and closer to the
horizontal line y = R if that limit exists. As x goes of to −∞ the graph of the
function gets closer and closer to the horizontal line y = L if that limit exists.

So in rough terms asymptotes of a function are straight lines which the graph
of the function approaches at infinity. In the case of vertical asymptotes, it is the
y-coordinate that goes off to infinity, and in the case of horizontal asymptotes it
is the x-coordinate which goes off to infinity.
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Example 4.15.2.

[author=garrett, file =text_files/graphing_with_calculus]

Find asymptotes, critical points, intervals of increase and decrease, inflection
points, and intervals of concavity up and down of f(x) = x+3

2x−6 : First, let’s find
the asymptotes. The denominator is 0 for x = 3 (and this is not cancelled by the
numerator) so the line x = 3 is a vertical asymptote. And as x goes to ±∞, the
function values go to 1/2, so the line y = 1/2 is a horizontal asymptote.

The derivative is

f ′(x) =
1 · (2x− 6)− (x + 3) · 2

(2x− 6)2
=

−12
(2x− 6)2

Since a ratio of polynomials can be zero only if the numerator is zero, this f ′(x) can
never be zero, so there are no critical points. There is, however, the discontinuity
at x = 3 which we must take into account. Choose auxiliary points 0 and 4 to
the left and right of the discontinuity. Plugging in to the derivative, we have
f ′(0) = −12/(−6)2 < 0, so the function is decreasing on the interval (−∞, 3). To
the right, f ′(4) = −12/(8− 6)2 < 0, so the function is also decreasing on (3,+∞).

The second derivative is f ′′(x) = 48/(2x − 6)3. This is never zero, so there
are no inflection points. There is the discontinuity at x = 3, however. Again
choosing auxiliary points 0, 4 to the left and right of the discontinuity, we see
f ′′(0) = 48/(−6)3 < 0 so the curve is concave downward on the interval (−∞, 3).
And f ′′(4) = 48/(8− 6)3 > 0, so the curve is concave upward on (3,+∞).

Plugging in just two or so values into the function then is enough to enable a
person to make a fairly good qualitative sketch of the graph of the function.

Exercises

1. Find all asymptotes of f(x) = x−1
x+2 .

2. Find all asymptotes of f(x) = x+2
x−1 .

3. Find all asymptotes of f(x) = x2−1
x2−4 .

4. Find all asymptotes of f(x) = x2−1
x2+1 .
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4.16 The Mean Value Theorem

Mean value theorem 4.16.1.
[author= duckworth , file =text_files/mean_value_theorem]

Suppose that f(x) is a continuous function on the interval [a, b] and differentiable
on the interval (a, b). Then there is a number c, between a and b, such that
f ′(c) = f(b)−f(a)

b−a .

mean_ value_ theorem

c

a

b

equal slopes

m = f ′(c)

m = f(b)−f(a)
b−a

Comment.

[author=duckworth, file =text_files/mean_value_theorem]

The main use we will have for theorem is to prove the Fundamental Theorem of
Calculus. However, we can do some concrete examples.

Example 4.16.1.

[author=duckworth, file =text_files/mean_value_theorem]

Let f(x) = x + sin(x). Consider x = 0 and x = π. Can we find a number c such
that f ′(c) = π+sin(π)−0−0

π ? The theorem tells us that we will be able to solve this
(not necessarily algebraically): f ′(x) = 1 + cos(x) = π

π = 1. I.e. there is a number
x, between 0 and π such that 1 + cos(x) = 1. In this case, it is easy to solve,
namely let x = π/2. Again, the theorem tells us that even if the equation is not
easy to solve, that there is some solution.

Comment.

[author=duckworth, file =text_files/mean_value_theorem]

The previous example was really stupid! Although lots of calculus books (ours
included) have problems just like the previous one, that is not how the Mean
Value Theorem is ever used! I mean, you could always set up the equation like in
the previous example and then look at it and see if there is a solution.

So, if the MVT is not used to tell us that we can find a point where the
derivative equals that formula using a, b, f(a) and f(b) then what does it do? I’ll
let you think for a minute. You’ve got an equation:

f ′(c) =
f(b)− f(a)

b− a
.

I’ve just told you that we don’t use this to tell us about f ′(c). So it has to be the
case that we use the equation to tell us about the right hand side! In other words,
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if we know something about f ′(c), then we can say something about f(b)− f(a).
This is incredibly important. It gives us a formula for how the derivative affects
what we know about f(x).

Before we had this equation, if I told you that f ′(x) is always ≥ 1, then all
you would have been able to conclude is that f(b) is always ≥ f(a) (since f(x) is
increasing). Now, I can tell you exactly how much bigger f(b) has to be.

Example 4.16.2.

[author=duckworth, file =text_files/mean_value_theorem]

Suppose a = 4, f(a) = 7 and that we know f ′(x) ≥ 1 for all x. What can we say
about f(b) for b ≥ a? We start with

f(b)− f(a)
b− a

= f ′(x) ≥ 1

we drop the middle term “f ′(x)”, and multiply by b− a to get:

f(b)− f(a) ≥ b− a

whence f(b) ≥ f(a)+b−a. Thus, for b ≥ 4 we can say that f(b) ≥ 7+b−4 = b+3.

Comment.

[author=duckworth, file =text_files/mean_value_theorem]

In the previous example we used the MVT to take information about f ′(x) and
turn it into very specific, quantitive information about f(x). This idea will be
crucial when we prove the Fundamental Theorem of Calculus. In fact, you can
alread imagine how the proof will go, in heuristic terms. In the previous example
I used one piece of information about the derivative, namely that it was bigger
than 1, to tell us one piece of information about f(x) (when x ≥ 4), namely that
f(x) was bigger than x + 3. Now, suppose I told you exactly what the derivative
was at a whole bunch of points. Then you should be able to say more precisely
what f(x) is. If I told you what f ′(x) is at every point, then you should be able
to say what f(x) is every point.
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Chapter 5

Integration

5.1 Basic integration formulas

Discussion.

[author=garrett, file =text_files/integration_basics]

The fundamental use of integration is as a continuous version of summing. But,
paradoxically, often integrals are computed by viewing integration as essentially
an inverse operation to differentiation. (That fact is the so-called Fundamental
Theorem of Calculus.)

The notation, which we’re stuck with for historical reasons, is as peculiar as
the notation for derivatives: the integral of a function f(x) with respect to
x is written as ∫

f(x) dx

The remark that integration is (almost) an inverse to the operation of differentia-
tion means that if

d

dx
F (x) = f(x)

then ∫
f(x) dx = F (x) + C

The extra C, called the constant of integration, is really necessary, since after
all differentiation kills off constants, which is why integration and differentiation
are not exactly inverse operations of each other.

Rules 5.1.1.

[author=garrett, file =text_files/integration_basics]

Since integration is almost the inverse operation of differentiation, recollection
of formulas and processes for differentiation already tells the most important

165
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formulas for integration:∫
xn dx =

1
n + 1

xn+1 unless n = −1∫
ex dx = ex∫
1
x

dx = ln |x|∫
sinx dx = − cos x∫
cos x dx = sinx∫

sec2 x dx = tanx∫
1

1 + x2
dx = arctanx

Rule 5.1.2.

[author=garrett, file =text_files/integration_basics]

Since the derivative of a sum is the sum of the derivatives, the integral of a sum
is the sum of the integrals:∫

f(x) + g(x) dx =
∫

f(x) dx +
∫

g(x) dx.

Similarly, constants ‘go through’ the integral sign:∫
c · f(x) dx = c ·

∫
f(x) dx

Example 5.1.1.

[author=garrett, file =text_files/integration_basics]

For example, it is easy to integrate polynomials, even including terms like
√

x and
more general power functions. The only thing to watch out for is terms x−1 = 1

x ,
since these integrate to lnx instead of a power of x. So

∫
4x5 − 3x + 11− 17

√
x +

3
x

dx =
4x6

6
− 3x2

2
+ 11x− 17x3/2

3/2
+ 3 ln x + C

Notice that we need to include just one ‘constant of integration’.

Rule 5.1.3.

[author=garrett, file =text_files/integration_basics]
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Other basic formulas obtained by reversing differentiation formulas:∫
ax dx =

ax

ln a∫
loga x dx =

1
ln a

· 1
x∫

1√
1− x2

dx = arcsinx∫
1

x
√

x2 − 1
dx = sec−1(x)

Example 5.1.2.

[author=garrett, file =text_files/integration_basics]

Sums of constant multiples of all these functions are easy to integrate: for example,∫
5 · 2x − 23

x
√

x2 − 1
+ 5x2 dx =

5 · 2x

ln 2
− 23 arcsec x +

5x3

3
+ C

Discussion.

[author=wikibooks, file =text_files/integration_basics]

When we examined differentiation, we found that, graphically, the derivative of
a function at a point gives us the gradient of the curve at that point. When we
examine integration, we find two important uses for this finding what function
yields, under differentiation, a given function finding the area under a curve

Discussion.

[author=wikibooks, file =text_files/integration_basics]

One example of how to interpretation of the derivative is that it gives the velocity
of an object from its position. We now want to reverse this process and find the
position of the object from its velocity.

Suppose v is a constant velocity and let d be position. Then d = vt. However,
if v is not constant, then this formula does not work.

So we need to take a different approach. What we do is to break up the time
into small chunks of time delta t, and then find the distance by summing over
small chunks.

d = v(t0)∆t + v(t0 + ∆t)∆t + v(t0 + 2∆t)∆t.

Now we make the time chunks smaller and smaller until we have approximated
the smooth curve.

Since we have a new function we need a new set of symbols to represent it, this
looks like

Discussion.
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[author=wikibooks, file =text_files/integration_basics]

Let f(x) be a function. The anti-derivative of f(x) is another function F (x)
such that the derivative of F (x) equals f(x).

Simple anti-derivatives can be found by guessing, or “thinking backwards”.

Example 5.1.3.

[author=duckworth, file =text_files/integration_basics]

Let’s find an anti-derivative by guessing, or “thinking backwards”. Let f(x) = x2.
Can we guess what function we would take the derivative of to get x2?

Well, at least in your head, check the derivative of a bunch of our basic func-
tions. You should quickly decide that we won’t get x2 by taking the derivative of
ex, ln(x), sin(x), etc. We need to take the derivative of a power of x in order to
get x2.

In fact, we will have to take the derivative of something of the form x3 in
order to get x2. So let’s check: how close to the right answer is F (x) = x3. Well,
d
dxF (x) = d

dxx3 = 3x2. We’re trying to get x2, not 3x2, so we need to change our
guess for F (x) a little bit. We want to cancel the 3. A little more thought leads
to our next guess of F (x) = x3

3 . Now it’s easy to check that d
dxF (x) = d

dx
x3

3 =
3x2

3 = x2.

So, we’ve done it, F (x) = x3

3 is an anti-derivative of x2.

Is F (x) the only solution of this problem? Well, if you go back through our
thought process above you can see that no other power of x will work, and the
coefficent has to be 1

3 . Well, you can change F (x) by adding something whose
derivative will be 0. Thus, F (x) = x3

3 + 12, or F (x) = x3

3 − 13427, are also
anti-derivatives.

In general, every function of the form F (x) = x3

3 + C is an anti-derivative of
x2.

Example 5.1.4.

[author=wikibooks, file =text_files/integration_basics]

Let us consider the example f(x) = 6x2. How would we go about finding the
integral of this function? Recall the rule from differentiation that Dxn = nxn−1

In our circumstance, we have Dx3 = 3x2 This is a start! We now know that the
function we seek will have a power of 3 in it. How would we get the constant of
6? Well, 2Dx3 = 2(3x2) D2x3 = 6x2

Thus, we say that 2x3 is the integral of 6x2. We write it, generally,
∫

6x2dx,
or in terms of the differential operator, D−1(6x2).

There is an important fact that needs to be kept in mind when we are integrat-
ing. Let us examine the above example, that

∫
6x2dx = 2x3 This is true in the

fact that differentiating 2x3 yields 6x2, but this is not the only solution we also
have 2x3 + 1, 2x3 + 2, even 2x3 − 98999 giving us this same solution! Constants
”disappear” on differentiation– so we generally write the integral of a function
with an arbitrary constant added to the end to show all the possible solutions. So
we write the full equation as

∫
6x2dx = 2x3 + C

The method we have described is terribly ad-hoc, but we will be able to gen-
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eralize it, and obtain the polynomial formula in the next section.

Rule 5.1.4.

[author=duckworth, file =text_files/integration_basics]

Let’s find the anti-derivative of f(x) = xn where n can be any power. One way to
do this is guessing. You can probably guess and check the answer right now. It’s
also kind of cute to figure this out by reversing the steps of differentiation. For
this purpose let’s write down exactly what happens for powers of x.

Derivative of power of x:
Step 1: Multiply by power of x
Step 2: Subtract 1 from power of x

Now, I’m going to reverse each of these rules, starting at the end and moving
backwards (i.e. Step 1 for the anti-derivative will undo step 2 for the derivative,
etc.).

Anti-derivative of power of x:
Step 1: Add 1 to power of x
Step 2: Divide by the power of x

O.k., now we can make a formula out of the verbal description we’ve just found.
The anti-derivative of xn is xn+1

n+1 . Note, this formula will not be defined if n+1 = 0.
Putting this all together, we have the following rule:∫

xn dx =
xn+1

n + 1
if n 6= −1.

Comment.

[author=duckworth, file =text_files/integration_basics]

For basic problems like the ones we’re learing now, it should always be very easy
to chek if your formula F (x) for the anti-derivative of f(x) is correct: You just
take the derivative of F (x) and see if you get f(x).

Example 5.1.5.

[author=duckworth, file =text_files/integration_basics]

Check that the anti-derivative of ln(x) is x ln(x) − x. (Note: I don’t expect that
you could have found this anti-derivative by guessing. You will learn techniques
in Calculus II that can help you find this anti-derivative.)

We check:

d

dx
x ln(x)− x = 1 · ln(x) + x · 1

x
− 1 = ln(x) + 1− 1 = ln(x).

Derivation.

[author=wikibooks, file =text_files/integration_basics]
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In this section we will concern ourselves with determining the integrals of other
functions, such as sin(x), cos(x), tan(x), and others.

Recall the following D sin(x) = cos(x) D cos(x) = − sin(x) D tan(x) = (sec(x))2

and given the above rule that Df(x) = g(x),
∫

g(x)dx = f(x) + C

we instantly have the integrals of cos(x), sin(x), and (secx)2
∫

cos(x) dx =
sin(x) + C

∫
sin(x) dx = − cos(x) + C

∫
(sec(x))2dx = tan(x) + C

Derivation.

[author=wikibooks, file =text_files/integration_basics]

Recall that when we integrate, we wish to solve the equation, given the function
g Df = g for the function f.

When we look at the exponential function ex, we see immediately from the
above result that

∫
exdx = ex + C

Discussion.

[author=livshits, file =text_files/integration_basics]

In the previous two sections we have developed (somewhat heuristically) differen-
tiation as an operation on functions. As soon as a new operation is introduced, it
is reasonable to consider an inverse operation.

In case of differentiation this operation is (naturally) called antidifferentiation.

More specifically, a function F is an antiderivative or a primitive of f if f is
the derivative of F , i.e. F ′ = f .

When f(x) is the velocity at time x, the antiderivative F (x) will be the distance,
when f(x) is the rate of change, F (x) will be the total change.

Because the derivative of any constant is zero, there are (infinitely) many an-
tiderivatives of a given function, we can add any constant C to F , F ′ doesn’t
change because (F + C)′ = F ′ (differentiation kills constants and antidifferentia-
tion resurrects them).

The appearance of an arbitrary additive constant C is not surprising. The
velocity doesn’t depend on where we measure our distance from, and whether we
measure the total change from yesterday or from 100 years ago, the rate will be
the same, although the total change will be not.

Later on we will prove that by adding different constants to a fixed antideriva-
tive we can get all of them. This fact would easily follow if we knew that any
function with zero derivative is a constant. It looks obviuos, but to prove it one
has to take a closer look at differentiation, we will do it in section ??.

Notation.

[author=livshits, file =text_files/integration_basics]

Meanwhile we will assume that it is true and introduce the notation

∫
f(x)dx
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for the set of all the antiderivatives of a given function f . This set is also called
the indefinite integral of f . Since all the antiderivatives of f are of the form F +C
where F is one of them and C is a constant, we can write∫

f(x)dx = F (x) + C

C is called the integration constant.

Example 5.1.6.

[author=livshits, file =text_files/integration_basics]

We will start with a simple problem of motion under gravity.

A stone is thrown vertically with the original velocity v0. Find the motion of
the stone, given its original position y0.

The motion of the stone will be described by a function of time y(t) that will
satisfy the equation

y′′ = −g

where y′′ denotes the derivative of y′ that is called the second derivative of y.

y

y=0

v(t)=y’(t)

-g=y’’(t)

y(t)

a free fall of a stone

stone_in_freefall

It follows from Newton’s Second law: F = ma, where m is the mass of the
stone, a = y′′ is its acceleration and F = −gm is the force of gravity. We also
have two additional conditions:

y(0) = y0 and y′(0) = v0.

The equation simly says that the acceleration equals to −g. We can find the veloc-
ity by integrating acceleration and using the initial velocity to get the integration
constant. This gives us

v(t) = y′(t) = v0 − gt.

To find the position we integrate the velocity and use the initial position to figure
out the integration constant. By doing so we get

y(t) = y0 + v0t− gt2/2.

In case of zero initial velocity (v0 = 0) the velocity and the position of the stone
at time t will be:

v(t) = −gt and y(t) = y0 − gt2/2.

In particular, it will take T =
√

2y0/g seconds for the stone to hit the ground.
At that point its speed (which is the absolute value of the velocity) will be
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v(T ) = gT =
√

2gy0. While the stone drops, it loses height, but it picks up
speed. However, the energy

E =
1
2
mv2 + mgy

will stay the same. The energy of the stone consists of 2 parts:

K =
1
2
mv2

is called the kinetic energy, it is the energy of motion, it depends only on the
speed, and

P = mgy

is called the potential energy, it depends only on the position of the stone. Con-
servation of energy is one of the most important principles in physics.

Example 5.1.7.

[author=livshits, file =text_files/integration_basics]

Assume there is a cylindrical bucket filled with water, and there is a small hole in
the bottom. How long will it take for the bucket to get empty? The area of the
horizontal cross-section of the bucket, the area of the hole and the original level of
water in the bucket are given.

H(t)

v(t)

A

a

a leaky bucket
v(t)

A

H

slick rods

0

a bucket full of
a

leaky_buckets

Let A be the area of the horizontal cross-section of the bucket, a be the area of
the hole and H0 be the original water level in the bucket. Assume that the hole in
the bucket was opened up at time 0, so H(0) = H0 where H(t) is the water level
at time t.

This problem of the detailed description of the flow of water is rather compli-
cated, so we will add some simplifying assumptions to make things manageable.
We first have to figure out how fast the wat water is squirting out of the hole,
depending on the level of water in the bucket. Let us say it is squirting out at
velocity v. If a small mass of water, say m, escapes through the hole, the mass of
the water left in the bucket will be reduced by m, and the reduction will take place
at the level H, so the potential energy of the water will drop by mgH. On the
other hand, the kinetic energy of mass m of water moving at velocity v is mv2/2,
and the water that escapes has the potential energy zero because the hole is at
the level zero. From the conservation of energy we must have

1
2
mv2 = mgH, therefore v(t) =

√
2gH(t). (5.1)

In other words, the velocity v(t) at which the water escapes is the same velocity
that it would pick up by a free fall from level H(t) to level 0 where the hole is
(compate to the results from the previous problem). In deriving this formula for
v(t) we neglected a few things, such as the internal friction in water, the change
in the flow pattern inside the bucket and the variations in velocity across the jet
of water squirting out of the hole.

Now, after we get a handle on how fast the water is flowing out, it is easy to
see how fast the water level will drop. Indeed, the rate of change of the volume of
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the water in the bucket is −AH ′(t), that must be equal to the rate at which the
water passes through the hole, which is av(t), and, using the formula 5.1 for v(t),
we get

H ′(t) = − a

A

√
2gH(t). (5.2)

Dividing sides by 2
√

H(t) we can rewrite Equation ?? as

(
√

H(t))′ = − a

A

√
g/2.

Taking into account that H(0) = H0, we get

(
√

H(t)) =
√

H0 − t
a

A

√
g/2.

Finally, solving the equation H(T ) = 0 leads to

T =
A

a

√
2H0/g.

Let us take a closer look at this formula and see why it makes sense.

The case a = A corresponds to the bottom of the bucket falling off, so all the
water will be in a free fall. As we know, it will take just

√
2H0/g seconds for the

water to drop the distance H0, and that’s exactly what the formula says.

The formula also says that the time it takes the bucket to empty out is pro-
portional to the cross-section of the bucket and inversely proportional to the size
of the hole, which makes sense.

Now assume that the bucket is slightly inclined and filled with a bunch of
identical well lubricated metal rods, assume that each rod fits into the hole snugly,
so it slides out, as soon as it gets to it (see the picture). It takes

√
2H0/g seconds

for each rod to slide out, there are A/a of them that will fit into the bucket, and
we arrive at the same formula for T .

Exercises

1.
∫

4x3 − 3 cos x + 7
x + 2 dx =?

2.
∫

3x2 + e2x − 11 + cos x dx =?

3.
∫

sec2 x dx =?

4.
∫

7
1+x2 dx =?

5.
∫

16x7 −
√

x + 3√
x

dx =?

6.
∫

23 sinx− 2√
1−x2 dx =?
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5.2 Introduction to the Fundamental Theorem of
Calculus

Theorem 5.2.1.
[author= wikibooks , file =text_files/introduction_to_fundamental_theorem_calculus]

The Fundamental Theorem of Calculus states that If
∫ x

0
f(t) dt = F (x), then

∫
f(x) dx =

F (x) + C, and
∫ b

a
f(x) dx = F (b)− F (a) for any continuous function f.
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This diagram shows the logical structure of the heart of Calculus. The main
results are on top, the Fundamental Theorem of Calculus parts I and II. Each
result is only true if the results below it are true, so the whole thing builds up
piece by piece. It’s pretty amazing that you can have something that works and
that has this many logical steps, each one of which could break the whole structure!
If one part of this were really false, there would probably be satellites falling out
of the sky!!

Fundamental Theorem
of Calculus part II:∫ b

a
f(x) = F (b) − F (a)

where F (x) is any
anti-derivative

�
�

�
Fundamental Theorem
of Calculus part I:
d
dx

∫ x

0
f(s) ds = f(x)

�
�

�
�

Definition of∫ b

a
f(x) dx.

Squeeze Theorem

–2
–1
0

1
2
3
4
5
6

1 2 3 4 5

squeeze_theorem

same
limits

Extreme Value Theorem:
f has abs. max/min on
[a, b]

Hard proof: not in this
book

f ′ = g′

⇒ f = g + C

f ′(x) = 0 for all x
⇒ f = C

Mean Value Theorem

mean_value_

theorem

same
slopes

�
�

�
�

A
A
A
A

Fermat’s Theorem: if
x = c is local max/min
then f ′(c) = 0

Definition of deriva-
tive: f ′(x) =
limh→0

f(x+h)−f(x)
h��

���
���

���
Definiton of limit

The Fundamental Theorem of Calculus 5.2.2.
[author= livshits , file =text_files/the_fundamental_theorem]

If f is uniformly Lipschitz continuous then F (b) =
∫ b

a
f(x)dx is uniformly Lips-

chitz differentiable and F ′(b) = f(b).



176 CHAPTER 5. INTEGRATION

Proof.
[author=livshits, file =text_files/the_fundamental_theorem]

We have to establish the inequality

|F (c)− F (b)− f(b)(c− b)| ≤ K(c− b)2

but by our integration rules the LHS can be rewritten as∣∣∣∣∫ c

b

(f(x)− f(b)) dx

∣∣∣∣ ≤ ∫ c

b

|f(x)− f(b)| dx ≤
∫ c

b

L|x− b|dx = (L/2)(b− c)2

and we can take K = L/2 where L is the Lipschitz constant for f .

5.3 The simplest substitutions

Comment.

[author=garrett, file =text_files/integration_simple_subst]

The simplest kind of chain rule application

d

dx
f(ax + b) = a · f ′(x)

(for constants a, b) can easily be run backwards to obtain the corresponding inte-
gral formulas: some and illustrative important examples are

Examples 5.3.1.

[author=garrett, file =text_files/integration_simple_subst]

∫
cos(ax + b) dx =

1
a
· sin(ax + b) + C∫

eax+b dx =
1
a
· eax+b + C∫ √

ax + b dx =
1
a
· (ax + b)3/2

3/2
+ C∫

1
ax + b

dx =
1
a
· ln(ax + b) + C

Examples 5.3.2.

[author=garrett, file =text_files/integration_simple_subst]

Putting numbers in instead of letters, we have examples like∫
cos(3x + 2) dx =

1
3
· sin(3x + 2) + C∫

e4x+3 dx =
1
4
· e4x+3 + C∫ √

−5x + 1 dx =
1
−5

· (−5x + 1)3/2

3/2
+ C∫

1
7x− 2

dx =
1
7
· ln(7x− 2) + C
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Comment.

[author=garrett, file =text_files/integration_simple_subst]

Since this kind of substitution is pretty undramatic, and a person should be able
to do such things by reflex rather than having to think about it very much.

Rule 5.3.1.

[author=livshits, file =text_files/integration_simple_subst]∫
f(g(x))g′(x)dx =

∫
f(g)dg

in the right-hand side of this formula g is considered as an independent variable.
The formula means that the equality holds if we plug g = g(x) into the right-hand
side after performing the integration.

Exercises

1.
∫

e3x+2 dx =?

2.
∫

cos(2− 5x) dx =?

3.
∫ √

3x− 7 dx =?

4.
∫

sec2(2x + 1) dx =?

5.
∫

(5x7 + e6−2x + 23 + 2
x ) dx =?

6.
∫

cos(7− 11x) dx =?
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5.4 Substitutions

Discussion.

[author=garrett, file =text_files/integration_subst]

The chain rule can also be ‘run backward’, and is called change of variables or
substitution or sometimes u-substitution. Some examples of what happens are
straightforward, but others are less obvious. It is at this point that the capacity
to recognize derivatives from past experience becomes very helpful.

Examples 5.4.1.

[author=garrett, file =text_files/integration_subst]

Here are a variety of examples of simple backwards chain rules.

1. Since (by the chain rule)

d

dx
esin x = cos x esin x,

then we can anticipate that∫
cos x esin x dx = esin x + C

2. Since (by the chain rule)

d

dx

√
x5 + 3x =

1
2
(x5 + 3x)−1/2 · (5x4 + 3)

then we can anticipate that∫
1
2
(5x4 + 3)(x5 + 3x)−1/2 dx =

√
x5 + 3x + C

3. Since (by the chain rule)

d

dx

√
5 + ex =

1
2
(5 + ex)−1/2 · ex

then ∫
ex (5 + ex)−1/2 dx = 2

∫
1
2
ex(5 + ex)−1/2 dx = 2

√
5 + ex + C.

Notice how for ‘bookkeeping purposes’ we put the 1
2 into the integral (to

make the constants right there) and put a compensating 2 outside.

4. Since (by the chain rule)

d

dx
sin7(3x + 1) = 7 · sin6(3x + 1) · cos(3x + 1) · 3

then we have∫
cos(3x + 1) sin6(3x + 1) dx =

1
21

∫
7 · 3 · cos(3x + 1) sin6(3x + 1) dx

=
1
21

sin7(3x + 1) + C
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Exercises

1.
∫

cos x sinx dx =?

2.
∫

2x ex2
dx =?

3.
∫

6x5 ex6
dx =?

4.
∫

cos x
sin x dx =?

5.
∫

cos xesin x dx =?

6.
∫

1
2
√

x
e
√

x dx =?

7.
∫

cos x sin5 x dx =?

8.
∫

sec2 x tan7 x dx =?

9.
∫

(3 cos x + x) e6 sin x+x2
dx =?

10.
∫

ex
√

ex + 1 dx =?
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5.5 Area and definite integrals

Discussion.

[author=wikibooks, file =text_files/summation_notation]

Summation notation allows an expression that contains a sum to be expressed in a
simple, compact manner. The greek letter sigma, Σ, is used to denote the sum of a
set of numbers. A dummy variable is substituted into the expression sequentially,
and the result is summed.

Examples 5.5.1.

[author=wikibooks, file =text_files/summation_notation]

It’s easiest to learn summation notation by example, so we list a number of exam-
ples now.

1.
∑5

i=1 i = 1 + 2 + 3 + 4 + 5

Here, the dummy variable is i, the lower limit of summation is 1, and the
upper limit is 5.

2.
∑7

j=2 j2 = 22 + 32 + 42 + 52 + 62 + 72

Here, the dummy variable is j, the lower limit of summation is 2, and the
upper limit is 7.

3. The name of the dummy variable doesn’t matter. For example, the following
are all the same:

4∑
i=1

i =
4∑

j=1

j =
4∑

α=1

α = 1 + 2 + 3 + 4.

This means we can change the name of the dummy variable whenever we
like. Conventionally we use the letters i, j, k, m.

4. Sometimes, you will see summation signs with no dummy variable specified,
e.g

4∑
1

i3 = 100

In such cases the correct dummy variable should be clear from the context.

5. You may also see cases where the limits are unspecified. Here too, they must
be deduced from the context. For example, later we will always be studying
infinite summations that start at 0 or 1, so∑ 1

n

would mean (in that context)
∞∑

n=0

1
n
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Examples 5.5.2.

[author=wikibooks, file =text_files/summation_notation]

Here are some common summations, together with a closed form formula for their
sum (note: having a closed form formula is quite rare in general)

1.
∑n

i=1 c = c + c + ... + c = nc (for any real number c)

2.
∑n

i=1 i = 1 + 2 + 3 + ... + n = n(n+1)
2

3.
∑n

i=1 i2 = 12 + 22 + 32 + ... + n2 = n(n+1)(2n+1)
6

4.
∑n

i=1 i3 = 13 + 23 + 33 + ... + n3 = n2(n+1)2

4

Notation.

[author=wikibooks, file =text_files/summation_notation]

In order to avoid writing long sequences of numbers, mathemeticians use summa-
tion notation to denote sums of sequences.∑n

k=1 f(k)

denotes the sum of the values of f(k) for k=1, k=2, etc., up to k=n. For
example,∑4

k=1 2k = (2 · 1) + (2 · 2) + (2 · 3) + (2 · 4) = 2 + 4 + 6 + 8 = 20

This will become useful when defining areas under curves.

Definition 5.5.1.

[author=wikibooks, file =text_files/summation_notation]

Definition of Area The area under the graph of f(x) from x = a to x = b is
denoted by∫ b

a
f(x) dx

and is defined as∫ b

a
f(x) dx = limn→∞

b−a
n ·

[∑n
k=1 f

(
k(b−a)

n

)]
Intuitively, this can be thought of as adding the areas of ”bars” in the curve

to obtain an approximation of the area, and it gets more accurate as the number
of bars (n) increases.

Definition 5.5.2.

[author=garrett, file =text_files/area_defn_integrals]

The actual definition of ‘integral’ is as a limit of sums, which might easily be viewed
as having to do with area. One of the original issues integrals were intended to
address was computation of area.

First we need more notation. Suppose that we have a function f whose integral
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is another function F : ∫
f(x) dx = F (x) + C

Let a, b be two numbers. Then the definite integral of f with limits a, b is∫ b

a

f(x) dx = F (b)− F (a)

The left-hand side of this equality is just notation for the definite integral. The
use of the word ‘limit’ here has little to do with our earlier use of the word, and
means something more like ‘boundary’, just like it does in more ordinary English.

A similar notation is to write

[g(x)]ba = g(b)− g(a)

for any function g. So we could also write∫ b

a

f(x) dx = [F (x)]ba

Example 5.5.3.

[author=garrett, file =text_files/area_defn_integrals]

For example, ∫ 5

0

x2 dx = [
x3

3
]50 =

53 − 03

3
=

125
3

As another example,∫ 3

2

3x + 1 dx = [
3x2

2
+ x]32 = (

3 · 32

2
+ 3)− (

3 · 22

2
+ 2) =

21
2

Comment.

[author=garrett, file =text_files/area_defn_integrals]

All the other integrals we had done previously would be called indefinite inte-
grals since they didn’t have ‘limits’ a, b. So a definite integral is just the difference
of two values of the function given by an indefinite integral. That is, there is al-
most nothing new here except the idea of evaluating the function that we get by
integrating.

But now we can do something new: compute areas:

For example, if a function f is positive on an interval [a, b], then∫ b

a

f(x) dx = area between graph and x-axis, between x = a and x = b

It is important that the function be positive, or the result is false.
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Example 5.5.4.

[author=garrett, file =text_files/area_defn_integrals]

For example, since y = x2 is certainly always positive (or at least non-negative,
which is really enough), the area ‘under the curve’ (and, implicitly, above the
x-axis) between x = 0 and x = 1 is just∫ 1

0

x2 dx = [
x3

3
]10 =

13 − 03

3
=

1
3

More generally, the area below y = f(x), above y = g(x), and between x = a
and x = b is

area... =
∫ b

a

f(x)− g(x) dx

=
∫ right limit

left limit

(upper curve - lower curve) dx

It is important that f(x) ≥ g(x) throughout the interval [a, b].

For example, the area below y = ex and above y = x, and between x = 0 and
x = 2 is ∫ 2

0

ex − x dx = [ex − x2

2
]20 = (e2 − 2)− (e0 − 0) = e2 + 1

since it really is true that ex ≥ x on the interval [0, 2].

As a person might be wondering, in general it may be not so easy to tell
whether the graph of one curve is above or below another. The procedure to
examine the situation is as follows: given two functions f, g, to find the intervals
where f(x) ≤ g(x) and vice-versa:

• Find where the graphs cross by solving f(x) = g(x) for x to find the x-coordinates
of the points of intersection.
• Between any two solutions x1, x2 of f(x) = g(x) (and also to the left and right
of the left-most and right-most solutions!), plug in one auxiliary point of your
choosing to see which function is larger.

Of course, this procedure works for a similar reason that the first derivative
test for local minima and maxima worked: we implicitly assume that the f and
g are continuous, so if the graph of one is above the graph of the other, then the
situation can’t reverse itself without the graphs actually crossing.

Example 5.5.5.

[author=garrett, file =text_files/area_defn_integrals]

As an example, and as an example of a certain delicacy of wording, consider the
problem to find the area between y = x and y = x2 with 0 ≤ x ≤ 2. To find where
y = x and y = x2 cross, solve x = x2: we find solutions x = 0, 1. In the present
problem we don’t care what is happening to the left of 0. Plugging in the value
1/2 as auxiliary point between 0 and 1, we get 1

2 ≥ ( 1
2 )2, so we see that in [0, 1]

the curve y = x is the higher. To the right of 1 we plug in the auxiliary point 2,
obtaining 22 ≥ 2, so the curve y = x2 is higher there.

Therefore, the area between the two curves has to be broken into two parts:

area =
∫ 1

0

(x− x2) dx +
∫ 2

1

(x2 − x) dx
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since we must always be integrating in the form∫ right

left

higher - lower dx

In some cases the ‘side’ boundaries are redundant or only implied. For example,
the question might be to find the area between the curves y = 2 − x and y = x2.
What is implied here is that these two curves themselves enclose one or more finite
pieces of area, without the need of any ‘side’ boundaries of the form x = a. First,
we need to see where the two curves intersect, by solving 2−x = x2: the solutions
are x = −2, 1. So we infer that we are supposed to find the area from x = −2 to
x = 1, and that the two curves close up around this chunk of area without any
need of assistance from vertical lines x = a. We need to find which curve is higher:
plugging in the point 0 between −2 and 1, we see that y = 2− x is higher. Thus,
the desired integral is

area... =
∫ 1

−2

(2− x)− x2 dx

Definition 5.5.3.

[author=livshits, file =text_files/area_defn_integrals]

Let us say we move from time t = a to time t = b with velocity v(t) what will
be the total distance traveled? If we denote by Da(t) the total distance traveled
at time t, then D′

a(t) = v(t), so Da(t) is a primitive of v(t). We also know that
Da(a) = 0. Now, if V is any other primitive of v, then Da(t) = V (t)− V (a). The
total distance traveled at time t = b will be Da(b) = V (b)−V (a). This expression
is called the definite integral and is denoted by∫ b

a

v(t)dt = V (b)− V (a),

V being any primitive of v. Going back to our usual notation and using the rules
of integration for indefinite integrals, we get∫ b

a

f = F (b)− F (a), where F is any primitive of f.

Rule 5.5.1.

[author=livshits, file =text_files/area_defn_integrals]

We have the following rules.

• Sums Rule: ∫ b

a

(f + g) =
∫ b

a

f +
∫ b

a

g

• Multiplier Rule:∫ b

a

cf = c

∫ b

a

f, wrere c is a constant
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• Integration by Parts: ∫ b

a

f ′g = fg|ba −
∫ b

a

fg′,

where fg|ba means f(b)g(b)− f(a)g(a).
f

g
g(b)g(a)

f(a)

f(b)

f=f(x
),

g=g(x)

f(a)g(a)

g(x)df

a

b

f(x)dg

a

b

Integration by parts

integration_by_parts

• Change of Variable:∫ b

a

f(g(x))g′(x)dx =
∫ g(b)

g(a)

f(g)dg

• There is an additional rule for definite integrals.

Additivity: ∫ c

a

f =
∫ b

a

f +
∫ c

b

f

• In section ?? we will show the following (for nice enough f):

Positivity: ∫ b

a

f ≥ 0 if f ≥ 0 and a ≤ b

Example 5.5.6.

[author=livshits, file =text_files/area_defn_integrals]

Here is a bit sleeker way to finish the problem about a leaky bucket by using
definite integrals. We can rewrite ?? as

dH

dt
= − a

A

√
2gH,

turning it upside down produces

dt

dH
= − A

a
√

2gH
,

multiplying both sides by dH gives

dt = −A

a

√
2
g

dH

2
√

H
= −A

a

√
2
g
d
√

H,

and finally, integrating both parts yields

T =
∫ T

0

dt = −A

a

√
2
g

∫ 0

√
H0

d
√

H =
A

a

√
2
g

∫ √
H0

0

d
√

H =
A

a

√
2H0/g
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Discussion.

[author=livshits, file =text_files/area_defn_integrals]

As we saw in section ?? (Theorem 3.3.2), the derivative of a ULD function is
ULC. It is natural to ask whether any ULC function is a derivative of some ULD
function. In this section we will see that it is indeed the case. In other words,
any ULC function has a ULD primitive and it makes sense to talk about definite
and indefinite integrals of any ULC function. We will also take a closer look at
the notion of area and prove the Newton-Leibniz theorem for ULC functions This
will provide a rigorous foundation for Calculus in the realm of ULC and ULD
functions.

The central idea is to approximate a ULC function f from above by f and
from below by f with some simple (piecewise-linear) functions that are easy to
integrate. Then, using positivity of definite integral (that is equivalent to IFT) we
can conclude that ∫ b

a

f(x)dx ≤
∫ b

a

f(x)dx

(we assume that a < b), and if we want to keep positivity, we conclude that

∫ b

a

f(x)dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

f(x)dx (5.3)

The assumption that f is ULC will allow us to take f and f as close to each
other as we want, therefore their integrals can be made as close to each other
as we want, and this will define

∫ b

a
f(x)dx uniquely. After this construction is

understood, the Newton-Leibniz theorem becomes an easy check and provides a
construction for a ULD primitive of f .

_
y = f(x)

Xa c

y = f(x)

y =f(x)_

Y

b

~
y=f(x)

approx_integral

Proof.
[author=livshits, file =text_files/area_defn_integrals]

So let us assume that f is defined on the segment [a, b] and is ULC, i.e. |f(x) −
f(u)| ≤ L|x − u|. First we introduce a mesh of points a = x0 < x1 < ... <
xn−1 < xn = b such that xk − xk−1 ≤ h. Then we put f(xk) = f(xk)− 2Lh and
f(xk) = f(xk) + 2Lh for k = 0, ..., n and assume f and f to be linear on each
segment [xk−1, xk]. It is easy to check that f(x) ≤ f(x) ≤ f(x) for any x in [a, b].
Also f − f = 4Lh, therefore∫ b

a

f(x)dx−
∫ b

a

f(x)dx = 4Lh(b− a) (5.4)

Since the h > 0 is arbitrary, there is at most one real number I such that∫ b

a
f(x)dx ≤ I ≤

∫ b

a
f(x)dx for any piecewise-linear f and f such that f ≤ f ≤ f .
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And there will be such a number because f ≤ f ≤ f implies
∫ b

a
f(x)dx ≤∫ b

a
f(x)dx, so we can define

∫ b

a
f(x)dx = I. This works when a < b, and we

can put
∫ a

a
f(x)dx = 0 and

∫ b

a
f(x)dx = −

∫ a

b
f(x)dx when b < a.

The piecewise-linear function f̃ such that f̃(xk) equals f(xk) and f̃ is linear on
every [xk−1, xk] approximates f better than f or f because it sits between them

together with f , so
∫ b

a
f̃(x)dx is often used in practical calculations of

∫ b

a
f(x)dx.

It is called the trapezoid rule because the approximating integral is the sum of the
(appropriately signed) areas of a bunch of trapezoids.

In particular, we can conclude from the estimate 5.4 that∣∣∣∣∣
∫ b

a

f̃(x)dx−
∫ b

a

f(x)dx

∣∣∣∣∣ ≤ 4Lh|b− a|

and the previous exercise shows that the factor 4 in the right-hand side can be
dropped.

Now, using this estimate, it is easy to see that the definite integral that we
have just constructed for ULC functions possesses the positivity and additivity
properties and satisfies the sums and the constant multiple rules from section ??.
It inherits these properties from the approximations, so to speak.
Discussion.

[author=livshits, file =text_files/area_defn_integrals]

For example, to prove positivity, we can observe that from f ≥ 0 it follows that
f̃ ≥ 0 and therefore

∫ b

a
f̃(x)dx ≥ 0 (we assume here that a ≤ b and we know

that positivity holds for the piecewise-linear functions), so we can conclude that∫ b

a
f(x)dx ≥ −4Lh(b− a), and therefore

∫ b

a
f(x)dx ≥ 0 we can take h = (b− a)/n

(Archimedes principle again). Additivity and the sums and the constant multiple
rules are demonstrated in a similar fashion (exercise).

There is an important and easy consequence of positivity of our newly con-
structed definite integral that will be handy soon:∣∣∣∣∣

∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx

(to check it one can “integrate the inequality” −|f | ≤ f ≤ |f |).

Exercises

1. Find the area between the curves y = x2 and y = 2x + 3.

2. Find the area of the region bounded vertically by y = x2 and y = x + 2 and
bounded horizontally by x = −1 and x = 3.

3. Find the area between the curves y = x2 and y = 8 + 6x− x2.

4. Find the area between the curves y = x2 + 5 and y = x + 7.



188 CHAPTER 5. INTEGRATION

5. It is easy to check that f(x) ≤ f(x) ≤ f(x) for any x in [a, b].

6. For example, to prove positivity, we can observe that from f ≥ 0 it follows
that f̃ ≥ 0 and therefore

∫ b

a
f̃(x)dx ≥ 0 (we assume here that a ≤ b and

we know that positivity holds for the piecewise-linear functions), so we can
conclude that

∫ b

a
f(x)dx ≥ −4Lh(b − a), and therefore

∫ b

a
f(x)dx ≥ 0 we

can take h = (b − a)/n (Archimedes principle again). Additivity and the
sums and the constant multiple rules are demonstrated in a similar fashion
(exercise).

7. It is not too difficult to see that f and f can be chosen 4 times closer
together because already f(xk) = f(xk) + Lh/2 and f(xk) = f(xk)− Lh/2
will guarantee f ≤ f ≤ f .
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5.6 Transcendental integration

Discussion.

[author=duckworth, file =text_files/transcendental_integration]

In this section we adopt a slightly unusual perspective. We suppose that we do
not know the derivative of ln(x) or ex. We define ln as the integral of 1/x. Then
we obtain the derivative of ex as a consequence.

Discussion.

[author=livshits,uses=ln,establishes=deriv_of_ln, file =text_files/transcendental_

integration]

Here we obtain the derivative of ln(x) by trying to find the integral of 1/x.

As you may have noticed, the formula for integrating xn∫
xndx = xn+1/(n + 1)

breaks down for n = −1 because we get zero in the denominator. However, if we
apply this formula to calculate a definite integral from a to b where 0 < a < b, we
will get ∫ b

a

(1/x)dx = x0/0|ba = (b0 − a0)/0 = (1− 1)/0 = 0/0,

and we encounter our good old friend 0/0, so there is a glimpse of hope here.

Geometrically speaking, the definite integral above makes perfect sense and
represents the area under the hyperbola y = 1/x between the vertical lines x = a
and x = b. Now we have to figure out how to relate this area to something
familiar. To do that, we denote by A(a, b) the area under consideration and look
at the picture.

x

y

y=1/x

21 3 6

A(1,2)

A(3,6)=A(1,2)

A(1,2*3)=A(1,6)=A(1,3)+A(3,6)=A(1,2)+A(1,3)

area_under_1_over_x

This picture demonstrates that A(1, 2) + A(1, 3) = A(1, 6). Generalizing, we
get A(1, a) + A(1, b) = A(1, ab) for 1 < a and 1 < b so A(1, x) looks like some
sort of a logarighm. It is called the natural logarithm and is denoted ln(x). So for
1 < a ≤ b ∫ b

a

(1/x)dx = ln(b)− ln(a) = ln(x)|ba

and for x ≥ 1. ∫
(1/x)dx = ln(x) + C.

Notice that the formulas will hold for positive a, b, or x less than 1 if we take into
account that ln(x) = −ln(1/x) for 0 < x < 1. These formulas can be extended
even to the negative x as well by replacing ln(x) with ln|x|, ln(a) with ln|a| and
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ln(b) with ln|b|, but should be treated with some caution since ln|x| and 1/x blow
up at 0.

Now we got yet another function that we can differentiate:

(ln |x|)′ = 1/x

Definition 5.6.1.

[author=livshits,uses=e^x,establishes=deriv_of_e^x, file =text_files/transcendental_

integration]

The base of the natural logarithm is called the Euler number and denoted e, so
we can write

ln(ex) = x and eln(a) = a for any a > 0.

Sometimes ex is written as exp(x), so

ln(exp(x)) = x for any x and exp(ln(x)) = x for x > 0.

We can use implicit differentiation to figure out d
dx exp(x):

1 = x′ = (ln(exp(x)))′ = ln′(exp(x)) exp′(x) = (1/ exp(x)) exp′(x),

so
exp′(x) = exp(x).

5.7 End of chapter problems

ExercisesFind the following integrals

1.
∫

x7dx

dxn/dx = nxn−1

x8/8 + C

2.
∫

5x3dx

Use the constant multiplier rule

(5/4)x4 + C

3.
∫

(3x5 + 7x10)dx

Use the constant multiplier rule and the sums rule.

x6/2 + 7x11/11 + C

4.
∫

(x3 + 10)3x2dx

Use U = x3.

u = x3, du = 3x2dx, so the integral becomes
∫

(u + 10)du = u2/2 + 10u + C,
that is x6/2 + 10x3 + C (after going back to the original variable x).
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5.
∫

(x6 + 6x)(x5 + x)dx

Expand and integrate term by term.

6.
∫

(2x/(x2 + 3)2)dx

(x2)′ = 2x, use U -subst

u = x2 = 3, du = 2xdx, so the integral becomes
∫

u−2du = −1/u + C =
−1/(u2 + 3) + C

7.
∫

x2
√

x3 + 2dx

(x3)′ = 3x2, use U -subst

u = x3 + 2, du = 3x2dx, so the integral becomes
∫

(1/3)u1/2 = (2/9)u3/2 +
C = (2/9)(x3 + 2)3/2 + C

8. Water is pored into a conical bucket at a rate 50 cubic inches per minute.
How fast is the water level in the bucket rising at the moment when the area
of the water surface is 100 sqare inches?

Differentiate the formula for the volume of a cone

The volume of the cone of height h and base area A is V = Ah/3 in our
problem A = ah2, so V = ah3/3. The time derivative V ′ = ah2h′ and finally
h′ = V ′/(ah2) = V ′/A = 50/100 = 1/2 inches per second.

9. A sperical balloon is pumped up at 5 cubic inches per second. How fast is
its area growing when its radius is 10 inches?

Differentiate the formula for the volume of a ball

The volume of the balloon is V = (4/3)πr3, its surface area is A = 4πr2, so
V ′ = 4πr2r′ and A′ = 8πrr′ = 2V ′/r = 10/10 = 1

10. Conservation of energy via chain rule.

(a) Check that the gravity force pulling the stone down is equal to −dP/dy
where P (y) is the potential energy of the stone.

(b) Check that Newton’s Second law can be rewritten as my′′+dP/dy = 0.

(c) Use the chain rule to calculate the time derivative E′ of the energy and
use the equation from (b) to show that E′ = 0, which implies that E
does not change with time, i.e. energy is conserved.

For part (c) note that (y′2)′ = 2y′y′′

11.
∫

(x5 + 3x4 − 7)10(5x4 + 12x3)dx

12. f ′′(x) = x5 + x3 + 7x2 + 1, f(0) = 1, f(1) = 3. Find f

13. Although about the only function that we can integrate now is xr with
r 6= −1, we can already solve some not totally trivial problems.

what is the integral? why r = −1 is bad?

14. Check the energy conservation in case v0 6= 0.

15. Solve this differential equation,

H ′(t) = − a

A

√
2gH(t)

read ahead if you can’t.
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Chapter 6

Applications of Integration

Discussion.

[author=duckworth, file =text_files/introduction_to_applications_of_integrals]

This chapter has a bunch of applications of integration. Unfortunately we are only
going to learn two of them: arc-length and surface area of a revolution. These are
applications that appeal primarily to mathematicians. I wish we had time to
learn the other applications too, which are used in economics, probability, physics,
statistics (and therefore every emperical subject),. . .

6.1 Area between two curves

Rule 6.1.1.

[author=duckworth, file =text_files/area_between_two_curves]

If f(x) ≥ g(x) then the area between f(x) and g(x) is
∫ b

a
f(x) − g(x) dx. If g(x)

is sometimes on top of f(x) then the area is
∫ b

a
|f(x)− g(x)| dx. To solve this you

need to split the integral up into pieces so that you know on each piece whether f
or g is on top.

6.2 Lengths of Curves

Example 6.2.1.

[author=duckworth, file =text_files/arc_length]

Find the distance travelled by a ball which has path given by y = −x2 + 4.

I’ll pretend I don’t know how to solve this exactly and do an approximaton in
3 steps. Thus ∆x = 4/3 and so I will have points at x equal to −2, −2/3, 2/3, 2.
The y-values corresponding to these x-values are 0, 32/9, 32/9, 0. Between these
points I will use straight lines, thus the distance at each step will be given by the

193
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distance formula (i.e.
√

∆x2 + ∆y2). So we have:

Arc-length ≈
√

(4/3)2 + (32/9)2 +
√

(4/3)2 + 02 +
√

(4/3)2 + (32/9)2
= 8.928

Now, I want to get an exact answer. That means that I need to figure out how
to replace each of those square roots by something of the form ∗ ·∆x. If I can do
that then I can integrate

∫ 2

−2
∗ dx. So this is a trick; each of those square roots

was of the form
√

∆x2 + ∆y2, and if I really want something times ∆x (which I
do) I’ll factor that out to get: √

1 +
∆y2

∆x2
·∆x.

Thus, what we should integrate is√
1 +

(
dy

dx

)2

dx

In our example we have y′ = −2x. Thus, the exact answer should be

Arc-length =
∫ 2

−2

√
1 + (−2x)2 dx

Note that the function is even, so we can integrate from 0 to 2 and multiply the
result by 2. Also, (−2x)2 equals (2x)2, so we can find

2
∫ 2

0

√
1 + (2x)2 dx

Now, substitute u = 2x to get

1
2
· 2
∫ 4

0

√
1 + u2 du

We look up this integral in the back of our book (because we’ve already done
integrals like this in chapter 7) to get

u
2

√
1 + u2 + 1

2 ln(u +
√

1 + u2)
∣∣∣4
0

= 2
√

17 + 1
2 ln(4 +

√
17)− (0 + ln(1 + 0))

= 9.29

Definition 6.2.1.

[author=duckworth, file =text_files/arc_length]

Based on this experience, we define arc-length as follows:

Arc-length = s =
∫ b

a

ds where ds =

√
1 +

(
dy
dx

)2

dx

(
or

√(
dx
dy

)2

+ 1 dy

)
≈
√

∆x2 + ∆y2
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Comment.

[author=duckworth, file =text_files/arc_length]

The problems in this section can take a long time just because there’s lots of
simplification and/or manipulation to get the integral into the right form. Here’s
some advice:

• Don’t panic if it seems like the problem is getting kind of long.

• Go slowly and double check every step. If you make a mistake there’s prob-
ably no way the stuff inside the square root will work out right.

• The stuff in the square root is usually rational functions (i.e. polynomials
divided by polynomials). To simplify these you usually use one or more of
the following tricks: (a) get common denominators, (b) foil everything out,
then cancel, then factor, (c) look for perfect squares (i.e. things of the form
a2 ± 2ab + b2 which equals (a ± b)2), (d) if you don’t have a perfect square
then complete the square to get something of the form

√
±u2 ± a2 where u

equals x± a. Then try to look this integral up in the back of the book.

Rule 6.2.1.

[author=garrett, file =text_files/arc_length]

The basic point here is a formula obtained by using the ideas of calculus: the
length of the graph of y = f(x) from x = a to x = b is

arc length =
∫ b

a

√
1 +

(
dy

dx

)2

dx

Or, if the curve is parametrized in the form

x = f(t) y = g(t)

with the parameter t going from a to b, then

arc length =
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt

This formula comes from approximating the curve by straight lines connecting
successive points on the curve, using the Pythagorean Theorem to compute the
lengths of these segments in terms of the change in x and the change in y. In
one way of writing, which also provides a good heuristic for remembering the
formula, if a small change in x is dx and a small change in y is dy, then the length
of the hypotenuse of the right triangle with base dx and altitude dy is (by the
Pythagorean theorem)

hypotenuse =
√

dx2 + dy2 =

√
1 +

(
dy

dx

)2

dx

Unfortunately, by the nature of this formula, most of the integrals which come
up are difficult or impossible to ‘do’. But if one of these really mattered, we could
still estimate it by numerical integration.
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Exercises

1. Find the length of the curve y =
√

1− x2 from x = 0 to x = 1.

2. Find the length of the curve y = 1
4 (e2x + e−2x) from x = 0 to x = 1.

3. Set up (but do not evaluate) the integral to find the length of the piece of
the parabola y = x2 from x = 3 to x = 4.
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6.3 Numerical integration

Discussion.

[author=duckworth, file =text_files/numerical_integration]

We can approximate
∫ b

a
f(x) dx using a variety of methods: the left-hand rule

(LHR), the right-hand rule (RHR), and the midpoint rule (MP). In this section
we will discuss which of these is better, and also get some new rules which are
better still.

Example 6.3.1.

[author=duckworth, file =text_files/numerical_integration]

Consider
∫ 1

0
e−x2

dx. Let’s approximate this in four steps. So we have n = 4 and
∆x = 1

4 . We have:

Rule x∗1, x∗2, x∗3, x∗4
1
4 (e−(x∗1)2 + e−(x∗2)2 + e−(x∗3)2 + e−(x∗4)2)

LHR x∗1 = 0, x∗2 = 1
4 , x∗3 = 2

4 , x∗4 = 3
4

1
4 (e−02

+ e−(1/4)2 + e−(2/4)2 + e−(3/4)2) = .821999

RHR x∗1 = 1
4 , x∗2 = 2

4 , x∗3 = 3
4 , x∗4 = 4

4 = 1 1
4 (e−(1/4)2 + e−(2/4)2 + e−(3/4)2 + e−12

) = .663969

MP x∗1 = 1
8 , x∗2 = 3

8 , x∗3 = 5
8 , x∗4 = 7

8
1
4 (e−(1/8)2 + e−(3/8)2 + e−(5/8)2 + e−(7/8)2) = .748747

The obvious questions at this point are: which one of these is best, and how
close is it? You might think just by looking at these numbers that .821999 is too
high and .663969 is too low. In this case, this is right, but the correct way to see
this is to graph f(x) and note that it is decreasing. This implies that the LHR is
too high and the RHR is too low.

Rule 6.3.1.

[author=duckworth, file =text_files/numerical_integration]

We can summarize this for all functions:

• If f(x) is increasing then LHR >
∫

> RHR.

• If f(x) is decreasing then RHR >
∫

> LHR.

What about the MP rule? What about averaging the LHR and RHR? Let’s define
a new rule: TRAP = 1

2 (LHR + RHR). We give the outcome of this rule, together
with how to calculate in terms of the xi∗:

rule as an average forumula
TRAP = 1

2 (LHR + RHR) 1
2

1
4 (f(0) + 2f(1/4) + 2f(2/4) + 2f(3/4) + f(1)) = .742984

So which is better, the MP or the TRAP? To figure this out draw one “rect-
angle” in f(x) with a quarter of a circle on top (or see the picture in the book or
in lecture notes). The TRAP gives the area formed by the trapezoid connecting
the right side to the left where the vertical lines hit the curve for f(x). Draw the
MP with a horizontal line coming half-way between the left and right sides (this
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is not the same as a horizontol line half-way between the top and the bottom of
the curve). You can re-draw the MP by drawing a tangent line at the point where
the MP line intersects f(x). The trapezoid formed with this tangent line, has the
same area as the rectangle formed with a horizontal line at the mid-point (you
can see this because you just cut off one corner of the rectangle and move it to
the other side to form the trapezoid). We can finally see whether MP or TRAP is
better and which is too big/too small.

• If f(x) is concave down, then ∓ >
∫

> TRAP

• If f(x) is concave up, then ∓ <
∫

< TRAP

• In all cases MP is better than TRAP

The preceeding discussion justifies a new rule. We want a formula for something
between MP and TRAP, which comes out a little closer to MP. This is Simpson’s
rule (as applied to the previous example):

rule as an average formula
SIMP 2∓+TRAP

3
1
3

1
4 (f(0) + 4f(1/8) + 2f(2/8) + 4f(3/8)

+2f(4/8) + 4f(5/8) + 2f(6/8) + 4f(7/8) + f(1)) = .7468261205

Discussion.

[author=duckworth, file =text_files/numerical_integration]

This section also discusses error bounds for the rules MP, TRAP, and SIMP. To
find K4 = max |f (4)(x)| you need to find the fifth derivative of f (i.e. find f (5)(x)),
set this equal to zero, solve for the critical points, then compare the y-values of
|f (4)(x)| at the critical points and end-points. Whichever comes out biggest is the
maximum. This can be a lot of work (i.e. finding 5 derivatives and setting some
big formula equal to 0).

Discussion.

[author=garrett, file =text_files/numerical_integration]

As we start to see that integration ‘by formulas’ is a much more difficult thing
than differentiation, and sometimes is impossible to do in elementary terms, it
becomes reasonable to ask for numerical approximations to definite integrals.
Since a definite integral is just a number, this is possible. By constrast, indefinite
integrals, being functions rather than just numbers, are not easily described by
‘numerical approximations’.

There are several related approaches, all of which use the idea that a definite
integral is related to area. Thus, each of these approaches is really essentially a way
of approximating area under a curve. Of course, this isn’t exactly right, because
integrals are not exactly areas, but thinking of area is a reasonable heuristic.

Of course, an approximation is not very valuable unless there is an estimate
for the error, in other words, an idea of the tolerance.

Each of the approaches starts the same way: To approximate
∫ b

a
f(x) dx, break

the interval [a, b] into smaller subintervals

[x0, x1], [x1, x2], . . . , [xn−2, xn−1], [xn−1, xn]



6.3. NUMERICAL INTEGRATION 199

each of the same length

∆x =
b− a

n

and where x0 = a and xn = b.

Trapezoidal rule: This rule says that∫ b

a

f(x) dx ≈ ∆x

2
[f(x0) + 2f(x1) + 2f(x2) + . . . + 2f(xn−2) + 2f(xn−1) + f(xn)]

Yes, all the values have a factor of ‘2’ except the first and the last. (This method
approximates the area under the curve by trapezoids inscribed under the curve in
each subinterval).

Midpoint rule: Let xi = 1
2 (xi − xi−1) be the midpoint of the subinterval

[xi−1, xi]. Then the midpoint rule says that∫ b

a

f(x) dx ≈ ∆x[f(x1) + . . . + f(xn)]

(This method approximates the area under the curve by rectangles whose height
is the midpoint of each subinterval).

Simpson’s rule: This rule says that∫ b

a

f(x) dx ≈

≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . . + 2f(xn−2) + 4f(xn−1) + f(xn)]

Yes, the first and last coefficients are ‘1’, while the ‘inner’ coefficients alternate ‘4’
and ‘2’. And n has to be an even integer for this to make sense. (This method
approximates the curve by pieces of parabolas).

In general, the smaller the ∆x is, the better these approximations are. We can
be more precise: the error estimates for the trapezoidal and midpoint rules depend
upon the second derivative: suppose that |f ′′(x)| ≤ M for some constant M , for
all a ≤ x ≤ b. Then

error in trapezoidal rule ≤ M(b− a)3

12n2

error in midpoint rule ≤ M(b− a)3

24n2

The error estimate for Simpson’s rule depends on the fourth derivative: suppose
that |f (4)(x)| ≤ N for some constant N , for all a ≤ x ≤ b. Then

error in Simpson’s rule ≤ N(b− a)5

180n4

From these formulas estimating the error, it looks like the midpoint rule is
always better than the trapezoidal rule. And for high accuracy, using a large
number n of subintervals, it looks like Simpson’s rule is the best.
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6.4 Averages and Weighted Averages

Discussion.

[author=garrett, file =text_files/average_of_function]

The usual notion of average of a list of n numbers x1, . . . , xn is

average of x1, x2, . . . , xn =
x1 + x2 + . . . + xn

n

A continuous analogue of this can be obtained as an integral, using a notation
which matches better:

Definition 6.4.1.

[author=garrett, file =text_files/average_of_function]

let f be a function on an interval [a, b]. Then

average value of f on the interval [a, b] =

∫ b

a
f(x) dx

b− a

Example 6.4.1.

[author=garrett, file =text_files/average_of_function]

For example the average value of the function y = x2 over the interval [2, 3] is

average value of f on the interval [a, b] =

∫ 3

2
x2 dx

3− 2
=

[x3/3]32
3− 2

=
33 − 23

3 · (3− 2)
= 19/3

Discussion.

[author=garrett, file =text_files/average_of_function]

A weighted average is an average in which some of the items to be averaged
are ‘more important’ or ‘less important’ than some of the others. The weights are
(non-negative) numbers which measure the relative importance.

For example, the weighted average of a list of numbers x1, . . . , xn with corre-
sponding weights w1, . . . , wn is

w1 · x1 + w2 · x2 + . . . + wn · xn

w1 + w2 + . . . + wn

Note that if the weights are all just 1, then the weighted average is just a plain
average.

Definition 6.4.2.

[author=garrett, file =text_files/average_of_function]

The continuous analogue of a weighted average can be obtained as an integral,
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using a notation which matches better: let f be a function on an interval [a, b],
with weight w(x), a non-negative function on [a, b]. Then

weighted average value of f on the interval [a, b] with weight w =

∫ b

a
w(x) · f(x) dx∫ b

a
w(x) dx

Notice that in the special case that the weight is just 1 all the time, then the
weighted average is just a plain average.

Example 6.4.2.

[author=garrett, file =text_files/average_of_function]

For example the average value of the function y = x2 over the interval [2, 3] with
weight w(x) = x is

average value of f on the interval [a, b] with weight x

=

∫ 3

2
x · x2 dx∫ 3

2
x dx

=
[x4/4]32
[x2/2]32

=
1
4 (34 − 24)

1
2

(32 − 22)

Example 6.4.3.

[author=duckworth, file =text_files/average_of_function]

One of the best examples to think of for average value of a function is the temper-
ature outside over one full day. It’s easy to understand what the high temperature
means, and what the low temperature means. Suppose you want to know the
average temperature, how many times do you need to measure the temperature?
1? Not enough. 4 times? Not enough if you want the most accuracy. 24 times? In
practical terms this might be enough, but in math we always want infinite preci-
sion. That leads to the following definition. The average of f on an interval [a, b]
is:

fAvg =
1

b− a

∫ b

a

f(x) dx.

A rectangle with base b − a and height equal to the number fAvg has the same
area as

∫ b

a
f(x) dx. This can be used to define/understand what we mean by the

average.

6.5 Centers of Mass (Centroids)

Discussion.

[author=garrett, file =text_files/centers_of_mass]

For many (but certainly not all!) purposes in physics and mechanics, it is necessary
or useful to be able to consider a physical object as being a mass concentrated
at a single point, its geometric center, also called its centroid. The centroid is
essentially the ‘average’ of all the points in the object. For simplicity, we will just
consider the two-dimensional version of this, looking only at regions in the plane.
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The simplest case is that of a rectangle: it is pretty clear that the centroid
is the ‘center’ of the rectangle. That is, if the corners are (0, 0), (u, 0), (0, v) and
(u, v), then the centroid is

(
u

2
,
v

2
)

The formulas below are obtained by ‘integrating up’ this simple idea:

Definition 6.5.1.

[author=garrett, file =text_files/centers_of_mass]

For the center of mass (centroid) of the plane region described by f(x) ≤ y ≤ g(x)
and a ≤ x ≤ b, we have

x-coordinate of the centroid = average x-coordinate

=

∫ b

a
x[g(x)− f(x)] dx∫ b

a
[g(x)− f(x)] dx

=

∫ right

left
x[upper− lower] dx∫ right

left
[upper− lower] dx

=

∫ right

left
x[upper− lower] dx

area of the region

And also
y-coordinate of the centroid = average y-coordinate

=

∫ b

a
1
2 [g(x)2 − f(x)2] dx∫ b

a
[g(x)− f(x)] dx

=

∫ right

left
1
2 [upper2 − lower2] dx∫ right

left
[upper− lower] dx

=

∫ right

left
1
2 [upper2 − lower2] dx

area of the region

Comment.

[author=garrett, file =text_files/centers_of_mass]

Heuristic: For the x-coordinate: there is an amount (g(x)− f(x))dx of the region
at distance x from the y-axis. This is integrated, and then averaged dividing by
the total, that is, dividing by the area of the entire region.

For the y-coordinate: in each vertical band of width dx there is amount dx dy
of the region at distance y from the x-axis. This is integrated up and then averaged
by dividing by the total area.

Example 6.5.1.

[author=garrett, file =text_files/centers_of_mass]

For example, let’s find the centroid of the region bounded by x = 0, x = 1, y = x2,
and y = 0.

x-coordinate of the centroid =

∫ 1

0
x[x2 − 0] dx∫ 1

0
[x2 − 0] dx

=
[x4/4]10
[x3/3]10

=
1/4− 0
1/3− 0

=
3
4
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And

y-coordinate of the centroid =

∫ 1

0
1
2 [(x2)2 − 0] dx∫ 1

0
[x2 − 0] dx

=
1
2 [x5/5]10
[x3/3]10

=
1
2 (1/5− 0)
1/3− 0

=
3
10

Exercises

1. Find the center of mass (centroid) of the region 0 ≤ x ≤ 1 and 0 ≤ y ≤ x2.

2. Find the center of mass (centroid) of the region defined by 0 ≤ x ≤ 1, 0 ≤
y ≤ 1 and x + y ≤ 1.

3. Find the center of mass (centroid) of a homogeneous plate in the shape of
an equilateral triangle.
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6.6 Volumes by Cross Sections

Discussion.

[author=duckworth, file =text_files/volumes_cross_section]

The volume of a shape which has cross-sections of constant area of A is A · l where
l is the length of the shape. But how can we find the volume of something whose
cross-section is changing in area? Well, consider the following similar problem.

The area of between the x-axis and a curve with constant height h is xh
where x is the width. But what is the area between the x-axis and a curve f(x)
whose height is changing? We break the curve into pieces, on each piece we use a
constant height, i.e. we use a rectangle. Then we add all these rectangles of the
form f(xi)∆x, and then we take the limit to get

∫
f(x) dx.

So, suppose that we have some three dimensional shape, and we know the
formlua A(x) for the area of the cross section at x. We can break the shape
up into pieces, on each piece use a constant cross-section area, and calculate the
volume of that piece. Then we add all these pieces of the form A(xi)∆x together.
When we take the limit we obtain the following rule.

Rule 6.6.1.

[author=duckworth, file =text_files/volumes_cross_section]

Let V be the volume of a shape between x = a and x = b, which has cross-sectional
area given by the function A(x). Then V is given by

V =
∫ b

a

A(x) dx.

Comment.

[author=duckworth, file =text_files/volumes_cross_section]

When computing the volume in the previous rule, we most often have cross-sections
that are squares, square, triangles, or circles, or simple combinations of these
shapes. In each case you should know the how to find the area A(x).

But in principle we could use the previous rule for any function A(x) that
we know how to integrate. For example, we could have a shape where the cross-
sections are given by parabolas. In fact, we could even have a shape where we
don’t know how to integrate A(x), but then we could approximate the volume
using either our calculators or Riemann sums.

Discussion.

[author=garrett, file =text_files/volumes_cross_section]

Next to computing areas of regions in the plane, the easiest concept of application
of the ideas of calculus is to computing volumes of solids where somehow we know
a formula for the areas of slices, that is, areas of cross sections. Of course, in any
particular example, the actual issue of getting the formula for the cross section,
and figuring out the appropriate limits of integration, can be difficult.
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Rule 6.6.2.

[author=garrett, file =text_files/volumes_cross_section]

The idea is to just ‘add up slices of volume:

volume =
∫ right limit

left limit
(area of cross section at x) dx

where in whatever manner we describe the solid it extends from x =left limit to
x =right limit. We must suppose that we have some reasonable formula for the
area of the cross section.

Example 6.6.1.

[author=garrett, file =text_files/volumes_cross_section]

Find the volume of a solid ball of radius 1.

(In effect, we’ll be deriving the formula for this). We can suppose that the ball
is centered at the origin. Since the radius is 1, the range of x coordinates is from
−1 to +1, so x will be integrated from −1 to +1. At a particular value of x, what
does the cross section look like? A disk, whose radius we’ll have to determine.
To determine this radius, look at how the solid ball intersects the x, y-plane: it
intesects in the disk x2 + y2 ≤ 1. For a particular value of x, the values of y are
between ±

√
1− x2. This line segment, having x fixed and y in this range, is the

intersection of the cross section disk with the x, y-plane, and in fact is a diameter
of that cross section disk. Therefore, the radius of the cross section disk at x is√

1− x2. Use the formula that the area of a disk of radius r is πr2: the area of
the cross section is

cross section at x = π(
√

1− x2)2 = π(1− x2)

Then integrate this from −1 to +1 to get the volume:

volume =
∫ right

left

area of cross-section dx

=
∫ +1

−1

π(1− x2) dx = π[x− x3

3
]+1
−1 = π[(1− 1

3
)− (−1− (−1)3

3
)] =

2
3

+
2
3

=
4
3

Exercises

1. Find the volume of a circular cone of radius 10 and height 12 (not by a
formula, but by cross sections).

2. Find the volume of a cone whose base is a square of side 5 and whose height
is 6, by cross-sections.
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3. A hole 3 units in radius is drilled out along a diameter of a solid sphere of
radius 5 units. What is the volume of the remaining solid?

4. A solid whose base is a disc of radius 3 has vertical cross sections which are
squares. What is the volume?
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6.7 Solids of Revolution

Discussion.

[author=garrett, file =text_files/solids_revolution]

Another way of computing volumes of some special types of solid figures applies
to solids obtained by rotating plane regions about some axis.

Rule 6.7.1.

[author=garrett, file =text_files/solids_revolution]

If we rotate the plane region described by f(x) ≤ y ≤ g(x) and a ≤ x ≤ b around
the x-axis, then the volume of the resulting solid is

V =
∫ b

a

π(g(x)2 − f(x)2) dx

=
∫ right limit

left limit
π(upper curve2 − lower curve2) dx

It is necessary to suppose that f(x) ≥ 0 for this to be right.

Comment.

[author=garrett, file =text_files/solids_revolution]

This formula comes from viewing the whole thing as sliced up into slices of thick-
ness dx, so that each slice is a disk of radius g(x) with a smaller disk of radius
f(x) removed from it. Then we use the formula

area of disk = π radius2

and ‘add them all up’. The hypothesis that f(x) ≥ 0 is necessary to avoid different
pieces of the solid ‘overlap’ each other by accident, thus counting the same chunk
of volume twice.

If we rotate the plane region described by f(x) ≤ y ≤ g(x) and a ≤ x ≤ b
around the y-axis (instead of the x-axis), the volume of the resulting solid is

volume =
∫ b

a

2πx(g(x)− f(x)) dx

=
∫ right

left
2πx( upper - lower) dx

This second formula comes from viewing the whole thing as sliced up into thin
cylindrical shells of thickness dx encircling the y-axis, of radius x and of height
g(x)− f(x). The volume of each one is

(area of cylinder of height g(x)− f(x) and radius x) · dx = 2πx(g(x)− f(x)) dx

and ‘add them all up’ in the integral.
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Example 6.7.1.

[author=garrett, file =text_files/solids_revolution]

As an example, let’s consider the region 0 ≤ x ≤ 1 and x2 ≤ y ≤ x. Note that for
0 ≤ x ≤ 1 it really is the case that x2 ≤ y ≤ x, so y = x is the upper curve of the
two, and y = x2 is the lower curve of the two. Invoking the formula above, the
volume of the solid obtained by rotating this plane region around the x-axis is

volume =
∫ right

left
π(upper2 − lower2) dx

=
∫ 1

0

π((x)2 − (x2)2) dx = π[x3/3− x5/5]10 = π(1/3− 1/5)

Example 6.7.2.

[author=garrett, file =text_files/solids_revolution]

Let’s take the same function as in Example 6.7.1, and rotate it around the y-axis
instead of the x-axis. Then we have

volume =
∫ right

left
2πx(upper− lower) dx

=
∫ 1

0

2πx(x− x2) dx = π

∫ 1

0

2x3

3
− 2x4

4
dx = [

2x3

3
− 2x4

4
]10 =

2
3
− 1

2
=

1
6

Discussion.

[author=duckworth, file =text_files/solids_revolution]

For some functions it’s easier to slice the volume a different way. If you rotate a
little bump around the y-axis, then cross-section slices aren’t very good. In this
case, think about a little vertical rectangle in the bump, being rotated around the
y-axis and making a cylindrical shell. If we add a bunch of these shells together
we’ll have the whole volume.

Derivation.

[author=duckworth, file =text_files/solids_revolution]

Consider one one cylindrical shell, with height h, radius r and thickness ∆r. To
estimate it’s volume, unwrap/unroll the shell. You’ll get a rectangular piece with
height h, thickness ∆r and length of 2πr (from the circumference of the original
cylindrical shell). Thus, the volume of this shell is h · 2πr ·∆r. We translate this,
and put all these pieces together as follows.

To find the volume of f(x) rotated about the y-axis:

cylindrical shell h 2πr ∆r
l l l

in terms of f(x) f(x) 2πx ∆x
l l l

add all the shells
∫ b

a
f(x) 2πx dx
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where x is the radius because you’re rotating about the y-axis, and you need to
figure out a and b (which equal the smallest and the largest radiuses) from the
picture.

Sometimes, your region isn’t defined by a single function f(x). In this case,
you draw a single shell figure out what h is.

For example, if the region is defined as being between two functions f and g
you’d have

h 2πr ∆r
f(x)− g(x) 2πx ∆x∫ b

a
(f(x)− g(x)) 2πx dx

Exercises

1. Find the volume of the solid obtained by rotating the region 0 ≤ x ≤ 1, 0 ≤
y ≤ x around the y-axis.

2. Find the volume of the solid obtained by rotating the region 0 ≤ x ≤ 1, 0 ≤
y ≤ x around the x-axis.

3. Set up the integral which expresses the volume of the doughnut obtained by
rotating the region (x− 2)2 + y2 ≤ 1 around the y-axis.
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6.8 Work

Discussion.

[author=duckworth, file =text_files/work_application]

The amount of work required to move an object is:

W = F · d

where F is a (positive) force acting in the opposite direction of the movement and
d is the distance the object is moved. Here we assume that F is constant. Also,
we change this definition slightly if the force is acting in the same direction as the
movement: then we use −F instead of F .

Usually we deal with problems where the force is changing or the distance is
changing. In this case we figure out:

(a) the formula for doing part of the work (where “part” refers to either moving
part of the object of thickness ∆x or to figuring out the force over a certain
distance of length ∆x)

(b) and then we integrate the formula we found in part (a)

Rule 6.8.1.

[author=duckworth, file =text_files/work_application]

If an object is moving against a force of strength F (x) then the work required to
move the object from x = a to x = b is

W =
∫ b

a

F (x) dx

Example 6.8.1.

[author=duckworth, file =text_files/work_application]

if a force of F (x) of strength sin(x) acts on a object at position x (for x in [0, π/2])
and the direction of F (x) is towards x = 0, find the work required to move it from
x = 0 to x = 1.

(a) Here the force is changing. Let ∆x be a little distance that the object will
move, at position x (for example, ∆x = .1 and x = 0 would represent the
work to move from x = 0 to x = .1). On this segment, the work will be
sin(x) (from x = 0 to x = .1 we would take x in [0, .1], maybe sin(0), sin(.1)
or sin(.05)). So the work to move a distance of ∆x around position x would
be

part of work sin(x)∆x

(b) The total work is
∫ 1

0
sin(x) dx.
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Rule 6.8.2.

[author=duckorth, file =text_files/work_application]

Suppose we have a substance (usually water, gravel, dirt, lengths of rope or chain)
which is being moved. Suppose that the substance covers positions from x = a to
x = b. Let ∆x be given, and let the phrase “the substance at position x” mean the
total volume of the substance which is contained in any interval of length ∆x which
contains x (for example we could pick the interval [x− 1

2∆x, x + 1
2∆x]). We first

approximate the amount of work required to move the substance at position x, by
using a constant values for the distance the substance is moved and, if necessary,
using a constant value for the force. Let I(x)∆x be a formula for this constant
approxmition of the work required to move all the substance at position x. Then
the total work is given by

W =
∫ b

a

I(x) dx.

Example 6.8.2.

[author=duckworth, file =text_files/work_application]

Suppose we are pumping water out of a tank which is a cylinder of radius 2 m and
height 9m. Find the work required to empty the tank.

(a) Here, the distance being lifted is changing. Let’s measure x from the top
and consider a slice of the cylinder of thickness ∆x at depth x. The work to
lift this slice of water is

Work of one slice = Force× distance
= weight of slice× x
= volume of slice× density of water× gravity× x
= area of slice×∆x× 1000× 9.8× x
= π · 22 ×∆x× 1000× 9.8× x

(b) The total work is
∫ 9

0
π · 4 · 1000 · 9.8 · x dx

6.9 Surfaces of Revolution

Discussion.

[author=duckworth, file =text_files/surface_revolution]

This section is similar in spirit and in some details to the sections on arc-length
and on volumes generated by rotation. Whence terseness.

Definition 6.9.1.

[author=duckworth, file =text_files/surface_revolution]
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The surface area generated by rotation a function around one of the axes is

SA =
∫ b

a

2πr ds where ds =

√
1 +

(
dy
dx

)2

dx

(
or

√(
dx
dy

)2

+ 1 dy

)
≈
√

∆x2 + ∆y2

Here r is the radius of revolution. If you’re rotating around the x-axis, and your
formula is given as a function of x, then you will use r = function of x and ds =√

1 +
(

dy
dx

)2

dx. If you’re rotating around the x-axis and your formula is given in

terms of y then you’ll use r = y and ds =

√(
dx
dy

)2

+ 1 dy

Comment.

[author=duckworth, file =text_files/surface_revolution]

One way to understand this formula is to think of ds as being approximately the
length of a diagonal line ` between two points on the curve. Then 2πr times this
length is the area of a rectangle with length 2πr and height `. This rectangle has
approximately the same area as one gets by rotating the line ` around a radius of
r.

Definition 6.9.2.

[author=garrett, file =text_files/surface_revolution]

Here is another formula obtained by using the ideas of calculus: the area of the
surface obtained by rotating the curve y = f(x) with a ≤ x ≤ b around the x-axis
is

area =
∫ b

a

2πf(x)

√
1 +

(
dy

dx

)2

dx

This formula comes from extending the ideas of the previous section the length
of a little piece of the curve is √

dx2 + dy2

This gets rotated around the perimeter of a circle of radius y = f(x), so approxi-
mately give a band of width

√
dx2 + dy2 and length 2πf(x), which has area

2πf(x)
√

dx2 + dy2 = 2πf(x)

√
1 +

(
dy

dx

)2

dx

Integrating this (as if it were a sum!) gives the formula.

As with the formula for arc length, it is very easy to obtain integrals which are
difficult or impossible to evaluate except numerically.

Similarly, we might rotate the curve y = f(x) around the y-axis instead. The
same general ideas apply to compute the area of the resulting surface. The width
of each little band is still

√
dx2 + dy2, but now the length is 2πx instead. So the

band has area
width × length = 2πx

√
dx2 + dy2

Therefore, in this case the surface area is obtained by integrating this, yielding the
formula

area =
∫ b

a

2πx

√
1 +

(
dy

dx

)2

dx
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Exercises

1. Find the area of the surface obtained by rotating the curve y = 1
4 (e2x+e−2x)

with 0 ≤ x ≤ 1 around the x-axis.

2. Just set up the integral for the surface obtained by rotating the curve y =
1
4 (e2x + e−2x) with 0 ≤ x ≤ 1 around the y-axis.

3. Set up the integral for the area of the surface obtained by rotating the curve
y = x2 with 0 ≤ x ≤ 1 around the x-axis.

4. Set up the integral for the area of the surface obtained by rotating the curve
y = x2 with 0 ≤ x ≤ 1 around the y-axis.
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Chapter 7

Techniques of Integration

7.1 Integration by parts

Derivation.

[author=duckworth, file =text_files/integration_by_parts]

The product rule says (f · g)′ = f ′ · g + f · g′. Taking anti-derivatives of both sides
gives f · g =

∫
f ′ · g +

∫
f · g′. Solving this for

∫
f ′ · g gives:

Integration by parts
∫

f ′ · g = f · g −
∫

f · g′

The book writes this a different way. Let u = f(x) and v = g(x) so du = f ′(x) dx
and dv = g′(x) dx. Then we have:

Integration by parts
∫

v du = u · v −
∫

u dv

Usually you are given something to integrate that looks like a product. You have
to choose which thing to call f ′ (or du) and which to call g (or v). The point is
that

∫
f · g′ should be easier for some reason than

∫
f ′ · g.

Example 7.1.1.

[author=duckworth, file =text_files/integration_by_parts]

To find
∫

xe3x dx let f ′ = e3x and g = x. Then f = 1
3e3x and g′ = 1. So we have:∫

xe3x dx =
1
3
xe3x −

∫
1
3
e3x dx =

x

3
e3x − 1

9
e3x

Derivation.

[author=garrett, file =text_files/integration_by_parts]

Strangely, the subtlest standard method is just the product rule run backwards.
This is called integration by parts. (This might seem strange because often
people find the chain rule for differentiation harder to get a grip on than the

215
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product rule). One way of writing the integration by parts rule is∫
f(x) · g′(x) dx = f(x)g(x)−

∫
f ′(x) · g(x) dx

Sometimes this is written another way: if we use the notation that for a function
u of x,

du =
du

dx
dx

then for two functions u, v of x the rule is∫
u dv = uv −

∫
v du

Yes, it is hard to see how this might be helpful, but it is. The first theme we’ll
see in examples is where we could do the integral except that there is a power of
x ‘in the way’:

Example 7.1.2.

[author=garrett, file =text_files/integration_by_parts]

The simplest example is∫
x ex dx =

∫
x d(ex) = x ex −

∫
ex dx = x ex − ex + C

Here we have taken u = x and v = ex. It is important to be able to see the ex as
being the derivative of itself.

Example 7.1.3.

[author=garrett, file =text_files/integration_by_parts]

A similar example is∫
x cos x dx =

∫
x d(sinx) = x sinx−

∫
sinx dx = x sinx + cos x + C

Here we have taken u = x and v = sinx. It is important to be able to see the
cos x as being the derivative of sinx.

Example 7.1.4.

[author=garrett, file =text_files/integration_by_parts]

Yet another example, illustrating also the idea of repeating the integration by
parts: ∫

x2 ex dx =
∫

x2 d(ex) = x2 ex −
∫

ex d(x2)

= x2 ex − 2
∫

x ex dx = x2 ex − 2x ex + 2
∫

ex dx

= x2 ex − 2x ex + 2ex + C
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Here we integrate by parts twice. After the first integration by parts, the integral
we come up with is

∫
xex dx, which we had dealt with in the first example.

Example 7.1.5.

[author=garrett, file =text_files/integration_by_parts]

Sometimes it is easier to integrate the derivative of something than to integrate
the thing: ∫

lnx dx =
∫

lnx d(x) = x lnx−
∫

x d(lnx)

= x lnx−
∫

x
1
x

dx = x lnx−
∫

1 dx = x lnx− x + C

We took u = ln x and v = x.

Example 7.1.6.

[author=garrett, file =text_files/integration_by_parts]

Again in this example it is easier to integrate the derivative than the thing itself:∫
arctanx dx =

∫
arctanx d(x) = x arctanx−

∫
x d(arctanx)

= x arctanx−
∫

x

1 + x2
dx = x arctanx− 1

2

∫
2x

1 + x2
dx

= x arctanx− 1
2

ln(1 + x2) + C

since we should recognize the
2x

1 + x2

as being the derivative (via the chain rule) of ln(1 + x2).

Rule 7.1.1.

[author=livshits, file =text_files/integration_by_parts]

Integration by Parts ∫
f ′g = fg −

∫
fg′

sometimes, by the use of Leibniz notation: df = f ′dx, this rule is written as∫
gdf = fg −

∫
fdg

Example 7.1.7.

[author=livshits, file =text_files/integration_by_parts]
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Here is a “proof” that 0 = 1 from a nice book “Mathemetical Mosaic” by Ravi
Vakil. It uses integration by parts.∫

1
x

dx =
∫

x′
1
x

dx

= x
1
x
−
∫

x

(
1
x

)′
dx

= 1−
∫

x

(
− 1

x2

)
dx

= 1 +
∫

1
x

dx.

Therefore 0 = 1. Can you find a mistake? We will learn later how to integrate
1/x, so the integral is a totally legitimate one, the catch is somewhere else.

Exercises

1.
∫

ln x dx =?

2.
∫

xex dx =?

3.
∫

(ln x)2 dx =?

4.
∫

xe2x dx =?

5.
∫

arctan 3x dx =?

6.
∫

x3 lnx dx =?

7.
∫

ln 3x dx =?

8.
∫

x lnx dx =?
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7.2 Partial Fractions

Strategy.

[author=duckworth, file =text_files/partial_fractions]

The strategy in this section can be outlined as follows. Using basic techniques, we
know how to do the following very simple rational functions:∫

1
x± a

dx = ln |x± a|,
∫

x

x2 ± a
dx =

1
2

ln |x2 ± a| (both U -subst)

and ∫
1

x2 + a2
dx =

1
a

tan−1
(x

a

)
,

∫
1

x2 − a2
dx =

1
2a

ln
∣∣∣∣x− a

x + a

∣∣∣∣
All the rest of our work is to break down more complicated problems into pieces

that are polynomials, or which use the formulas just given.

Procedure.

[author=duckworth, file =text_files/partial_fractions]

We start with
∫

top poly
bottom poly .

• If degree top poly ≥ degree bottom poly, then perform polynomial division
so that this is no longer the case.

• Factor the bottom poly, so that we have only linear and quadratic factors.
Then do partial fractions so that we have separate fractions, each of the form
∗

x±a or ∗
x2+ax+b (in each case ∗ should be something with a lower degree than

the bottom).

• Perform completing the square on any fractions with quadratic factors so we
have: ∗

x2 + ax + b
→ ∗

u2 ± c2
.

• This reduces the original integral as follows:∫
poly

bottom poly
=
∫ (

poly+
∗

x± a
+

∗
x± b

+ · · ·+ ∗
u2 ± c2

+
∗

u2 ± d2
+ . . .

)
• We should be able to finish the integral using our knowledge of how to do∫

poly,
∫ ∗

x±a ,
∫ ∗

x2±a2 (again, ∗ always represents something with lower
degree than the bottom).

Discussion.

[author=duckworth, file =text_files/partial_fractions]

Polynomial division. This works just like ordinary long division: you put one
guy on the side, the other guy under the division sign; at each step you put a
multiplier on top, multiply it by the guy on the side, subtract the result from the
stuff underneath so that you kill off the leading term.
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Example 7.2.1.

[author=duckworth, file =text_files/partial_fractions]

Find 123
9 We rewrite this as 9 123. We will put first a 1 on top because 9 goes into

12 once:

9 123 → 9
1

123
−9

3

→ 9
13

123
−9

33
−27

6

So we have a remainder of 6. We write this as

123
9

= 13 +
6
9
.

Example 7.2.2.

[author=duckworth, file =text_files/partial_fractions]

Find x4−2x2+17x+2
x2+x . We will first put a x2 on top, because multiplying this by

x2 + x on the side will allow us to kill the x4 underneath (note, we need to keep
track of the x3 column, so we write in 0x3):

x2 + x
x2

x4+0x3−2x2+17x+2
−(x4+ x3)

− x3−2x2

Next, we put −x on top because when we multiply this by x2 + x we can kill off
the −x3:

x2 + x
x2− x
x4+0x3−2x2+17x+2

−(x4+ x3)

− x3−2x2

−(x3− x2)

− x2+17x

→ x2 + x
x2− x − 1
x4+0x3 −2x2+17x+2

−(x4+ x3)

− x3 −2x2

−(x3 − x2)

− x2+17x
−(− x2− x)

18x+2

So the remainder is 18x + 2 and we write this all as

x4 − 2x2 + 17x + 2
x2 + x

= x2 − x− 1 +
18x + 2
x2 + x

.

Discussion.

[author=duckworth, file =text_files/partial_fractions]

Partial Fractions. This is a way to rewrite a single fraction with factors on the
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bottom as multiple fractions without fractions on the bottom.

Example 7.2.3.

[author=duckworth, file =text_files/partial_fractions]

Suppose we add 1
x + 3

x2+1 . The common denominator is x(x2 + 1) and we get

1
x

+
3

x2 + 1
=

x2 + 1
x(x2 + 1)

+
3x

x(x2 + 1)
=

x2 + 3x + 1
x(x2 + 1)

.

Now suppose we started with x2+3x+1
x(x2+1) and didn’t know that it was originally

written as two fractions. We could figure out those fractions as follows. Solve for
A, B and C:

x2 + 3x + 1
x(x2 + 1)

=
A

x
+

Bx + C

x2 + 1
.

Multiplying both sides by x(x2 + 1) we get:

x2 + 3x + 1 = A(x2 + 1) + (Bx + C)x
= Ax2 + A + Bx2 + Cx

= (A + B)x2 + Cx + A

Now, for these sides of the equation to be equal, we need the coefficients of x2 to
be the same on both sides, we need the coefficients of x to be the same on both
sides, and we need the constant terms on both sides to be the same. This leads to
the following equations:

x2 coeff : 1 = A + B
x coeff : 3 = C

constant : 1 = A

This gives us A = 1, B = 0 and C = 3. Thus we have found:

x2 + 3x + 1
x(x2 + 1)

=
1
x

+
3

x2 + 1
.

Of course, in this example we already knew this, but the point is we figured out
how to take the fraction on the left, and write it as the sum of fractions on the
right.

Procedure.

[author=duckworth, file =text_files/partial_fractions]

Here’s the general scheme for how to do this. You factor the bottom and look at
the factors you have:

• Distinct linear factors: each gets represented once on the right hand side:

∗
(x + a)(x + b) . . .

=
A

x + a
+

B

x + b
+ . . . . (a 6= b)

• Repeated linear factors: the ones that are repeated get represented multiple
times on the right hand side:

∗
(x + a)4(x + b) . . .

=
A

x + a
+

B

(x + a)2
+

C

(x + a)3
+

D

(x + a)4
+

E

x + b
+. . . (a 6= b)
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Hopefully the pattern is clear about what to do if you replaced (x+a)4 with
(x + a)9.

• Distinct quadratic factors: each gets represented once on the right hand side:

∗
(x2 + ax + b)(x2 + cx + d)

=
Ax + B

x2 + ax + b
+

Cx + D

x2 + cx + d
. . .

• Repeated quadratic factors: the ones that are repeated get represented mul-
tiple times on the right hand side:

∗
(x2 + ax + b)3(x2 + cx + d)

=
Ax + B

x2 + ax + b
+

Cx + B

(x2 + ax + b)2
+

Dx + E

(x2 + ax + b)3
+

Fx + G

x2 + cx + d

Hopefully the patter is clear about what to do if you replaced (x + ax + b)3

with (x + ax + b)11.

After you get the above equation set up, you multiply both sides by the de-
nominator from the left, you multiply everything out on the right, you gather the
x-terms, you gather the x2-terms, the x3-terms etc. Then you get a new system
of equations by requiring that the coefficients of x be the same on both sides, the
coefficients of x2 to be the same on both sides, etc.

Discussion.

[author=duckworth, file =text_files/partial_fractions]

Completing the square. This is designed to turn something of the form x2 +
ax + b into (x + c)2 + d. There are two ways to do this: (1) use a “recipe”, (2)
solve equations.

Example 7.2.4.

[author=duckworth, file =text_files/partial_fractions]

Complete the square for x2 + 6x + 7: Take half of the x-coefficient, square this,
add and subtract this into the formula, group the first three terms and note that
they look like (x + c)2 and simplify the last two terms into d:

x2+ 6x +7
÷2 ↓

3 ^2−−→9
→

x2+ 6x+ 9 − 9+7
÷2 ↓ ↖↗

3 ^2−−→ 9

Note that x2 + 6x + 7 = (x + 3)2, and simplify −9 + 7 to −2 to get

x2 + 6x + 7 = (x + 3)2 − 2

The other way to do this problem is to set:

x2 + 6x + 7 = (x + a)2 + b

and solve for a and b. You get x2 + 6x + 7 = x2 + 2ax + a2 + b so you see that
a = 3 (because we need 6x = 2ax) thus 7 = a2 + b implies that b = −2.
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Discussion.

[author=garrett, file =text_files/partial_fractions]

Now we return to a more special but still important technique of doing indefinite
integrals. This depends on a good trick from algebra to transform complicated
rational functions into simpler ones. Rather than try to formally describe the
general fact, we’ll do the two simplest families of examples.

Example 7.2.5.

[author=garrett, file =text_files/partial_fractions]

Consider the integral ∫
1

x(x− 1)
dx

As it stands, we do not recognize this as the derivative of anything. However, we
have

1
x− 1

− 1
x

=
x− (x− 1)
x(x− 1)

=
1

x(x− 1)

Therefore, ∫
1

x(x− 1)
dx =

∫
1

x− 1
− 1

x
dx = ln(x− 1)− lnx + C

That is, by separating the fraction 1/x(x− 1) into the ‘partial’ fractions 1/x and
1/(x − 1) we were able to do the integrals immediately by using the logarithm.
How to see such identities?

Rule 7.2.1.

[author=garrett, file =text_files/partial_fractions]

Well, let’s look at a situation

cx + d(x− a)(x− b) =
A

x− a
+

B

x− b

where a, b are given numbers (not equal) and we are to find A,B which make this
true. If we can find the A,B then we can integrate (cx + d)/(x− a)(x− b) simply
by using logarithms:∫

cx + d

(x− a)(x− b)
dx =

∫
A

x− a
+

B

x− b
dx = A ln(x− a) + B ln(x− b) + C

To find the A,B, multiply through by (x− a)(x− b) to get

cx + d = A(x− b) + B(x− a)

When x = a the x− a factor is 0, so this equation becomes

c · a + d = A(a− b)

Likewise, when x = b the x− b factor is 0, so we also have

c · b + d = B(b− a)

That is,

A =
c · a + d

a− b
B =

c · b + d

b− a
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So, yes, we can find the constants to break the fraction (cx + d)/(x − a)(x − b)
down into simpler ‘partial’ fractions.

Further, if the numerator is of bigger degree than 1, then before executing the
previous algebra trick we must firstdivide the numerator by the denominator to get
a remainder of smaller degree.

Example 7.2.6.

[author=garrett, file =text_files/partial_fractions]

A simple example is
x3 + 4x2 − x + 1

x(x− 1)
=?

We must recall how to divide polynomials by polynomials and get a remainder of
lower degree than the divisor. Here we would divide the x3 + 4x2 − x + 1 by
x(x− 1) = x2 − x to get a remainder of degree less than 2 (the degree of x2 − x).
We would obtain

x3 + 4x2 − x + 1
x(x− 1)

= x + 5 +
4x + 1

x(x− 1)

since the quotient is x + 5 and the remainder is 4x + 1. Thus, in this situation∫
x3 + 4x2 − x + 1

x(x− 1)
dx =

∫
x + 5 +

4x + 1
x(x− 1)

dx

Now we are ready to continue with the first algebra trick.

In this case, the first trick is applied to

4x + 1
x(x− 1)

We want constants A,B so that

4x + 1
x(x− 1)

=
A

x
+

B

x− 1

As above, multiply through by x(x− 1) to get

4x + 1 = A(x− 1) + Bx

and plug in the two values 0, 1 to get

4 · 0 + 1 = −A 4 · 1 + 1 = B

That is, A = −1 and B = 5.

Putting this together, we have

x3 + 4x2 − x + 1
x(x− 1)

= x + 5 +
−1
x

+
5

x− 1

Thus, ∫
x3 + 4x2 − x + 1

x(x− 1)
dx =

∫
x + 5 +

−1
x

+
5

x− 1
dx

=
x2

2
+ 5x− lnx + 5 ln(x− 1) + C
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Rule 7.2.2.

[author=garrett, file =text_files/partial_fractions]

In a slightly different direction: we can do any integral of the form∫
ax + b

1 + x2
dx

because we know two different sorts of integrals with that same denominator:∫
1

1 + x2
dx = arctan x + C

∫
2x

1 + x2
dx = ln(1 + x2) + C

where in the second one we use a substitution. Thus, we have to break the given
integral into two parts to do it:∫

ax + b

1 + x2
dx =

a

2

∫
2x

1 + x2
dx + b

∫
1

1 + x2
dx

=
a

2
ln(1 + x2) + b arctanx + C

Example 7.2.7.

[author=garrett, file =text_files/partial_fractions]

And, as in the first example, if we are given a numerator of degree 2 or larger,
then we divide first, to get a remainder of lower degree. For example, in the case
of ∫

x4 + 2x3 + x2 + 3x + 1
1 + x2

dx

we divide the numerator by the denominator, to allow us to write

x4 + 2x3 + x2 + 3x + 1
1 + x2

= x2 + 2x +
x + 1
1 + x2

since the quotient is x2 + 2x and the remainder is x + 1. Then∫
x4 + 2x3 + x2 + 3x + 1

1 + x2
dx =

∫
x2 + 2x +

x + 1
1 + x2

=
x3

3
+ x2 +

1
2

ln(1 + x2) + arctanx + C

These two examples are just the simplest, but illustrate the idea of using algebra
to simplify rational functions.

Example 7.2.8.

[author=wikibooks, file =text_files/partial_fractions]

First, an example. 1
x3+x2+x+1 = 1

x−
x

1+x2 so

∫
dx

x3+x2+x+1 =
∫

dx
x −

∫
xdx
1+x2

= lnx− 1
2 ln(1 + x2)

= ln x√
1+x2

Rewriting the integrand as a sum of simpler fractions has allowed us to reduce
the initial, more complex, integral to a sum of simpler integrals.
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Rule 7.2.3.

[author=wikibooks, file =text_files/partial_fractions]

More generally, if we have a Q(x) which is the product of p factors of the form
(x− ai)ni and q factors of the form

(
(x− bi)2 − ci

)ni then we can write any P/Q
as a sum of simpler terms, each with a power of only one factor in the denominator:

P (x)
Q(x) = d1,1

x−a1
+ · · · + dp,n1

(x−ap)np + · · ·
+ f1,1+g1,1x

(x−b1)2−c1
+ · · · + fq,nq +gq,nq x

((x−bq)2−cq)nq

then solve for the new constants. If we were using complex numbers none of the
factors of Q would be quadratic.

Example 7.2.9.

[author=wikibooks, file =text_files/partial_fractions]

We will consider a few more examples, to see how the procedure goes. Consider

1/P (x) = 1 + x2 and Q(x) = (x + 3)(x + 5)(x + 7).

We first write 1+x2

(x+3)(x+5)(x+7) = a
x+3 + b

x+5 + c
x+7 Multiply both sides by the

denominator 1 + x2 = a(x + 5)(x + 7) + b(x + 3)(x + 7) + c) + c(x + 3)(x + 7)
Substitute in three values of x to get three equations for the unknown constants,
x = −3 1 + 32 = 2 · 4a
x = −5 1 + 52 = −2 · 2b
x = −7 1 + 72 = (−4) · (−2)c

so a=5/4, b=-13/2, c=25/2, and 1+x2

(x+3)(x+5)(x+7) =

5
4x+12−

13
2x+10 + 25

2x+14 We can now integrate the left hand side.
∫

1+x2 dx
(x+3)(x+5)(x+7) =

ln (x+3)
5
4 (x+7)

25
2

(x+5)
13
2

Example 7.2.10.

[author=wikibooks, file =text_files/partial_fractions]

2/P (x) = 1, Q(x) = (x+1)(x+2)2 We first write 1
(x+1)(x+2)2 = a

x+1 + b
x+2 + c

(x+2)2

Multiply both sides by the denominator 1 = a(x + 2)2 + b(x + 1)(x + 2) + c(x + 1)
Substitute in three values of x to get three equations for the unknown constants,

x = 0 1 = 22a + 2b + c
x = −1 1 = a
x = −2 1 = −c

so a=1, b=-1, c=-1, and 1
(x+1)(x+2)2 = 1

x+1 −
1

x+2 −

1
(x+2)2 We can now integrate the left hand side.

∫
dx

(x+1)(x+2)2 = ln x+1
x+2 + 1

x+2

Exercises

1.
∫

1
x(x−1) dx =?

2.
∫

1+x
1+x2 dx =?
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3.
∫

2x3+4
x(x+1) dx =?

4.
∫

2+2x+x2

1+x2 dx =?

5.
∫

2x3+4
x2−1 dx =?

6.
∫

2+3x
1+x2 dx =?

7.
∫

x3+1
(x−1)(x−2) dx =?

8.
∫

x3+1
x2+1 dx =?
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7.3 Trigonometric Integrals

Discussion.

[author=duckworth, file =text_files/trigonometric_integrals]

This section gives tricks for solving integrals of the form
∫

sinn cosm and
∫

tann secm.

Procedure.

[author=duckworth, file =text_files/trigonometric_integrals]

For
∫

sinn(x) cosm(x) dx use:

• if n is odd get rid of all but 1 power of sin using sin2 = 1 − cos2, then use
u = cos and du = − sin dx.

• if m is odd get rid of all but 1 power of cos using cos2 = 1 − sin2, then use
u = sin and du = cos dx.

• if n and m are even, use sin2(x) = 1
2 (1−cos(2x)) and cos2(x) = 1

2 (1+cos(2x))
(may have to repeat this step) to get everything in terms of cos(2x), cos(4x)
etc.

Procedure.

[author=duckworth, file =text_files/trigonometric_integrals]

For
∫

tann(x) secm(x) dx use:

• if n is odd get rid of all but 1 power of tan using tan2 = sec2−1, force one
power of sec out next to tan, and use u = sec, du = sec tan.

• if m is even get rid of all but 2 powers of sec using sec2 = tan2 +1, use
u = tan and du = sec2.

• if n is even and m is odd get rid of all powers of tan using tan2 = sec2−1.
Now we have only powers of sec, use integration by parts and

∫
sec(x) dx =

ln | sec(x) + tan(x)|.

Example 7.3.1.

[author=duckworth, file =text_files/trigonometric_integrals]∫
sin7(x) cos2(x) dx. We get rid of sin6(x) by rewriting it as (1− cos2(x))3. Then

we have:∫
sin7(x) cos2(x) dx =

∫
sin(x)(1− cos2(x))3 cos2(x) dx = −

∫
(1− u2)3u2 du

which you can solve by multiplying out.
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Example 7.3.2.

[author=duckworth, file =text_files/trigonometric_integrals]∫
tan2(x) sec(x) dx. We get rid of tan2(x) by rewriting it as sec2(x)− 1. Then we

have:∫
tan2(x) sec(x) dx =

∫
(sec2(x)− 1) sec(x) dx =

∫
sec3(x)− sec(x) dx

The book does
∫

sec3(x) dx (the trick for this is integration by parts once, tan2 =
sec2−1, and solving an equation for

∫
sec3(x) dx) and we stated

∫
sec(x) dx above.

Discussion.

[author=garrett, file =text_files/trigonometric_integrals]

Here we’ll just have a sample of how to use trig identities to do some more com-
plicated integrals involving trigonometric functions. This is ‘just the tip of the
iceberg’. We don’t do more for at least two reasons: first, hardly anyone remem-
bers all these tricks anyway, and, second, in real life you can look these things up
in tables of integrals. Perhaps even more important, in ‘real life’ there are more
sophisticated viewpoints which even make the whole issue a little silly, somewhat
like evaluating

√
26 ‘by differentials’ without your calculator seems silly.

The only identities we’ll need in our examples are

cos2(x) + sin2(x) = 1 Pythagorean identity

sin(x) =
√

1−cos(2x)
2 half-angle formula

cos(x) =
√

1+cos(2x)
2 half-angle formula

Example 7.3.3.

[author=garrett, file =text_files/trigonometric_integrals]

The first example is ∫
sin3 x dx

If we ignore all trig identities, there is no easy way to do this integral. But if we
use the Pythagorean identity to rewrite it, then things improve:∫

sin3 x dx =
∫

(1− cos2 x) sinx dx = −
∫

(1− cos2 x)(− sinx) dx

In the latter expression, we can view the − sinx as the derivative of cos x, so with
the substitution u = cos x this integral is

−
∫

(1− u2) du = −u +
u3

3
+ C = − cos x +

cos3 x

3
+ C

Example 7.3.4.
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[author=garrett, file =text_files/trigonometric_integrals]

This idea can be applied, more generally, to integrals∫
sinm x cosn x dx

where at least one of m,n is odd. For example, if n is odd, then use

cosn x = cosn−1 x cos x = (1− sin2 x)
n−1

2 cos x

to write the whole thing as∫
sinm x cosn x dx =

∫
sinm x (1− sin2 x)

n−1
2 cos x dx

The point is that we have obtained something of the form∫
(polynomial in sinx) cos x dx

Letting u = sinx, we have cos x dx = du, and the integral becomes

(polynomial in u) du

which we can do.

Example 7.3.5.

[author=garrett, file =text_files/trigonometric_integrals]

But this Pythagorean identity trick does not help us on the relatively simple-
looking integral ∫

sin2(x) dx

since there is no odd exponent anywhere. In effect, we ‘divide the exponent by
two’, thereby getting an odd exponent, by using the half-angle formula:∫

sin2 x dx =
∫

1− cos 2x

2
dx =

x

2
− sin 2x

2 · 2
+ C

Example 7.3.6.

[author=garrett, file =text_files/trigonometric_integrals]

A bigger version of this application of the half-angle formula is∫
sin6 x dx =

∫
(
1− cos 2x

2
)3 dx =

∫
1
8
− 38 cos 2x +

3
8

cos2 2x− 1
8

cos3 2x dx

Of the four terms in the integrand in the last expression, we can do the first two
directly: ∫

1
8

dx =
x

8
+ C

∫
−38 cos 2x dx =

−3
16

sin 2x + C

But the last two terms require further work: using a half-angle formula again, we
have ∫

3
8

cos2 2x dx =
∫

3
16

(1 + cos 4x) dx =
3x

16
+

3
64

sin 4x + C
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And the cos3 2x needs the Pythagorean identity trick:∫
1
8

cos3 2x dx =
1
8

∫
(1− sin2 2x) cos 2x dx =

1
8
[sin 2x− sin3 2x

3
] + C

Putting it all together, we have∫
sin6 x dx =

x

8
+
−3
16

sin 2x +
3x

16
+

3
64

sin 4x +
1
8
[sin 2x− sin3 2x

3
] + C

This last example is typical of the kind of repeated application of all the tricks
necessary in order to treat all the possibilities.

Example 7.3.7.

[author=garrett, file =text_files/trigonometric_integrals]

In a slightly different vein, there is the horrible∫
sec x dx

There is no decent way to do this at all from a first-year calculus viewpoint. A
sort of rationalized-in-hindsight way of explaining the answer is:∫

sec x dx =
∫

sec x(sec x + tanx)
sec x + tanx

dx

All we did was multiply and divide by sec x + tanx. Of course, we don’t pre-
tend to answer the question of how a person would get the idea to do this. But
then (another miracle?) we ‘notice’ that the numerator is the derivative of the
denominator, so ∫

sec x dx = ln(sec x + tanx) + C

There is something distasteful about this rationalization, but at this level of tech-
nique we’re stuck with it.

Comment.

[author=garrett, file =text_files/trigonometric_integrals]

Maybe this is enough of a sample. There are several other tricks that one would
have to know in order to claim to be an ‘expert’ at this, but it’s not really sensible
to want to be ‘expert’ at these games, because there are smarter alternatives.

Discussion.

[author=wikibooks, file =text_files/trigonometric_integrals]

We’re going to find formulas for integrals of the form
∫

cosm sinn, but we start
with an example.

Example 7.3.8.

[author=wikibooks, file =text_files/trigonometric_integrals]
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Let I =
∫

(cos(x))3(sin(x))2 dx. Making the substitution u = sin(x), du =
cos(x)dx and using the fact cos(x)2 = 1 − sin(x)2 we obtain I =

∫
(1 − u2)u2 du

which we can solve easily to obtain I =
∫

u2 du −
∫

u4 du = 1/3u3 + 1/5u5 + C
= 1/3(sin(x))3 − 1/5(sin(x))5 + C

Rule 7.3.1.

[author=wikibooks, file =text_files/trigonometric_integrals]

In general we have, for
∫

(cos(x))m(sin(x))n dx

• for m odd substitute u = sinx and use the fact that (cos x)2 = 1− (sinx)2

• for m even substitute u = cos x and use the fact that (sinx)2 = 1− (cos x)2

• for m and n both even, use the fact that (sinx)2 = 1/2(1 − cos 2x) and
(cos x)2 = 1/2(1 + cos 2x)

Example 7.3.9.

[author=wikibooks, file =text_files/trigonometric_integrals]

For example, for m and n even, say I =
∫

(sinx)2(cos x)4 dx making the substitu-
tions gives I =

∫ (
1
2 (1− cos 2x)

) (
1
2 (1 + cos 2x)

)2
dx

Expanding this out I = 1
8

(∫
1− cos2 2x + cos 2x− cos3 2x dx

)
Using the multiple angle identities

I = 1
8

(∫
1 dx−

∫
cos2 2x dx +

∫
cos 2x dx−

∫
cos3 2x dx

)
= 1

8

(
x− 1

2

∫
(1 + cos 4x) dx + 1

2 sin 2x−
∫

cos2 2x cos 2x dx
)

= 1
16

(
x + sin 2x +

∫
cos 4x dx− 2

∫
(1− sin2 2x) cos 2x dx

)
then we obtain on evaluating

I =
x

16
− sin 4x

64
+

sin3 2x

48
+ C.

Discussion.

[author=wikibooks, file =text_files/trigonometric_integrals]

Another useful change of variables is t = tan(x/2). With this transformation,
using the double-angle trig identities, sinx = 2t

1+t2 , cos x = 1−t2

1+t2 , tanx = 2t
1−t2

and dx = 2dt
1+t2 . This transforms a trigonometric integral into a algebraic integral,

which may be easier to integrate.

Example 7.3.10.

[author=wikibooks, file =text_files/trigonometric_integrals]
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For example, if the integrand is 1/(1 + sinx) then∫ π/2

0
dx

1+sin x =
∫ 1

0
2dt

(1+t)2

=
[
− 2

1+t

]1
0

= 1

This method can be used to further simplify trigonometric integrals produced
by the changes of variables described earlier.

Example 7.3.11.

[author=wikibooks, file =text_files/trigonometric_integrals]

For example, if we are considering the integral

I =
∫ 1

−1

√
1− x2

1 + x2
dx

we can first use the substition x = sin θ , which gives

I =
∫ π/2

−π/2

cos2 θ

1 + sin2 θ
dθ

then use the tan-half-angle substition to obtain

I =
∫ 1

−1

(1− t2)2

1 + 6t2 + t4
2dt

1 + t2
.

In effect, we’ve removed the square root from the original integrand. We could
do this with a single change of variables, but doing it in two steps gives us the
opportunity of doing the trigonometric integral another way.

Having done this, we can split the new integrand into partial fractions, and
integrate.

I =
∫ 1

−1
2−
√

2
t2+3−

√
8
dt +

∫ 1

−1
2+
√

2
t2+3+

√
8
dt−

∫ 1

−1
2

1+t2 dt

= 4−
√

8√
3−
√

8
tan−1(

√
3 +

√
8) + 4+

√
8√

3+
√

8
tan−1(

√
3−

√
8)− π

This result can be further simplified by use of the identities

3±
√

8 =
(√

2± 1
)2

tan
(√

2± 1
)

=
(

1
4
± 1

8

)
π

ultimately leading to
I = (

√
2− 1)π

In principle, this approach will work with any integrand which is the square root
of a quadratic multiplied by the ratio of two polynomials. However, it should not
be applied automatically.

Example 7.3.12.

[author=wikibooks, file =text_files/trigonometric_integrals]

E.g, in this last example, once we deduced

I =
∫ π/2

−π/2

cos2 θ

1 + sin2 θ
dθ
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we could have used the double angle formulae, since this contains only even powers
of cos and sin. Doing that gives

I =
∫ π/2

−π/2

1 + cos 2θ

3− cos 2θ
dθ =

1
2

∫ π

−π

1 + cos φ

3− cos φ
dφ

Using tan-half-angle on this new, simpler, integrand gives

I =
∫∞
−∞

1
1+2t2

dt
1+t2

=
∫∞
−∞

2dt
1+2t2 −

∫∞
−∞

dt
1+t2

This can be integrated on sight to give

I =
4√
2

π

2
− 2

π

2
= (
√

2− 1)π

This is the same result as before, but obtained with less algebra, which shows why
it is best to look for the most straightforward methods at every stage.

Rule 7.3.2.

[author=wikibooks, file =text_files/trigonometric_integrals]

For the integrals
∫

sinnx cos mxdx,
∫

sinnx sinmxdx,
∫

cos nx cos mxdx use the
following identities 2 sin a cos b = (sin (a + b)+sin (a− b)), 2 sin a sin b = (cos (a− b)−
cos (a + b)), 2 cos a cos b = (cos (a− b) + cos (a + b))

Example 7.3.13.

[author=wikibooks, file =text_files/trigonometric_integrals]

Find the integral
∫

sin 3x cos 5x dx.

We use the fact that sin(a) cos(b) = 1
2 (sin(a+b)+sin(a−b)), so sin 3x cos 5x =

a 1
2 (sin(7x) + sin(−2x)) = frac12(sin(7x) − sin(2x))/2, where we have used the

fact that sin(x) is an odd function. And now we can integrate∫
sin(3x) cos(5x) dx = 1

2

∫
sin(7x)− sin(2x)dx

= 1
2 (− 1

7 cos(7x) + 1
2 cos(2x))

Example 7.3.14.

[author=wikibooks, file =text_files/trigonometric_integrals]

Find the integral
∫

sin(x) sin(2x) dx.

Use sinx sin 2x = 1
2 (cos(−x)− cos(3x)) = 1

2 (cos x−cos 3x). Then
∫

sin(x) sin 2x dx = 1
2

∫
(cos(x)− cos 3x) dx

= 1
2 (sin(x)− 1

3 sin 3x)

Rule 7.3.3.

[author=wikibooks, file =text_files/trigonometric_integrals]

A reduction formula is one that enables us to solve an integral problem by reducing
it to a problem of solving an easier integral problem, and then reducing that to
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the problem of solving an easier problem, and so on.

Example 7.3.15.

[author=wikibooks, file =text_files/trigonometric_integrals]

For example, if we let In =
∫

xnex dx Integration by parts allows us to simplify
this to In = xnex − n

∫
xn−1ex dx = In = xnex − nIn−1 which is our desired

reduction formula. Note that we stop at I0 = ex.

Similarly, if we let

In =
∫ α

0
secn θ dθ

then integration by parts lets us simplify this to

In = secn−2 α tanα− (n− 2)
∫ α

0
secn−2 θ tan2 θ dθ

Using the trigonometric identity, tan2 = sec2 − 1, we can now write

In = secn−2 α tanα +(n− 2)
(∫ α

0
secn−2 θ dθ −

∫ α

0
secn θ dθ

)
= secn−2 α tanα +(n− 2) (In−2 − In)

Rearranging, we get

In = 1
n−1 secn−2 α tanα + n−2

n−1In−2

Note that we stop at n=1 or 2 if n is odd or even respectively.

As in these two examples, integrating by parts when the integrand contains a
power often results in a reduction formula.

Exercises

1.
∫

cos2 x dx =?

2.
∫

cos x sin2 x dx =?

3.
∫

cos3 x dx =?

4.
∫

sin2 5x dx =?

5.
∫

sec(3x + 7) dx

6.
∫

sin2 (2x + 1) dx =?

7.
∫

sin3 (1− x) dx =?
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7.4 Trigonometric Substitutions

Discussion.

[author=duckworth, file =text_files/trigonometric_subst]

The basic idea here is that we reverse the usual role of u-substitution. Usually,
we set u equal to some function of x because this “covers up” some complicated
function. But here, we’re going to set x equal to a more complicated function (of
θ) because of the special properties of trig functions.

Procedure.

[author=duckworth, file =text_files/trigonometric_subst]

If the integral involves use
√

a2 − x2 x = a sin(θ)√
a2 + x2 x = a tan(θ)√
x2 − a2 x = a sec(θ)

Example 7.4.1.

[author=duckworth, file =text_files/trigonometric_subst]

(a) Find the area under a circle with radius 1, from x = 0 to x = 1/2. This
is
∫ 1/2

0

√
1− x2 dx. The hard part is coming up with the definite integral.

Let x = sin(θ), then dx = cos(θ) dθ. Note that
√

1− x2 =
√

1− sin2(θ) =
cos(θ). We also translate the endpoints of the integral. When x = 0 we have
sin(θ) = 0 so θ = 0. When x = 1/2 we have sin(θ) = 1/2 so θ = π/6. So we
have ∫ 1/2

0

√
1− x2 dx =

∫ π/6

0

cos(θ) · cos(θ) dθ =
∫ π/6

0

cos2(θ) dθ.

We look up this integral from section 7.1 or 7.2 as 1
2θ + 1

2 sin(θ) cos(θ) so the
final answer is found by plugging in θ = π/6 and θ = 0.

(b) Find the indefinite integral in part (a) (i.e. the anti-derivative
∫ √

1− x2 dx).
Well, we know this is 1

2θ+ 1
2 sin(θ) cos(θ), so we just need to translate from θ

back to x. By the definition of our substitution we have x = sin(θ). To find
cos(θ) in terms of x you can draw a right triangle, label an angle as θ, the
opposite side as x, the hypotenuse as 1 (this is because sin(θ) = x) and solve
for the missing side. You should find that cos(θ) =

√
1− x2 (by the way, it

always works out this way; the missing side is the √ that you started with
in the integral). Finally, θ = sin−1(x) (because sin(θ) = x). Thus,∫ √

1− x2 dx =
1
2
θ +

1
2

sin(θ) cos(θ) =
1
2

sin−1(x) +
1
2
x
√

1− x2.

(If you want, you can get the same answer as in (a) by plugging in x = 1/2
and x = 0 to evaluate this definite integral, i.e. to find the area under the
curve.)
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Discussion.

[author=garrett, file =text_files/trigonometric_subst]

This section continues development of relatively special tricks to do special kinds
of integrals. Even though the application of such things is limited, it’s nice to be
aware of the possibilities, at least a little bit.

The key idea here is to use trig functions to be able to ‘take the square root’
in certain integrals. There are just three prototypes for the kind of thing we can
deal with: √

1− x2,
√

1 + x2,
√

x2 − 1

Examples will illustrate the point.

In rough terms, the idea is that in an integral where the ‘worst’ part is
√

1− x2,
replacing x by sinu (and, correspondingly, dx by cos u du), we will be able to take
the square root, and then obtain an integral in the variable u which is one of the
trigonometric integrals which in principle we now know how to do. The point is
that then √

1− x2 =
√

1− sin2 x =
√

cos2 x = cos x

We have ‘taken the square root’.

Example 7.4.2.

[author=garrett, file =text_files/trigonometric_subst]

For example, in ∫ √
1− x2 dx

we replace x by sinu and dx by cos u du to obtain∫ √
1− x2 dx =

∫ √
1− sin2 u cos u du =

∫ √
cos2 u cos u du =

=
∫

cos u cos u du =
∫

cos2 u du

Now we have an integral we know how to integrate: using the half-angle formula,
this is ∫

cos2 u du =
∫

1 + cos 2u

2
du =

u

2
+

sin 2u

4
+ C

And there still remains the issue of substituting back to obtain an expression in
terms of x rather than u. Since x = sinu, it’s just the definition of inverse function
that

u = arcsinx

To express sin 2u in terms of x is more aggravating. We use another half-angle
formula

sin 2u = 2 sin u cos u

Then
1
4

sin 2u =
1
4
· 2 sinu cos u =

1
4
x ·
√

1− x2

where ‘of course’ we used the Pythagorean identity to give us

cos u =
√

1− sin2 u =
√

1− x2
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Whew.

Rule 7.4.1.

[author=garrett, file =text_files/trigonometric_subst]

The next type of integral we can ‘improve’ is one containing an expression√
1 + x2

In this case, we use another Pythagorean identity

1 + tan2 u = sec2 u

(which we can get from the usual one cos2 u + sin2 u = 1 by dividing by cos2 u).
So we’d let

x = tan u dx = sec2 u du

(mustn’t forget the dx and du business!).

Example 7.4.3.

[author=garrett, file =text_files/trigonometric_subst]

For example, in ∫ √
1 + x2

x
dx

we use
x = tan u dx = sec2 u du

and turn the integral into∫ √
1 + x2

x
dx =

∫ √
1 + tan2 u

tanu
sec2 u du =

=
∫ √

sec2 u

tanu
sec2 u du =

∫
sec u

tanu
sec2 u du =

∫
1

sinu cos2 u
du

by rewriting everything in terms of cos u and sinu.

Rule 7.4.2.

[author=garrett, file =text_files/trigonometric_subst]

For integrals containing
√

x2 − 1, use x = sec u in order to invoke the Pythagorean
identity

sec2 u− 1 = tan2 u

so as to be able to ‘take the square root’. Let’s not execute any examples of this,
since nothing new really happens.

Discussion.

[author=garrett, file =text_files/trigonometric_subst]

Let’s examine some purely algebraic variants of these trigonometric substitutions,
where we can get some mileage out of completing the square.



7.4. TRIGONOMETRIC SUBSTITUTIONS 239

Example 7.4.4.

[author=garrett, file =text_files/trigonometric_subst]

For example, consider ∫ √
−2x− x2 dx

The quadratic polynomial inside the square-root is not one of the three simple
types we’ve looked at. But, by completing the square, we’ll be able to rewrite it
in essentially such forms:

−2x− x2 = −(2x + x2) = −(−1 + 1 + 2x + x2) = −(−1 + (1 + x)2) = 1− (1 + x)2

Note that always when completing the square we ‘take out’ the coefficient in front
of x2 in order to see what’s going on, and then put it back at the end.

So, in this case, we’d let

sinu = 1 + x, cos u du = dx

Example 7.4.5.

[author=garrett, file =text_files/trigonometric_subst]

In another example, we might have∫ √
8x− 4x2 dx

Completing the square again, we have

8x− 4x2 = −4(−2 + x2) = −4(−1 + 1− 2x + x2) = −4(−1 + (x− 1)2)

Rather than put the whole ‘−4’ back, we only keep track of the ±, and take a ‘+4’
outside the square root entirely:∫ √

8x− 4x2 dx =
∫ √

−4(−1 + (x− 1)2) dx

= 2
∫ √

−(−1 + (x− 1)2) dx = 2
∫ √

1− (x− 1)2) dx

Then we’re back to a familiar situation.

Rule 7.4.3.

[author=wikibooks, file =text_files/trigonometric_subst]

If the integrand contains a factor of this form we can use the substitution

x = a sin(θ) dx = a cos(θ) dθ

This will transform the integrand to a trigonometic function. If the new inte-
grand can’t be integrated on sight then the tan-half-angle substitution described
below will generally transform it into a more tractable algebraic integrand.
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Example 7.4.6.

[author=wikibooks, file =text_files/trigonometric_subst]

Find the integral of
√

(1− x2),

∫ 1

0

√
1− x2dx =

∫ π/2

0

√
1− sin2 θ cos θ dθ

=
∫ π/2

0
cos2 θ dθ

= 1
2

∫ π/2

0
1 + cos 2θ dθ

= π
4

Example 7.4.7.

[author=wikibooks, file =text_files/trigonometric_subst]

Find the integral of
√

(1 + x)/
√

(1− x). We first rewrite this as√
1 + x

1− x
=

√
1 + x

1 + x

1 + x

1− x
=

1 + x√
1− x2

Then we can make the substitution∫ a

0
1+x√
1−x2 dx =

∫ α

0
1+sin θ
cos θ cos θ dθ 0 < a < 1

=
∫ α

0
1 + sin θ, dθ α = sin−1 a

= α + [− cos θ]α0
= α + 1− cos α

= 1 + sin−1 a−
√

1− a2

Rule 7.4.4.

[author=wikibooks, file =text_files/trigonometric_subst]

If the integrand contains a factor of the form
√

x2 − a2 we use the substitution

x = a sec θ dx = a sec θ tan θdθ
√

x2 − a2 = tan θ

This will transform the integrand to a trigonometic function. If the new inte-
grand can’t be integrated on sight then another substitution may transform it to
a more tractable algebraic integrand.

Example 7.4.8.

[author=wikibooks, file =text_files/trigonometric_subst]

Find the integral of
√

(x2 − 1)/x.

We use substitution:∫ z

1

√
x2−1
x dx =

∫ α

1
tan θ
sec θ sec θ tan θ dθ z > 1

=
∫ α

0
tan2 θ dθ α = sec−1 z

= [tan θ − θ]α0 tanα =
√

sec2 α− 1
= tanα− α tanα =

√
z2 − 1

=
√

z2 − 1− sec−1 z
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Since the integrand is approximately 1 for large x we should expect the integral
at large z to be z plus a constant. It is actually z − π/2, as we expected. We can
use this line of reasoning to check our calculations.

Example 7.4.9.

[author=wikibooks, file =text_files/trigonometric_subst]

Find the integral of
√

(x2 − 1)/x2.

Note that the integrand is approximately 1/x for large x, so the antiderivative
should be approximately lnx. Using the substitution we find∫ z

1

√
x2−1
x2 dx =

∫ α

1
tan θ
sec2 θ sec θ tan θ dθ z > 1

=
∫ α

0
sin2 θ
cos θ dθ α = sec−1 z

We can now integrate by parts∫ z

1

√
x2−1
x2 dx = − [tan θ cos θ]α0 +

∫ α

0
sec θ dθ

= − sinα + [ln(sec θ + tan θ)]α0
= ln(sec α + tanα)− sinα

= ln(z +
√

z2 − 1)−
√

z2−1
z

which for large z behaves like ln z + ln 2− 1, just as expected.

Rule 7.4.5.

[author=wikibooks, file =text_files/trigonometric_subst]

When the integrand contains a factor of this form
√

a2 + x2 we can use the sub-
stitution

x = a tan θ
√

x2 + a2 = a sec θ dx = a sec2 θdθ

Example 7.4.10.

[author=wikibooks, file =text_files/trigonometric_subst]

Find the integral of (x2 + a2)−3/2.

We make the substitution:∫ z

0

(
x2 + a2

)− 3
2 dx = a−2

∫ α

0
cos θ dθ z > 0

= a−2 [sin θ]α0 α = tan−1(z/a)
= a−2 sinα

= a−2 z/a√
1+z2/a2

= 1
a2

z√
a2+z2

If the integral is

I =
∫ z

0

√
x2 + a2 z > 0

then on making this substitution we find

I = a2
∫ α

0
sec3 θ dθ α = tan−1(z/a)

= a2
∫ α

0
sec θ d tan θ

= a2[sec θ tan θ]α0 − a2
∫ α

0
sec θ tan2 θ dθ

= a2 sec α tanα − a2
∫ α

0
sec3 θ dθ +a2

∫ α

0
sec θ dθ

= a2 sec α tanα − I +a2
∫ α

0
sec θ dθ
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After integrating by parts, and using trigonometric identities, we’ve ended up
with an expression involving the original integral. In cases like this we must now
rearrange the equation so that the original integral is on one side only

I = 1
2a2 sec α tanα + 1

2a2
∫ α

0
sec θ dθ

= 1
2a2 sec α tanα + 1

2a2 [ln (sec θ + tan θ)]α0
= 1

2a2 sec α tanα + 1
2a2 ln (sec α + tanα)

= 1
2a2

(√
1 + z2

a2

)
z
a + 1

2a2 ln
(√

1 + z2

a2 + z
a

)
= 1

2z
√

z2 + a2 + 1
2a2 ln

(
z
a +

√
1 + z2

a2

)
As we would expect from the integrand, this is approximately z2/2 for large z.

Example 7.4.11.

[author=wikibooks, file =text_files/trigonometric_subst]

Consider the problem ∫
1

x2 + a2
dx

with the substitution x = a tan(θ) , we have dx = asec2θdθ , so that∫
1

x2 + a2
dx =

arctan(x/a)
a

Exercises

1. Tell what trig substitution to use for
∫

x8
√

x2 − 1 dx

2. Tell what trig substitution to use for
∫ √

25 + 16x2 dx

3. Tell what trig substitution to use for
∫ √

1− x2 dx

4. Tell what trig substitution to use for
∫ √

9 + 4x2 dx

5. Tell what trig substitution to use for
∫

x9
√

x2 + 1 dx

6. Tell what trig substitution to use for
∫

x8
√

x2 − 1 dx
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7.5 Overview of Integration

Strategy.

[author=duckworth, file =text_files/integration_strategy]

This is just an outline of the techniques we have developed, and what order to try
them in:

• Familiarize yourself with a list of basic anti-derivatives, like the one in given
in class or elsewhere in these notes. This does mean memorizing part of
the list. The part of the list that you don’t memorize you should at least
recognize.

• Simplify the integral.

• Try u-substitution.

• Classify the integral according to type:

– Trigonometric functions.

– Rational functions.

– Integration by parts.

– Radicals (
√
±x2 ± a2 is in 7.3, and n

√
ax + b often reduces to a rational

function and 7.4 via u = n
√

ax + b).

7.6 Improper Integrals

Rule 7.6.1.

[author=duckworth, file =text_files/improper_integrals]

The word “improper” here just means that
∫ b

a
f(x) dx has one (or more) of the

following: a = ∞, b = −∞, f(x) has a vertical asymptote (VA) in the interval
[a, b] (i.e. we have y-values approaching ±∞). To handle any of these you use
limits.

•
∫ b

−∞ f(x), dx = lima→−∞
∫ b

a
f(x) dx. If we can find F (x) then this equals

lima→−∞ F (x)
∣∣∣b
a
.

•
∫∞

a
f(x), dx = limb→∞

∫ b

a
f(x) dx. If we can find F (x) then this equals

limb→∞ F (x)
∣∣∣b
a
.

•
∫∞
−∞ =

∫ 0

−∞+
∫∞
0

where both of the integrals on the right hand side have
to exist.

• If x = c is a VA then
∫ c

a
f(x) dx = limt→c

∫ t

a
f(x) dx. If we can find F (x)

this equals limt→c F (x)
∣∣∣t
a
.
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• If x = c is a VA then
∫ b

c
f(x) dx = limt→c

∫ b

t
f(x) dx. If we can find F (x)

then this equals limt→c F (x)
∣∣∣b
t
.

• If x = c is a VA and c is in (a, b) then
∫ b

a
=
∫ c

a
+
∫ b

c
and both of these

integrals have to exist.



Chapter 8

Taylor polynomials and
series

8.1 Historical and theoretical comments: Mean
Value Theorem

Discussion.

[author=garrett, file =text_files/taylor_background]

For several reasons, the traditional way that Taylor polynomials are taught gives
the impression that the ideas are inextricably linked with issues about infinite
series. This is not so, but every calculus book I know takes that approach. The
reasons for this systematic mistake are complicated. Anyway, we will not make
that mistake here, although we may talk about infinite series later.

Instead of following the tradition, we will immediately talk about Taylor poly-
nomials, without first tiring ourselves over infinite series, and without fooling any-
one into thinking that Taylor polynomials have the infinite series stuff as prereq-
uisite!

The theoretical underpinning for these facts about Taylor polynomials is The
Mean Value Theorem, which itself depends upon some fairly subtle properties of
the real numbers. It asserts that, for a function f differentiable on an interval
[a, b], there is a point c in the interior (a, b) of this interval so that

f ′(c) =
f(b)− f(a)

b− a

Note that the latter expression is the formula for the slope of the ‘chord’ or
‘secant’ line connecting the two points (a, f(a)) and (b, f(b)) on the graph of f .
And the f ′(c) can be interpreted as the slope of the tangent line to the curve at
the point (c, f(c)).

In many traditional scenarios a person is expected to commit the statement of
the Mean Value Theorem to memory. And be able to respond to issues like ‘Find
a point c in the interval [0, 1] satisfying the conclusion of the Mean Value Theorem
for the function f(x) = x2.’ This is pointless and we won’t do it.

Discussion.

245
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[author=duckworth, file =text_files/taylor_background]

We start by looking at approximating a function using polynomials. To make the
approximation more accurate we usually have to use more and more terms in the
polynomial. This leads to “infinite” polynomials (which we always approximate
with finite ones). We need tests to measure how accurately the approximation
holds, and which numbers it even makes sense to plug in. For any of this to make
sense, you should do about a hundred examples.

8.2 Taylor polynomials: formulas

Discussion.

[author=garrett, file =text_files/taylor_poly_formula]

Before attempting to illustrate what these funny formulas can be used for, we just
write them out. First, some reminders:

The notation f (k) means the kth derivative of f . The notation k! means k-
factorial, which by definition is

k! = 1 · 2 · 3 · 4 · . . . · (k − 1) · k

Taylor’s Formula with Remainder 8.2.1.

[author=garrett, file =text_files/taylor_poly_formula]

First somewhat verbal version: Let f be a reasonable function, and fix a positive
integer n. Then we have

rclf(input) = f(basepoint) +
f ′(basepoint)

1!
(input− basepoint)

+
f ′′(basepoint)

2!
(input− basepoint)2

+
f ′′′(basepoint)

3!
(input− basepoint)3

+ . . .

+
f (n)(basepoint)

n!
(input− basepoint)n

+
f (n+1)(c)
(n + 1)!

(input− basepoint)n+1

for some c between basepoint and input.

That is, the value of the function f for some input presumably ‘near’ the
basepoint is expressible in terms of the values of f and its derivatives evaluated at
the basepoint, with the only mystery being the precise nature of that c between
input and basepoint.

Taylor’s Formula with Remainder Term 8.2.2.
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[author=garrett, file =text_files/taylor_poly_formula]

Second somewhat verbal version: Let f be a reasonable function, and fix a positive
integer n.

f(basepoint + increment) = f(basepoint) +
f ′(basepoint)

1!
(increment)

+
f ′′(basepoint)

2!
(increment)2

+
f ′′′(basepoint)

3!
(increment)3

+ . . .

+
f (n)(basepoint)

n!
(increment)n

+
f (n+1)(c)
(n + 1)!

(increment)n+1

for some c between basepoint and basepoint + increment.

This version is really the same as the previous, but with a different emphasis:
here we still have a basepoint, but are thinking in terms of moving a little bit away
from it, by the amount increment.

Taylors Formula with remainder 8.2.3.

[author=garrett, file =text_files/taylor_poly_formula]

And to get a more compact formula, we can be more symbolic: let’s repeat these
two versions:

Let f be a reasonable function, fix an input value xo, and fix a positive integer
n. Then for input x we have

f(x) = f(xo) +
f ′(xo)

1!
(x− xo) +

f ′′(xo)
2!

(x− xo)2 +
f ′′′(xo)

3!
(x− xo)3 + . . .

+
f (n)(xo)

n!
(x− xo)n +

f (n+1)(c)
(n + 1)!

(x− xo)n+1

for some c between xo and x.

Comment.

[author=garrett, file =text_files/taylor_poly_formula]

Note that in every version, in the very last term where all the indices are n + 1,
the input into f (n+1) is not the basepoint xo but is, instead, that mysterious c
about which we truly know nothing but that it lies between xo and x. The part
of this formula without the error term is the degree-n Taylor polynomial for
f at xo, and that last term is the error term or remainder term. The Taylor
series is said to be expanded at or expanded about or centered at or simply
at the basepoint xo.

Comment.

[author=garrett, file =text_files/taylor_poly_formula]

There are many other possible forms for the error/remainder term. The one here
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was chosen partly because it resembles the other terms in the main part of the
expansion.

Linear Taylor Polynomial with Remainder Term 8.2.4.

[author=garrett, file =text_files/taylor_poly_formula]

Let f be a reasonable function, fix an input value xo. For any (reasonable) input
value x we have

f(x) = f(xo) +
f ′(xo)

1!
(x− xo) +

f ′′(c)
2!

(x− xo)2

for some c between xo and x.

Comment.

[author=garrett, file =text_files/taylor_poly_formula]

The previous formula is of course a very special case of the first, more general,
formula. The reason to include the ‘linear’ case is that without the error term it
is the old approximation by differentials formula, which had the fundamental flaw
of having no way to estimate the error. Now we have the error estimate.

Comment.

[author=garrett, file =text_files/taylor_poly_formula]

The general idea here is to approximate ‘fancy’ functions by polynomials, especially
if we restrict ourselves to a fairly small interval around some given point. (That
‘approximation by differentials’ circus was a very crude version of this idea).

It is at this point that it becomes relatively easy to ‘beat’ a calculator, in the
sense that the methods here can be used to give whatever precision is desired.
So at the very least this methodology is not as silly and obsolete as some earlier
traditional examples.

But even so, there is more to this than getting numbers out: it ought to be
of some intrinsic interest that pretty arbitrary functions can be approximated as
well as desired by polynomials, which are so readily computable (by hand or by
machine)!

One element under our control is choice of how high degree polynomial to use.
Typically, the higher the degree (meaning more terms), the better the approxi-
mation will be. (There is nothing comparable to this in the ‘approximation by
differentials’).

Of course, for all this to really be worth anything either in theory or in practice,
we do need a tangible error estimate, so that we can be sure that we are within
whatever tolerance/error is required. (There is nothing comparable to this in the
‘approximation by differentials’, either).

And at this point it is not at all clear what exactly can be done with such
formulas. For one thing, there are choices.
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Notation.

[author=duckworth, file =text_files/taylor_poly_formula]

Recall the notation f (k) means the kth derivative of f . Recall the definition of n!:
0! = 1, 1! = 1, 2! = 2, 3! = 3 · 2, 4! = 4 · 3 · 2 and in general k! = k(k − 1) · · · 3 · 2.

Theorem 8.2.1.
[author= duckworth , file =text_files/taylor_poly_formula]

If f(x) is a nice function near x = 0, then f(x) may be approximated by the
following degree n polynomial

f(0) + f ′(0)x +
f ′′(0)

2
x2 + · · ·+ f (n)(0)

n!
xn

In other words, the coefficient of xk is f(k)(0)
k! .

Comment.

[author=duckworth, file =text_files/taylor_poly_formula]

The polynomial in Theorem 8.2.1 is called the Maclaurin or Taylor polynomial.

Comment.

[author=duckworth, file =text_files/taylor_poly_formula]

You might want to think about the following questions when you look at this
theorem (we will persue these questions later):

1. What does “nice” mean?

2. Can we replace “near x = 0” with some other number?

3. How good an approximation is it?

4. How do we make the approximation better?

5. Does it make sense to use infinitely many terms in the polynomial?

6. Can we prove that our answers to any of the questions are correct?

Comment.

[author=duckworth, file =text_files/taylor_poly_formula]

What does “nice” mean in Theorem 8.2.1? It means that f has as many derivatives
as we want, all continuous, on some open interval containing x = 0.

Example 8.2.1.

[author=duckworth, file =text_files/taylor_poly_formula]

Let’s find the Maclaurin polynomial for f(x) = sin(x). For the above recipe we
need to calculate f (k)(x), i.e. a bunch of derivatives, and we need to calculate



250 CHAPTER 8. TAYLOR POLYNOMIALS AND SERIES

f (k)(0), i.e. evaluate these derivatives at x = 0. We calculate:

f(x) = sin(x) f(0) = 0
f ′(x) = cos(x) f ′(0) = 1
f ′′(x) = − sin(x) f ′′(0) = 0
f ′′′(x) = − cos(x) f ′′′(0) = −1

(After this it repeats)
f (4) = sin(x) f (4) = 0
f (5) = cos(x) f (5) = 1

...
...

Thus we have
sin(x) = x− 1

3!
x3 +

1
5!

x5 − 1
7!

x7 + . . .

We’ll worry about how to write the “last” term later, and we’ll worry about Σ
notation later. Note that only odd terms remain in this polynomial. That’s
because sin(x) is an odd function.

Just to see how good this approximation is, let’s take a look at some graphs.
Let’s graph y1 = sin(x), y2 = x− 1

3!x
3, y3 = x− 1

3!x
3 + 1

5!x
5 and y4 = x− 1

3!x
3 +

1
5!x

5 − 1
7!x

7.

Comment.

[author=duckworth, file =text_files/taylor_poly_formula]

What about the “last” term in Example 8.2.1? Judging from the above pattern
we know it will be odd. We can write any odd number as 2n + 1, so the last term
will be of the form ± 1

(2n+1)!x
2n+1. But that’s not very satisfying, is it “+” or is

it “−”? Well, that alternates. The first term is positive, the next is negative, the
next positive, etc. So we want a formula that alternates like this between positive
and negative. The most common formula for this is (−1)n. Thus, including the
last term we have:

Maclaurin poly for sin(x) is x− 1
3!

x3 +
1
5!

x5 − 1
7!

x7 + · · ·+ (−1)n

(2n + 1)!
x2n+1

Example 8.2.2.

[author=duckworth, file =text_files/taylor_poly_formula]

Let’s find the Maclaurin polynomial for f(x) = cos(x). We calculate:

f(x) = cos(x) f(0) = 1
f ′(x) = − sin(x) f ′(0) = 0
f ′′(x) = − cos(x) f ′′(0) = −1
f ′′′(x) = sin(x) f ′′′(0) = 0

(After this it repeats)
f (4) = cos(x) f (4) = 1
f (5) = − sin(x) f (5) = 0

...
...

Thus we have
cos(x) = 1− 1

2!
x2 +

1
4!

x4 − 1
6!

x6 + . . .
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Notice that only even terms appear in this polynomial. That’s because cos(x) is
an even function.

Example 8.2.3.

[author=duckworth, file =text_files/taylor_poly_formula]

Let’s find the Maclaurin polynomial for f(x) = ex. We calculate:

f(x) = ex f(0) = 1
f ′(x) = ex f ′(0) = 1
f ′′(x) = ex f ′′(0) = 1

(After this it repeats)
...

...

Thus we have
ex = 1 + x +

1
2!

x2 +
1
3!

x3 +
1
4!

x4 + . . .

Discussion.

[author=duckworth, file =text_files/taylor_poly_formula]

For the next example we need to change x = 0 to x = 1 (that’s because the next
function is not defined at x = 0). In general we can replace x = 0 with x = a, but
of course we need to change the recipe in Theorem 8.2.1.

Theorem 8.2.2.
[author= duckworth , file =text_files/taylor_poly_formula]

If f(x) is a nice function near x = a, then f(x) may be approximated by the
following polynomial:

f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

In other words the coefficient of (x− a)k is f(k)(a)
k! .

Comment.

[author=duckworth, file =text_files/taylor_poly_formula]

The polynomial in Theorem ?? is called the Taylor polynomial of f(x) at x = a.
People also say that the polynomial is defined at x = a or centered at x = a
or that a is the center of the polynomial.

Note that for a = 0 this formula is identical to the formula for the Maclaurin
polynomial. In other words, the Maclaurin polynomial is just a special case of the
Taylor polynomial. However, this “special” case is the one which we will see most
often.

Example 8.2.4.

[author=duckworth, file =text_files/taylor_poly_formula]
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Find the Taylor polynomial at x = 1 for f(x) = 1/x (I chose x = 1 because 1 is
halfway between 0 and ∞). Since we’ll be taking lots of derivatives let’s rewrite
1/x as x−1.

f(x) = x−1 f(1) = 1
f ′(x) = −x−2 f(1) = −1
f ′′(x) = 2x−3 f(1) = 2
f ′′′(x) = −6x−4 = −3!x−4 f(1) = −3!
f (4)(x) = 24x−5 = 4!x−5 f(1) = 4!

Thus we have

1/x ≈ 1− (x− 1) + (x− 1)2 − (x− 1)3 + (x− 1)4 − . . .

Exercises

1. Write the first three terms of the Taylor series at 0 of f(x) = 1/(1 + x).

2. Write the first three terms of the Taylor series at 2 of f(x) = 1/(1− x).

3. Write the first three terms of the Taylor series at 0 of f(x) = ecos x.



8.3. CLASSIC EXAMPLES OF TAYLOR POLYNOMIALS 253

8.3 Classic examples of Taylor polynomials

Examples 8.3.1.

[author=garrett, file =text_files/taylor_examples]

Some of the most famous (and important) examples are the expansions of 1
1−x ,

ex, cos x, sinx, and log(1 + x) at 0: right from the formula, although simplifying
a little, we get

1. 1
1−x = 1 + x + x2 + x3 + x4 + x5 + x6 + . . .

2. ex = 1 + x
1! + x2

2! + x3

3! + x4

4! + . . .

3. cos x = 1− x2

2! + x4

4! −
x6

6! + x8

8! . . .

4. sinx = x
1! −

x3

3! + x5

5! −
x7

7! + . . .

5. log(1 + x) = x− x2

2 + x3

3 −
x4

4 + x5

5 −
x6

6 + . . .

where here the dots mean to continue to whatever term you want, then stop, and
stick on the appropriate remainder term.

It is entirely reasonable if you can’t really see that these are what you’d get,
but in any case you should do the computations to verify that these are right. It’s
not so hard.

Note that the expansion for cosine has no odd powers of x (meaning that
the coefficients are zero), while the expansion for sine has no even powers of x
(meaning that the coefficients are zero).

Comment.

[author=garrett, file =text_files/taylor_examples]

At this point it is worth repeating that we are not talking about infinite sums
(series) at all here, although we do allow arbitrarily large finite sums. Rather
than worry over an infinite sum that we can never truly evaluate, we use the error
or remainder term instead. Thus, while in other contexts the dots would mean
‘infinite sum’, that’s not our concern here.

The first of these formulas you might recognize as being a geometric series, or
at least a part of one. The other three patterns might be new to you. A person
would want to be learn to recognize these on sight, as if by reflex!

8.4 Computational tricks regarding Taylor poly-
nomials

Discussion.

[author=garrett, file =text_files/taylor_calculation_tricks]

The obvious question to ask about Taylor polynomials is ‘What are the first so-
many terms in the Taylor polynomial of some function expanded at some point?’.
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The most straightforward way to deal with this is just to do what is indicated by
the formula: take however high order derivatives you need and plug in. However,
very often this is not at all the most efficient.

Especially in a situation where we are interested in a composite function of
the form f(xn) or, more generally, f(polynomial in x) with a ‘familiar’ function
f , there are alternatives.

Example 8.4.1.

[author=garrett, file =text_files/taylor_calculation_tricks]

For example, looking at f(x) = ex3
, if we start taking derivatives to expand this

at 0, there will be a big mess pretty fast. On the other hand, we might start with
the ‘familiar’ expansion for ex

ex = 1 + x +
x2

2!
+

x3

3!
+

ec

4!
x4

with some c between 0 and x, where our choice to cut it off after that many terms
was simply a whim. But then replacing x by x3 gives

ex3
= 1 + x3 +

x6

2!
+

x9

3!
+

ec

4!
x12

with some c between 0 and x3. Yes, we need to keep track of c in relation to the
new x.

So we get a polynomial plus that funny term with the ‘c’ in it, for the remainder.
Yes, this gives us a different-looking error term, but that’s fine.

So we obtain, with relative ease, the expansion of degree eleven of this function,
which would have been horrible to obtain by repeated differentiation and direct
application of the general formula. Why ‘eleven’?: well, the error term has the
x12 in it, which means that the polynomial itself stopped with a x11 term. Why
didn’t we see that term? Well, evidently the coefficients of x11, and of x10 (not to
mention x, x2, x4, x5, x7, x8!) are zero.

Example 8.4.2.

[author=garrett, file =text_files/taylor_calculation_tricks]

As another example, let’s get the degree-eight expansion of cos x2 at 0. Of course,
it makes sense to use

cos x = 1− x2

2!
+

x4

4!
+
− sin c

5!
x5

with c between 0 and x, where we note that − sinx is the fifth derivative of cos x.
Replacing x by x2, this becomes

cos x2 = 1− x4

2!
+

x8

4!
+
− sin c

5!
x10

where now we say that c is between 0 and x2.
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Exercises

1. Use a shortcut to compute the Taylor expansion at 0 of cos(x5).

2. Use a shortcut to compute the Taylor expansion at 0 of e(x2+x).

3. Use a shortcut to compute the Taylor expansion at 0 of log( 1
1−x ).
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8.5 Getting new Taylor polynomials from old

Discussion.

[author=duckworth, file =text_files/new_taylor_series_from_old]

For our next example, we need to know how to take an old example and get a new
one. In other words, there are two ways to figure out a Taylor polynomial: (1) take
lots of derivatives and use the recipe given above (2) take a Taylor polynomial for
some other function, and change it to make a new function. We make this idea
more precise in the following theorem.

Theorem 8.5.1.
[author= duckworth , file =text_files/new_taylor_series_from_old]

Suppose f(x) ≈ c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + . . . . Then we may find
polynomial approximations for a function g(x) as follows:

1. If g(x) = f(x2) (or f(2x), or f(−x2) or . . . ) the polynomial for g(x) is found
by substituting x2 (or 2x, or −x2 or . . . ) in place of x in the polynomial for
f(x).

2. If g(x) is the anti-derivative of f(x) (or the derivative) then the polyno-
mial for g(x) is found by taking the anti-derivative (or the derivative) of the
polynomial for f(x).

3. If g(x) equals f(x) times x (or sin(x), or ex, or . . . , or divided by one of
these) then the polynomial for g(x) is found by multipliying by x (or by the
polynomial for sin(x), or the polynomial for sin(x) or by dividing by one of
these).

Example 8.5.1.

[author=duckworth, file =text_files/new_taylor_series_from_old]

Find the Maclaurin polynomial for sin(x2).

Note, if we tried to do this in the same way as our other examples it would be
difficult. For the first derivative we’d need the chain rule, after that we’d need the
product rule and we’d get two terms. After that we’d need the product rule again
and we’d need three terms, after that it just keeps getting worse.

Let’s start with sin(x) = x − 1
3!x

3 + 1
5!x

5 − . . . . Note that if we plug in 289
we have sin(289) = 289 − 1

3!2893 + 1
5!2895 − . . . . But, if you happen to notice

that 289 = 172 then you could write sin(172) = 172 − 1
3! (172)3 + 1

5! (172)5 − . . . .
Replacing 17 with x and you see that

sin(x2) = x2 − 1
3!

x6 +
1
5!

x5 − . . .

Example 8.5.2.

[author=duckworth, file =text_files/new_taylor_series_from_old]

Find the Taylor polynomial at x = 1 for ln(x).

This problem we could do by taking lots of derivatives, but it’s easier to do it
by starting with an example we already know. Let’s start with 1/x and take the
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anti-derivative.

ln(x) =
∫

1
x dx + C

=
∫

1− (x− 1) + (x− 1)2 − (x− 1)3 + . . . dx + C

= x− (x−1)2

2 + (x−1)3

3 − (x−1)4

4 + · · ·+ C

But what’s C? Well, we know that we should have ln(1) = 0. Plugging this in we
get

1 = 1− 0 + 0− 0 + · · ·+ C

so C = −1 and we can write

ln(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ . . .

Example 8.5.3.

[author=duckworth, file =text_files/new_taylor_series_from_old]

Find the Maclaurin polynomial for tan−1(x).

Again, I want to start with an example we already know. If I think about
derivatives and anti-derivatives, I see that tan−1 is the anti-derivative of 1

1+x2 .
So, we’d have a plan if we knew the polynomial for 1

1+x2 . Well, 1
1+x2 looks like

1/x where we’ve replaced x with 1 + x2. So my plan is this: take the polynomial
for 1/x, substitute 1 + x2 into this, then take the antiderivative:

1
x = 1− (x− 1) + (x− 1)2 − (x− 1)3 + (x− 1)4 − . . .

↓
1

1+x2 = 1− (1 + x2 − 1) + (1 + x2 − 1)2 − (1 + x2 − 1)3 + (1 + x2 − 1)4 − . . .

= 1− x2 + x4 − x6 + x8

↓

tan−1(x) =
∫

1− x2 + x4 − x6 + x8 − · · ·+ C

= x− x3

3 + x5

5 −
x7

7 − · · ·+ C

Again you can find C by plugging in tan−1(0) = 0. In this case you find that
C = 0, thus:

tan−1(x) = x− x3

3
+

x5

5
− x7

7
− . . .

Example 8.5.4.

[author=duckworth, file =text_files/new_taylor_series_from_old]

Find the Maclaurin series for ex sin(x). Actually, just find the first few terms. The
idea here is just that you muliply the polynomials for ex and sin(x). So we have

ex sin(x) = (1 + x +
x2

2
+

x3

3!
+ . . . )(x− x3

3!
+

x5

5!
− . . . )

Not everyone knows how to multiply things like this together. If you apply the
distributive law over and over again the result is this: pick a term on the left,
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multiply it by each term on the right, then move to the next term on the left.
Thus we get:

ex sin(x) = 1 · x− 1 · x3

3! + 1x5

5! − . . . (1 times the polynomial on the right)

+x · x− x · x3

3! + x · x5

5! − . . . (x times the polynomial on the right)

+x2

2 · x−
x2

2 ·
x3

3! + x2

2 ·
x5

5! − . . . (x2

2 times the polynomial on the right)

+x3

3! · x−
x3

3! ·
x3

3! + x3

3! ·
x5

5! − . . . (x3

3! times the polynomial on the right)

Now one simplifies this

= x− x3

3! + x5

5! − . . .

+x2 − x4

3! + x6

5! − . . .

+x3

2 −
x5

2·3! + x7

2·5! − . . .

+x4

3! −
x6

3!·3! + x8

3!·5! − . . .

Now one collects the constant terms in front, then all the x terms, then all the x2

terms, etc.

= x + x2 +
(
− 1

3!
+

1
2

)
x3 +

(
2
3!

)
x4 +

(
1
5!
− 1

2 · 3!

)
x5 + . . .

Note that here there is not a clear pattern as to what the next term would look
like.

8.6 Prototypes: More serious questions about Tay-
lor polynomials

Discussion.

[author=garrett, file =text_files/taylor_questions]

Beyond just writing out Taylor expansions, we could actually use them to approx-
imate things in a more serious way. There are roughly three different sorts of
serious questions that one can ask in this context. They all use similar words, so a
careful reading of such questions is necessary to be sure of answering the question
asked.

(The word ‘tolerance’ is a synonym for ‘error estimate’, meaning that we know
that the error is no worse than such-and-such)

Here are the big questions:

1. Given a Taylor polynomial approximation to a function, expanded at some
given point, and given an interval around that given point, within what toler-
ance does the Taylor polynomial approximate the function on that interval?



8.6. PROTOTYPES: MORE SERIOUS QUESTIONS ABOUT TAYLOR POLYNOMIALS259

2. Given a Taylor polynomial approximation to a function, expanded at some
given point, and given a required tolerance, on how large an interval around
the given point does the Taylor polynomial achieve that tolerance?

3. Given a function, given a fixed point, given an interval around that fixed
point, and given a required tolerance, find how many terms must be used
in the Taylor expansion to approximate the function to within the required
tolerance on the given interval.

As a special case of the last question, we can consider the question of approx-
imating f(x) to within a given tolerance/error in terms of f(xo), f ′(xo), f ′′(xo)
and higher derivatives of f evaluated at a given point xo.

In ‘real life’ this last question is not really so important as the third of the
questions listed above, since evaluation at just one point can often be achieved
more simply by some other means. Having a polynomial approximation that
works all along an interval is a much more substantive thing than evaluation at a
single point.

It must be noted that there are also other ways to approach the issue of best
approximation by a polynomial on an interval. And beyond worry over approxi-
mating the values of the function, we might also want the values of one or more
of the derivatives to be close, as well. The theory of splines is one approach to
approximation which is very important in practical applications.

Discussion.

[author=duckworth, file =text_files/taylor_questions]

Question: How good is the approximation? What happens as we use more terms?
We saw some of this answer in the graphs of sin(x) and its Maclaurin polynomial;
here we make it more precise. We start by giving an exact meaning to this question.

Definition 8.6.1.

[author=duckworth, file =text_files/taylor_questions]

Let f(x) be a nice function and let c0 + c1x + c2x
2 + · · · + cnxn be it’s degree n

Maclaurin polynomial. The degree n remainder, or error, is defined as

Rn(x) = f(x)− (c0 + c1x + c2x
2 + . . . cnxn).

In other words, Rn(x) is the gap between the original function f and the polyno-
mial.

Comment.

[author=ducworth, file =text_files/taylor_questions]

Now we need a formula which tells us something about Rn(x). Ideally, we can can
use this formula to say how big Rn(x) is, and maybe even show that Rn(x) goes to 0
as we use more and more terms in the Maclaurin polynomial (i.e. limn→∞Rn(x) =
0).
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Maclaurin remainder theorem 8.6.1.
[author= duckworth , file =text_files/taylor_questions]

Let Rn(x) be the degree n remainder of the Maclaurin approximation of f(x).
Let [a, b] be some interval containing 0 and let M be some number such that
|f (n+1)(x)| ≤ M on the interval [a, b]. Then

|Rn(x)| ≤ M

(n + 1)!
|x|n+1

for all x in the interval [−a, a].

Comments.

[author=duckworth, file =text_files/taylor_questions]

1. Note, usually we will find M by finding the absolute max and min of f (n+1)(x)
on the interval [a, b]. Sometimes, however, we can find a value for M with-
out calculating absolute max’s and min’s. For example, if f(x) equals sin(x),
then we can always take M = 1.

2. Note that this theorem gives some impression of why Maclaurin approxima-
tions get better by using more terms. As n gets bigger, the fraction M

(n+1)!

will almost always get smaller. Why? Because (n+1)! get’s really big. O.K.,
so does M

(n+1)! always get smaller? Well, be to be rigorous, M might change
with n. Off the top of my head, I can’t think of a function where M would
change enough to prevent M

(n+1)! from getting smaller, but I believe such a
function exists.

3. Note, we are often interested in bounding Rn(x) on an interval; in such a
case we replace |x|n+1 by its absolute max on the interval. In other words,
if the interval is [a, b], we’ll replace |x|n+1 by |a|n+1 or bn+1, whichever is
bigger.

Example 8.6.1.

[author=duckworth, file =text_files/taylor_questions]

Consider the Maclaurin polynomial for sin(x).

(a) Find an upper bound for the error of approximating sin(.5) using the degree
three Maclaurin polynomial.

(b) Find n so that the error would be at most .00001.

Solution: (a) By the work above the degree three polynomial is x− 1
3!x

3. Thus
the error is

R3(.5) ≤ M

4!
(.5)4

where M is an upper bound on the fourth derivative of sin(x). You should always
remember, for sin(x) and cos(x), you can always take 1 as an upper bound on any
derivative. So, let M = 1. Then we have

R3(.5) ≤ 1
4!

(.5)4 = .0026
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To make this more concrete, let’s calculate the approximation we’re discussing
(note that so far in this problem, we’ve calculated the error without ever knowing
what the approximation is; this is kind of strange). The approximation is

sin(.5) ≈ .5− (.5)3

3!
= .4792

and our calculation above says that the “real” number is within .0026 of this.

(b) Now we don’t know n, but we use the same value for M . So we want:

1
(n + 1)!

(.5)n+1 ≤ .00001

Now, the truth is, I don’t know how to solve this for n. So, I’ll just guess and
check. Note, I’ll just guess odd values for n since there are no even terms in sin(x).

n = 5 ⇒ 1
6! (.5)6 = .000022

n = 7 ⇒ 1
8! (.5)8 = .968× 10−7

Thus n = 7 gives an error which is quite small.

Comment.

[author=duckworth, file =text_files/taylor_questions]

By the way, Maclaurin polynomials (or possibly a refined version of them) are how
your calculator really finds different values of sin(x). It doesn’t have a big table of
all possible values of sin(x). Instead, it first reduces an angle x, to a value between
0 and π/2, and then uses a polynomial formula.

Actually, it’s probably even smarter than this, and it’s an interesting topic
of how to use these formulas in the most efficient way possible. Why do people
care about efficiency? Well, suppose you’re graphing sin(x2 + x). This involves
calculating a y-value for each pixel on the calculator (or computer) screen. If
each pixel required using 30 terms in the Maclaurin polynomial, that would take
a long time to graph. So, if you can reduce any angle to one near 0, you don’t
need very many terms at all to approximate sine of that angle. For example,
if I wanted to calculate sin(25.23274123) that might take a lot of terms, but I
know that sin(x) = sin(x − 2π), so I can subtract 2π first from 25.23274123.
Well, 25.23274123 − 2π = 18.94955592, and I can subtract 2π again, and again,
etc. Note that 25.23274123− 8π ≈ .1 and that sin(.1) can be approximated with
very few terms. My computer says that sin(.1) ≈ 0.09983341665. You can get
sin(.1) ≈ 0.09983341666 by using the first three nonzero terms of the Maclaurin
polynomial (i.e. up to degree 5).

Well, the trick with subtracting 2π works well for angles that end up near
x = 0, but what if you start with an angle like x = 3.241592654. This is near π and
subtracting 2π won’t help. Well, here you use the fact that sin(x) = − sin(x− π),
and this means sin(3.241592654) = − sin(.1), and of course we already know how
to calculate sin(.1).

The tricks I’ve just described would reduce calculations of sin(x), for all values
of x to calculations involving only x between −π/2 and π/2. But maybe this is
still too big of a range. Maybe calculation of some angle like x = 1.47 would take
a long time. My computer says that sin(1.47) ≈ 0.9949243498. Suppose I need to
get 10 places of accuracy (which is actually a little less than what your calculators
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have). Then I would need the first 8 nonzero terms of the sine polynomial (i.e.
up to degree 15). That’s a lot more calculation than before, especially since this
would been raising something to the 15th power. So is there another shortcut?

Sure, I can think of another approache, and allthought I’m sure that the cal-
culator uses something vaguely like this, it probably is much more sophisticated
(i.e. efficient, but complicated) than what I’m presenting here. The goal is to
reduce 1.47 to something closer to zero. One trick would be to use the identity
sin(x) = cos(x− π/2). Then sin(1.47) = cos(−0.100796327) and now I would use
the cosine polynomial, probably with only a few terms since what I’m plugging in
is close to zero. If I use the first four nonzero terms of the Maclaurin polynomial
I find that cos(−0.100796327) ≈ 0.9949243497.

Using all of the above tricks would reduce calculations of sin(x), and cos(x),
for all values of x to calculations involving only x between −π/4 and π/4.

What if this still isn’t good enough? What if calculating sin(.78) takes too long?
Note that .78 is near π/4 and can’t be made any closer to zero by subtracting π,
or 2π, or π/2 etc. Well, then you could use other identities. Remember, in
trigonometry, there are a million identities! So, you could use the half angle
identity: sin(x) = 2 sin(x/2) cos(x/2). So, you could calculate sin(.78/2) and
cos(.78/2) using Maclaurin series, and then multiply these together and multiply
by 2.

Well, you get the idea. If time matters (which it usually does) and if calcu-
lations take time (which they always do) and if you’re doing lots of calculations
(which is probably the case in most interesting problems) then it’s worth your
time to optimize the process using whatever tricks you can. The tricks I’ve shown
you here are “naive” in the sense that they didn’t use anything more than basic
trigonometry. In real life, there are whole books and classes full tricks to speed
calculations. This topic is part of numerical analysis and numerical recipes.

8.7 Determining Tolerance/Error

Discussion.

[author=garrett, file =text_files/taylor_error]

This section treats a simple example of the second kind of question mentioned
above: ‘Given a Taylor polynomial approximation to a function, expanded at some
given point, and given an interval around that given point, within what tolerance
does the Taylor polynomial approximate the function on that interval?’

Example 8.7.1.

[author=garrett, file =text_files/taylor_error]

Let’s look at the approximation 1− x2

2 + x4

4! to f(x) = cosx on the interval [− 1
2 , 1

2 ].
We might ask ‘Within what tolerance does this polynomial approximate cos x on
that interval?’

To answer this, we first recall that the error term we have after those first
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(oh-so-familiar) terms of the expansion of cosine is

− sin c

5!
x5

For x in the indicated interval, we want to know the worst-case scenario for the size
of this thing. A sloppy but good and simple estimate on sin c is that | sin c| ≤ 1,
regardless of what c is. This is a very happy kind of estimate because it’s not so
bad and because it doesn’t depend at all upon x. And the biggest that x5 can be
is (1

2 )5 ≈ 0.03. Then the error is estimated as

|− sin c

5!
x5| ≤ 1

25 · 5!
≤ 0.0003

This is not so bad at all!

We could have been a little clever here, taking advantage of the fact that a lot
of the terms in the Taylor expansion of cosine at 0 are already zero. In particular,
we could choose to view the original polynomial 1− x2

2 + x4

4! as including the fifth-
degree term of the Taylor expansion as well, which simply happens to be zero, so
is invisible. Thus, instead of using the remainder term with the ‘5’ in it, we are
actually entitled to use the remainder term with a ‘6’. This typically will give a
better outcome.

That is, instead of the remainder we had must above, we would have an error
term

− cos c

6!
x6

Again, in the worst-case scenario | − cos c| ≤ 1. And still |x| ≤ 1
2 , so we have the

error estimate

|− cos c

6!
x6| ≤ 1

26 · 6!
≤ 0.000022

This is less than a tenth as much as in the first version.

But what happened here? Are there two different answers to the question of
how well that polynomial approximates the cosine function on that interval? Of
course not. Rather, there were two approaches taken by us to estimate how well
it approximates cosine. In fact, we still do not know the exact error!

The point is that the second estimate (being a little wiser) is closer to the
truth than the first. The first estimate is true, but is a weaker assertion than we
are able to make if we try a little harder.

This already illustrates the point that ‘in real life’ there is often no single ‘right’
or ‘best’ estimate of an error, in the sense that the estimates that we can obtain by
practical procedures may not be perfect, but represent a trade-off between time,
effort, cost, and other priorities.

Exercises

1. How well (meaning ‘within what tolerance’) does 1− x2/2 + x4/24− x6/720
approximate cos x on the interval [−0.1, 0.1]?
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2. How well (meaning ‘within what tolerance’) does 1− x2/2 + x4/24− x6/720
approximate cos x on the interval [−1, 1]?

3. How well (meaning ‘within what tolerance’) does 1− x2/2 + x4/24− x6/720
approximate cos x on the interval [−π

2 , π
2 ]?
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8.8 How large an interval with given tolerance?

Discussion.

[author=garrett, file =text_files/taylor_interval_size]

This section treats a simple example of the first kind of question mentioned above:
‘Given a Taylor polynomial approximation to a function, expanded at some given
point, and given a required tolerance, on how large an interval around the given
point does the Taylor polynomial achieve that tolerance?’

Example 8.8.1.

[author=garrett, file =text_files/taylor_interval_size]

The specific example we’ll get to here is ‘For what range of x ≥ 25 does 5+ 1
10 (x−

25) approximate
√

x to within .001?’

Again, with the degree-one Taylor polynomial and corresponding remainder
term, for reasonable functions f we have

f(x) = f(xo) + f ′(xo)(x− xo) +
f ′′(c)

2!
(x− xo)2

for some c between xo and x. The remainder term is

remainder term =
f ′′(c)

2!
(x− xo)2

The notation 2! means ‘2-factorial’, which is just 2, but which we write to be
‘forward compatible’ with other things later.

Again: no, we do not know what c is, except that it is between xo and x. But
this is entirely reasonable, since if we really knew it exactly then we’d be able to
evaluate f(x) exactly and we are evidently presuming that this isn’t possible (or
we wouldn’t be doing all this!). That is, we have limited information about what
c is, which we could view as the limitation on how precisely we can know the value
f(x).

To give an example of how to use this limited information, consider f(x) =
√

x
(yet again!). Taking xo = 25, we have

√
x = f(x) = f(xo) + f ′(xo)(x− xo) +

f ′′(c)
2!

(x− xo)2 =

=
√

25 +
1
2

1√
25

(x− 25)− 1
2!

1
4

1
(c)3/2

(x− 25)2 =

= 5 +
1
10

(x− 25)− 1
8

1
c3/2

(x− 25)2

where all we know about c is that it is between 25 and x. What can we expect to
get from this?

Well, we have to make a choice or two to get started: let’s suppose that x ≥ 25
(rather than smaller). Then we can write

25 ≤ c ≤ x

From this, because the three-halves-power function is increasing, we have

253/2 ≤ c3/2 ≤ x3/2
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Taking inverses (with positive numbers) reverses the inequalities: we have

25−3/2 ≥ c−3/2 ≥ x−3/2

So, in the worst-case scenario, the value of c−3/2 is at most 25−3/2 = 1/125.

And we can rearrange the equation:

√
x− [5 +

1
10

(x− 25)] = −1
8

1
c3/2

(x− 25)2

Taking absolute values in order to talk about error, this is

|
√

x− [5 +
1
10

(x− 25)]| = |1
8

1
c3/2

(x− 25)2|

Now let’s use our estimate | 1
c3/2 | ≤ 1/125 to write

|
√

x− [5 +
1
10

(x− 25)]| ≤ |1
8

1
125

(x− 25)2|

OK, having done this simplification, now we can answer questions like For
what range of x ≥ 25 does 5 + 1

10 (x − 25) approximate
√

x to within .001? We
cannot hope to tell exactly, but only to give a range of values of x for which we can
be sure based upon our estimate. So the question becomes: solve the inequality

|1
8

1
125

(x− 25)2| ≤ .001

(with x ≥ 25). Multiplying out by the denominator of 8·125 gives (by coincidence?)

|x− 25|2 ≤ 1

so the solution is 25 ≤ x ≤ 26.

So we can conclude that
√

x is approximated to within .001 for all x in the
range 25 ≤ x ≤ 26. This is a worthwhile kind of thing to be able to find out.

Exercises

1. For what range of values of x is x− x3

6 within 0.01 of sin x?

2. Only consider −1 ≤ x ≤ 1. For what range of values of x inside this interval
is the polynomial 1 + x + x2/2 within .01 of ex?

3. On how large an interval around 0 is 1− x within 0.01 of 1/(1 + x)?

4. On how large an interval around 100 is 10 + x−100
20 within 0.01 of

√
x?
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8.9 Achieving desired tolerance on desired inter-
val

Discussion.

[author=garrett, file =text_files/taylor_adjusting_degree]

We saw before two questions about the accuracy of the Taylor polynomial (they
were ??). Now we look at the most difficult question about accuracy:

‘Given a function, given a fixed point, given an interval around that fixed point,
and given a required tolerance, find how many terms must be used in the Taylor
expansion to approximate the function to within the required tolerance on the given
interval.

Example 8.9.1.

[author=garrett, file =text_files/taylor_adjusting_degree]

For example, let’s get a Taylor polynomial approximation to ex which is within
0.001 on the interval [− 1

2 ,+ 1
2 ]. We use

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . +

xn

n!
+

ec

(n + 1)!
xn+1

for some c between 0 and x, and where we do not yet know what we want n to
be. It is very convenient here that the nth derivative of ex is still just ex! We are
wanting to choose n large-enough to guarantee that

| ec

(n + 1)!
xn+1| ≤ 0.001

for all x in that interval (without knowing anything too detailed about what the
corresponding c’s are!).

The error term is estimated as follows, by thinking about the worst-case sce-
nario for the sizes of the parts of that term: we know that the exponential function
is increasing along the whole real line, so in any event c lies in [− 1

2 ,+ 1
2 ] and

|ec| ≤ e1/2 ≤ 2

(where we’ve not been too fussy about being accurate about how big the square
root of e is!). And for x in that interval we know that

|xn+1| ≤ (
1
2
)n+1

So we are wanting to choose n large-enough to guarantee that

| ec

(n + 1)!
(
1
2
)n+1| ≤ 0.001

Since
| ec

(n + 1)!
(
1
2
)n+1| ≤ 2

(n + 1)!
(
1
2
)n+1

we can be confident of the desired inequality if we can be sure that

2
(n + 1)!

(
1
2
)n+1 ≤ 0.001
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That is, we want to ‘solve’ for n in the inequality

2
(n + 1)!

(
1
2
)n+1 ≤ 0.001

There is no genuine formulaic way to ‘solve’ for n to accomplish this. Rather,
we just evaluate the left-hand side of the desired inequality for larger and larger
values of n until (hopefully!) we get something smaller than 0.001. So, trying
n = 3, the expression is

2
(3 + 1)!

(
1
2
)3+1 =

1
12 · 16

which is more like 0.01 than 0.001. So just try n = 4:

2
(4 + 1)!

(
1
2
)4+1 =

1
60 · 32

≤ 0.00052

which is better than we need.

The conclusion is that we needed to take the Taylor polynomial of degree
n = 4 to achieve the desired tolerance along the whole interval indicated. Thus,
the polynomial

1 + x +
x2

2
+

x3

3
+

x4

4

approximates ex to within 0.00052 for x in the interval [− 1
2 , 1

2 ].

Yes, such questions can easily become very difficult. And, as a reminder, there
is no real or genuine claim that this kind of approach to polynomial approximation
is ‘the best’.

Exercises

1. Determine how many terms are needed in order to have the corresponding
Taylor polynomial approximate ex to within 0.001 on the interval [−1,+1].

2. Determine how many terms are needed in order to have the corresponding
Taylor polynomial approximate cos x to within 0.001 on the interval [−1,+1].

3. Determine how many terms are needed in order to have the corresponding
Taylor polynomial approximate cos x to within 0.001 on the interval [−π

2 , π
2 ].

4. Determine how many terms are needed in order to have the correspond-
ing Taylor polynomial approximate cos x to within 0.001 on the interval
[−0.1,+0.1].

5. Approximate e1/2 =
√

e to within .01 by using a Taylor polynomial with
remainder term, expanded at 0. (Do NOT add up the finite sum you get!)

6. Approximate
√

101 = (101)1/2 to within 10−15 using a Taylor polynomial
with remainder term. (Do NOT add up the finite sum you get! One point
here is that most hand calculators do not easily give 15 decimal places. Hah!)
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8.10 Integrating Taylor polynomials: first exam-
ple

Discussion.

[author=garrett, file =text_files/taylor_integration]

Thinking simultaneously about the difficulty (or impossibility) of ‘direct’ symbolic
integration of complicated expressions, by contrast to the ease of integration of
polynomials, we might hope to get some mileage out of integrating Taylor polyno-
mials.

Example 8.10.1.

[author=garrett, file =text_files/taylor_integration]

As a promising example: on one hand, it’s not too hard to compute that∫ T

0

dx

1− x
dx = [− log(1− x)]T0 = − log(1− T )

On the other hand, if we write out

1
1− x

= 1 + x + x2 + x3 + x4 + . . .

then we could obtain∫ T

0

(1 + x + x2 + x3 + x4 + . . .) dx = [x +
x2

2
+

x3

3
+ . . .]T0

= T +
T 2

2
+

T 3

3
+

T 4

4
+ . . .

Putting these two together (and changing the variable back to ‘x’) gives

− log(1− x) = x +
x2

2
+

x3

3
+

x4

4
+ . . .

(For the moment let’s not worry about what happens to the error term for the
Taylor polynomial).

This little computation has several useful interpretations. First, we obtained a
Taylor polynomial for − log(1− T ) from that of a geometric series, without going
to the trouble of recomputing derivatives. Second, from a different perspective,
we have an expression for the integral∫ T

0

dx

1− x
dx

without necessarily mentioning the logarithm: that is, with some suitable inter-
pretation of the trailing dots,∫ T

0

dx

1− x
dx = T +

T 2

2
+

T 3

3
+

T 4

4
+ . . .



270 CHAPTER 8. TAYLOR POLYNOMIALS AND SERIES

8.11 Integrating the error term: example

Example 8.11.1.

[author=garrett, file =text_files/taylor_integrating_error]

Being a little more careful, let’s keep track of the error term in the example we’ve
been doing: we have

1
1− x

= 1 + x + x2 + . . . + xn +
1

(n + 1)
1

(1− c)n+1
xn+1

for some c between 0 and x, and also depending upon x and n. One way to avoid
having the 1

(1−c)n+1 ‘blow up’ on us, is to keep x itself in the range [0, 1) so that
c is in the range [0, x) which is inside [0, 1), keeping c away from 1. To do this we
might demand that 0 ≤ T < 1.

For simplicity, and to illustrate the point, let’s just take 0 ≤ T ≤ 1
2 . Then in

the worst-case scenario

| 1
(1− c)n+1

| ≤ 1
(1− 1

2 )n+1
= 2n+1

Thus, integrating the error term, we have

|
∫ T

0

1
n + 1

1
(1− c)n+1

xn+1 dx| ≤
∫

1
n + 1

2n+1xn+1 dx =
2n+1

n + 1

∫ T

0

xn+1 dx

= 2n+1n + 1[
xn+2

n + 2
]T0 =

2n+1Tn+2

(n + 1)(n + 2)

Since we have cleverly required 0 ≤ T ≤ 1
2 , we actually have

|
∫ T

0

1
n + 1

1
(1− c)n+1

xn+1 dx| ≤ 2n+1Tn+2

(n + 1)(n + 2)
≤

≤
2n+1( 1

2 )n+2

(n + 1)(n + 2)
=

1
2(n + 1)(n + 2)

That is, we have

| − log(1− T )− [T +
T 2

2
+ . . . +

Tn

n
]| ≤ 1

2(n + 1)(n + 2)

for all T in the interval [0, 1
2 ]. Actually, we had obtained

| − log(1− T )− [T +
T 2

2
+ . . . +

Tn

n
]| ≤ 2n+1Tn+2

2(n + 1)(n + 2)

and the latter expression shrinks rapidly as T approaches 0.

8.12 Applications of Taylor series

Comment.
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[author=duckworth, file =text_files/applications_of_taylor_series]

Finally, I want to show you an application of this stuff. The first application is
a little artificial, since we have other ways to do it. But it’s a good application
none-the-less.

Example 8.12.1.

[author=duckworth, file =text_files/applications_of_taylor_series]

Use Maclaurin polynomials to find an approximation of the integral
∫ 1

0

e−x2
dx.

We start with the polynomial for ex: namely 1 + x + x2

2 + x3

3! + . . . . Replacing
x with −x2 we obtain

e−x2
= 1− x2 +

x4

2!
− x6

3!
+

x8

4!
− . . .

Now we intgrate this polynomial:∫ 1

0
e−x2

dx =
∫ 1

0
1− x2 + x4

2! −
x6

3! + x8

4! − . . .

= x− x3

3 + x5

5·2! −
x7

7·3! + x9

9·4! − . . .
∣∣∣1
0

= 1− 1
3 + 1

5·2 −
1

7·3! + 1
9·4! − . . .

If we add the first three terms here we get .7666. As a rough idea of how accurate
this is, supppose we added the next term. This would change the result to .7429.
This isn’t much of a change. If we added one more term, this would change it even
less.

Discussion.

[author=duckworth, file =text_files/binomial_series]

Recall that
(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

To get these coefficients we can look at Pascal’s triangle. In this triangle, the
numbers on row n are the coefficients used in (a + b)n. You get a coefficient by
adding the two numbers above it.

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

This triangle is great, but what if we want to find (a + b)27? Do we really want to
write down 27 rows of this triangle? I think not. Then, is there a closed formula
for the coefficients? Yes.

Define:
(

n

k

)
:=

k factors︷ ︸︸ ︷
n(n− 1) . . .

k!
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Then we have

(a + b)n = an + nan−1b +
(

n

2

)
an−2b2 +

(
n

3

)
an−3b3 + · · ·+ nabn−1 + bn

How does this relate to polynomials? Newton realized first that we could
replace whole numbers for n by any real numbers, and secondly, we could replace
b by x. (A critic of Newton once said that “any clever school boy could have
thought of this”!). The following theorem is due to Newton.

Theorem 8.12.1.
[author= duckworth , file =text_files/binomial_series]

For any real number n, and for |x| < 1, we have

(1 + x)n = 1 + nx +
(

n

2

)
x2 +

(
n

3

)
x3 + . . .

Proof.
[author=duckworth, file =text_files/binomial_series]

To prove that the binomial series is correct one just applies the Maclaurin series
to (1 + x)n. To use the binomial series for something like (a + b)n you factor
out the larger number. So suppose a ≥ b, then we write (a + b)n = an

(
1 + b

a

)n
.

Also, (1 − x)n we treat as (1 + u)n and substitute −x in for u. This will give an
alternating series.
Example 8.12.2.

[author=duckworth, file =text_files/binomial_series]

You should double check the following yourself.

(1 + x)−1/2 = 1− 1
2
x +

1 · 3
2! · 22

x2 − 1 · 3 · 5
3! · 23

x3 +
1 · 3 · 5 · 7

4! · 24
x4 + · · ·+ (−1)n

n factors︷ ︸︸ ︷
1 · 3 · 5 · . . .

n! · 2n
xn + . . .

To get the series for sin(x)√
1+x/4

one would substitute x/4 into the series for (1 +

x)−1/2, then multiply the result by the series for sin(x).
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Infinite Series

Definition 9.0.1.

[author=wikibooks, file =text_files/introduction_to_series]

An arithmetic series is the sum of a sequence of terms. For example, an interesting
series which appears in many practical problems in science, engineering, and math-
ematics is the geometric series r + r2 + r3 + r4 + ... where the ... indicates that the
series continues indefinetly. A common way to study a particular series (following
Cauchy) is to define a sequence consisting of the sum of the first n terms. For
example, to study the geometric series we can consider the sequence which adds
together the first n terms Sn(r) =

∑n
i=1 ri. Generally by studying the sequence of

partial sums we can understand the behavior of the entire infinite series.

Two of the most important questions about a series are

Does it converge? If so, what does it converge to?

9.1 Convergence

Definition 9.1.1.

[author=duckworth, file =text_files/introduction_to_series_convergence]

If we are given a sequence of numbers a0, a1, a2, a3, . . . we say limn→∞ an exists,
and equals L, if the values of an get closer and closer to L as n gets bigger and
bigger. We say

∑∞
i=0 ci exists if limn→∞ an exists for the following sequence of

numbers:

a0 = c0

a1 = c0 + c1

a2 = c0 + c1 + c2

...

Example 9.1.1.

273
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[author=duckworth, file =text_files/introduction_to_series_convergence]

Let r be a real number. Then
∑∞

i=0 ari equals a
1−r if |r| < 1, and does not exist

otherwise.

Note: this is proven in an ad hoc manner, meaning, the proof is made up just
for this series and does not follow a general strategy (essentially you multiply the
partial sum r0 + r1 + · · · + rn by r − 1 and simplify). If you need to find

∑∞
i=a

you use the equation
∞∑

i=0︸︷︷︸
use formula

=
a−1∑
i=0︸︷︷︸
finite

+
∞∑

i=a︸︷︷︸
solve for this

.

You should always think of the example of Zeno’s paradox. (i.e. to get half way
across the room, then half of the remaining distance, then half of the remaining
distance etc. So you have 1

2 + 1
4 + 1

8 + 1
16 + · · · = 1. )

Example 9.1.2.

[author=wikibooks, file =text_files/introduction_to_series_convergence]

For example, it is fairly easy to see that for r > 1, the geometric series Sn(r) will
not converge to a finite number (i.e., it will diverge to infinity). To see this, note
that each time we increase the number of terms in the series Sn(r) increases.

Example 9.1.3.

[author=wikibooks, file =text_files/introduction_to_series_convergence]

Perhaps a more surprising and interesting fact is that for |r| < 1, Sn(r) will
converge to a finite value. Specifically, it is possible to show that limn→∞ Sn(r) =

r
1−r . Indeed, consider the quantity (1 − r)Sn(r) = (1 − r)

∑n
i=1 rn =

∑n
i=1 rn −∑n+1

i=2 rn = r − rn+1 Since rn+1 → 0 as n → ∞ for |r| < 1, this shows that
(1 − r)Sn(r) → r as n → ∞. The quantity 1 − r is non-zero and doesn’t depend
on n so we can divide by it and arrive at the formula we want.

We’d like to be able to draw similar conclusions about any series.

Unfortunately, there is no simple way to sum a series. The most we will be
able to do is determine if it converges.

Example 9.1.4.

[author=wikibooks, file =text_files/introduction_to_series_convergence]

It is obvious that for a series to converge, the an must tend to zero, but this is not
sufficient.

Consider the harmonic series, the sum of 1/n, and group terms

∑2m

1
1
n = 1 + 1

2+ 1
3 + 1

4+ + 1
5 + 1

6 + 1
7 + 1

8+ . . . +
∑2n

1+2n−1
1
p

> 3
2+ 1

42+ 1
84+ . . . + 1

2n 2n−1

= 3
2+ 1

2+ 1
2+ . . . + 1

2 (m terms)
As m tends to infinity, so does this final sum, hence the series diverges.

We can also deduce something about how quickly it diverges. Using the same
grouping of terms, we can get an upper limit on the sum of the first so many terms,
the partial sums.

1 + m
2 <

∑2m

1
1
n < 1 + m or 1 + ln2 m

m <
∑m

1
1
n < 1 + ln2 m and the partial
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sums increase like log m, very slowly.

Notice that to discover this, we compared the terms of the harmonic series with
a series we knew diverged.

Test.

[author=wikibooks, file =text_files/introduction_to_series_convergence]

Comparison test This is a convergence test (also known as the direct comparison
test) we can apply to any pair of series. If bn converges and |an| ≤ |bn| then an

converges. If bn diverges and |an| ≥ |bn| then an diverges.

There are many such tests, the most important of which we’ll describe in this
chapter.

Definition 9.1.2.

[author=duckworth, file =text_files/absolute_convergence_of_series]

We say
∑∞

i=0 ai is absolutely convergent if the series
∑∞

i=0 |ai| converges. (Note:
in general, it is easier for a series to converge if some of the terms are negative.
For example, see the Alternating series test.) We say the series is conditionally
convergent if it converges but is not absolutely convergent. Any series which is
absolutely convergent is also convergent without absolute values.

Theorem 9.1.1.
[author= wikibooks , file =text_files/absolute_convergence_of_series]

If the series of absolute values,
∑∞

n=1 |an|, converges, then so does the series∑∞
n=1 an

Comment.

[author=wikibooks, file =text_files/absolute_convergence_of_series]

We say such a series converges absolutely.

The converse does not hold. The series 1-1/2+1/3-1/4 ... converges, even
though the series of its absolute values diverges.

A series like this that converges, but not absolutely, is said to converge condi-
tionally.

Comment.

[author=wikibooks, file =text_files/absolute_convergence_of_series]

If a series converges absolutely, we can add terms in any order we like. The limit
will still be the same.

If a series converges conditionally, rearranging the terms changes the limit. In
fact, we can make the series converge to any limit we like by choosing a suitable
rearrangement.

E.g, in the series 1-1/2+1/3-1/4 ..., we can add only positive terms until the
partial sum exceeds 100, subtract 1/2, add only positive terms until the partial
sum exceeds 100, subtract 1/4, and so on, getting a sequence with the same terms
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that converges to 100.

This makes absolutely convergent series easier to work with. Thus, all but
one of convergence tests in this chapter will be for series all of whose terms are
postive, which must be absolutely convergent or divergent series. Other series will
be studied by considering the corresponding series of absolute values.

9.2 Various tests for convergence

Rule 9.2.1.

[author=duckworth, file =text_files/ratio_test]

Consider the series
∑∞

i=0 ai. Let limi→∞
ai+1
ai

= L. If L < 1 then the series is
absolutely convergent. If L > 1 (or L = ∞) then the series diverges. If L = 1 then
the test tells you nothing.

Comment.

[author=duckworth, file =text_files/ratio_test]

Note: when we say that the ratio test tells us nothing about the case L = 1, this
means that there are convergent series with L = 1 and there are divergent series
with L = 1. Note, the test is easy to remember because for convergence we need
(for positive numbers) that the terms decrease; if the terms decrease this means
that ai+1 should be smaller than ai, and if this is the case then ai+1

ai
< 1. Note,

we have learned how to find limi→∞ of many fractions.

Example 9.2.1.

[author=wikibooks, file =text_files/ratio_test]

E.g, suppose an = n!n!
(2n)! then an+1

an
= (n+1)2

(2n+1)(2n+2) = n+1
4n+2 → 1

4 so this series
converges.

Rule 9.2.2.

[author=duckworth, file =text_files/root_test_for_series]

The Root Test. Consider the series
∑∞

i=0 ai. Let L = limi→∞
i
√
|ai. If L < 1

then the series is absolutely convergent. If L > 1 (or L = ∞) then the series
diverges. If L = 1 then the test tells us nothing abouth the convergence of the
series.

Comment.

[author=duckworth, file =text_files/root_test_for_series]

Note: the statement that the series tells us nothing when L = 1 means that there
are convergent series with L = 1 and there are divergent series with L = 1. Note:
it is often easier to apply the ratio test than the root test. So the root test is best
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to apply when we have ith powers in ai which we are trying to cancel.

Rule 9.2.3.

[author=duckworth, file =text_files/integral_test]

Integral Test If ci = f(i) where f(x) is some function defined on the interval
[1,∞) then

∑∞
i=1 ci exists ⇐⇒

∫∞
1

f(x) dx exists. Of course, this is only useful
if we know how to evaluate the integral. (Note: “ ⇐⇒ ” means the things on
either side are equivalent.) Let Rn =

∑∞
i=0 ci −

∑n
i=0 ci be the error. Then we

have:
∫∞

n+1
f(x) dx ≤ Rn ≤

∫∞
n

f(x) dx. Furthermore, the total sum
∫∞

i=0
ci may

be estimated via sn +
∫∞

n+1
f(x) dx ≤

∑∞
i=0 ci ≤ sn +

∫∞
n

f(x) dx.

We can prove this test works by writing the integral as
∫∞
1

f(x)dx =
∑∞

n=1

∫ n+1

n
f(x) dx

and comparing each of the integrals with rectangles, giving the inequalities f(n) ≥∫ n+1

n
f(x)dx ≥ f(n + 1) Applying these to the sum then shows convergence.

Rule 9.2.4.

[author=duckworth, file =text_files/integral_test]

p-series Test The series
∑∞

i=1
1
ip converges ⇐⇒ p > 1.

If p = 1 then
∫∞
1

1
x dx = limb→∞ ln(x)

∣∣∣b
1
. Since limb→∞ ln(b) = ∞, the integral

and the series diverge.

If p 6= 1 then ∫ ∞

1

1
xp

dx =
∫ ∞

1

x−p dx = lim
b→∞

x−p+1

−p + 1
.

If−p+1 > 0, then this last fraction has more x’s on top and therefore limb→∞
x−p+1

= ∞
and the series diverges. If −p+1 < 0, then this last fraction has x’s on the bottom
and therefore limb→∞

x−p+1

= 0.

Rule 9.2.5.

[author=duckworth, file =text_files/comparison_test_for_series]

(a) if an ≥ bn ≥ 0 and
∑∞

i=0 an exists then so does
∑∞

i=0 bn.

(b) If limn→∞
an

bn
equals a non-zero number, then

∑∞
i=0 an exists ⇐⇒

∑∞
i=0 bn

exists.

Example 9.2.2.

[author=duckworth, file =text_files/comparison_test_for_series]

The comparison theorem part (b) shows that
∑∞

i=1
i2+i+1
i3−100 does not exist by com-

paring it to
∑∞

i=1
1
i .

The comparison theorem part (b) shows that
∑∞

i=1
i2+i+1
i4−100 does exist by com-

paring it to
∑∞

i=1
1
i2 .
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Rule 9.2.6.

[author=wikibooks, file =text_files/limit_comparison_test]

If bn converges, and lim |an|
bn

< ∞ then an converges.

If cn diverges, and lim |an|
cn

> 0 then an converges

Example 9.2.3.

[author=wikibooks, file =text_files/limit_comparison_test]

Let an = n−
n+1

n

For large n, the terms of this series are similar to, but smaller than, those of
the harmonic series. We compare the limits.

lim
|an|
cn

= lim
n

n
n+1

n

= lim
1

n
1
n

= 1 > 0

so this series diverges.

Definition 9.2.1.

[author=wikibooks, file =text_files/alternating_series_test]

If the signs of the an alternate, an = (−1)n|an| and they are decreasing, then we
call this an alternating series.

Theorem 9.2.1.
[author= wikibooks , file =text_files/alternating_series_test]

The series sum converges provided that limn→∞ an = 0.

The error in a partial sum of an alternating series is smaller than the first
omitted term. |

∑∞
n=1 an −

∑m
n=1 an| < |am+1|

Comment.

[author=wikibooks, file =text_files/alternating_series_test]

There are other tests that can be used, but these tests are sufficient for all com-
monly encountered series.

Theorem 9.2.2.
[author= duckworth , file =text_files/alternating_series_test]

If bi ≥ bi+1 (for all i) and limi→∞ bi = 0, then
∑∞

i=0(−1)ibi converges. Further-
more, if Rn =

∑∞
i=0 bi −

∑n
i=0 bi is the error, then |Rn| ≤ bn+1.

Comment.

[author=duckworth, file =text_files/alternating_series_test]

Note: the error estimate in the alternating series test is often the best error esti-
mate we will get.
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9.3 Power series

Discussion.

[author=duckworth, file =text_files/power_series]

First of all, a power series is different than some of the other series in these notes.
Many of the other series had only fixed numbers in the terms; a power series has
x’s in it which represent an input that we plug different numbers into.

Definition 9.3.1.

[author=duckworth, file =text_files/power_series]

A power series is one of the form:
∑∞

i=0 ci(x − a)i where a is some constant and
the ci are coefficients. We call a the center of the series.

Theorem 9.3.1.
[author= duckworth , file =text_files/power_series]

Given a power series
∑∞

i=0 ci(x− a)i, one of the following situations holds:

(i) The series only converges when x = a.

(ii) The series converges for all x.

(iii) The series converges for those x in the interval (a−R, a + R) and diverges
for those x that are > a + R and those x that are < a−R.

Comment.

[author=duckworth, file =text_files/power_series]

Let R be as in the previous theorem part (c), or let R = 0 in part (a), or let
R = ∞ in part (b). In each case we call R the radius of convergence of the
power series.

Comment.

[author=duckworth, file =text_files/power_series]

Note: This statement does not tell us what happens for x = a ± R, though
sometimes we can figure this out by using the another test. In general, we need
to use the root or ratio test to find R.

Example 9.3.1.

[author=duckworth, file =text_files/power_series]

Series R∑∞
i=0 xi R = 1

ex =
∑∞

i=0
xi

i! R = ∞
ln(x) =

∑∞
i=0(−1)n+1 (x−1)n

n R = 1

.
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Discussion.

[author=wikibooks, file =text_files/power_series]

The study of power series concerns ourselves with looking at series that can ap-
proximate some function over some interval.

Recall from elementary calculus that we can obtain a line that touches a curve
at one point by using differentiation. So in a sense we are getting an approximation
to a curve at one point. This does not help us very much however.

Let’s look at the case of y = cos(x), about the point x = 0. We have a first
approximation using differentiation by the line y = 1. Observe that cos(x) looks
like a parabola upside-down at x = 0. So naturally we think “what parabola could
approximate cos(x) at this point?” The parabola 1 − x2/2 will do. In fact, it is
the best estimate using polynomials of degree 2. But how do we know this is so?
This is the study of power series finding optimal approximations to functions using
polynomials.

Definition 9.3.2.

[author=wikibooks, file =text_files/power_series]

A power series is a series of the form a0x
0 + a1x

1 + ... + anxn =
∑n

j=0 ajx
j

Theorem 9.3.2.
[author= wikibooks , file =text_files/power_series]

Radius of convergence We can only use the equation f(x) =
∑n

j=0 ajx
j to

study f(x) when the power series converges. This may happen for a finite range,
or for all real numbers.

If the series converges only for x is some interval, then the radius of con-
vergence is half of the length of this interval.

Example 9.3.2.

[author=wikibooks, file =text_files/power_series]

Consider the series 1
1−x =

∑∞
n=0 xn (a geometric series) this converges when

—x—¡1, so the radius of convergence is 1. ex =
∑∞

n=0
xn

n! Using the [[Calcu-
lusratio test—ratio test]], this series converges when the ratio of successive terms
is less than one, limn→∞

∣∣∣ xn+1

(n+1)!
n!
xn

∣∣∣ < 1 or limn→∞
∣∣ x
n

∣∣ < 1 which is always true,
so this power series has an infinite radius of convergence.

If we use the ratio test on an arbitary power series, we find it converges when
lim |an+1x|

|an| < 1 and diverges when lim |an+1x|
|an| > 1 The radius of convergence is

therefore r = lim |an|
|an+1| If this limit diverges to infinity, the series has an infinite

radius of convergence.

Fact.

[author=wikibooks, file =text_files/power_series]

Differentiation and integration Within its radius of convergence a power series
can be differentiated and integrated term by term. d

dx

∑∞
j=0 ajx

j =
∑∞

j=0(j +
1)aj+1x

j
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∫ ∑∞
j=0 ajz

jdz =
∑∞

j=1
aj−1

j xj

Both the differential and the integral have the same radius of convergence as
the original series.

Example 9.3.3.

[author=wikibooks, file =text_files/power_series]

This allows us to sum exactly suitable power series. E.g 1
1+x = 1−x+x2−x3+ . . ..

This is a geometric series, which converges for |x| < 1. Integrate both sides, and we
get ln(1 + x) = x− x2

2 + x3

3 . . . which will also converge for |x| < 1. When x = −1
this is the harmonic series, which diverges. When x = 1 this is an alternating
series with diminishing terms, which converges to ln(2).

It also lets us write power series for integrals we cannot do exactly. E.g e−x2
=∑

(−1)n x2n

n! The left hand side can not be integrated exactly, but the right hand

side can be.
∫ z

0
e−x2

dx =
∑ (−1)nz2n+1

(2n+1)n! This gives us a power series for the sum,
which has an infinite radius of convergence, letting us approximate the integral as
closely as we like.

Definition 9.3.3.

[author=wikibooks, file =text_files/taylor_series_in_context_of_power_series]

The Taylor series of an infinitely often differentiable real (or complex) function f
defined on an interval (a− r, a + r) is the power series

∞∑
n=0

f (n)(a)
n!

(x− a)n

Here, n! is the factorial of n and f (n)(a) denotes the nth derivative of f at the
point a. If this series converges for every x in the interval (a − r, a + r) and the
sum is equal to f(x), then the function f(x) is called analytic. If a = 0, the series
is also called a Maclaurin series.

Comment.

[author=wikibooks, file =text_files/taylor_series_in_context_of_power_series]

To check whether the series converges towards f(x), one normally uses estimates
for the remainder term of Taylor’s theorem. A function is analytic if and only if it
can be represented as a power series the coefficients in that power series are then
necessarily the ones given in the above Taylor series formula.

Comment.

[author=wikibooks, file =text_files/taylor_series_in_context_of_power_series]

The importance of such a power series representation is threefold. First, differ-
entiation and integration of power series can be performed term by term and is
hence particularly easy. Second, an analytic function can be uniquely extended to
a holomorphic function defined on an open disk in the complex number—complex
plane, which makes the whole machinery of complex analysis available. Third, the
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(truncated) series can be used to compute function values approximately.

Example 9.3.4.

[author=wikibooks, file =text_files/taylor_series_in_context_of_power_series]

The function e−1/x2 is not analytic the Taylor series is 0, although the function
is not. Note that there are examples of infinitely often differentiable functions
f(x) whose Taylor series converge, but are not equal to f(x). For instance, for the
function defined piecewise by saying that f(x) = e−1/x2

if x 6= 0 and f(0) = 0,
all the derivatives are zero at x = 0, so the Taylor series of f(x) is zero, and
its radius of convergence is infinite, even though the function most definitely is
not zero. This particular pathology does not afflict complex-valued functions of a
complex variable. Notice that e−1/z2

does not approach 0 as z approaches 0 along
the imaginary axis.

Comment.

[author=wikibooks, file =text_files/taylor_series_in_context_of_power_series]

Some functions cannot be written as Taylor series because they have a singularity.
In these cases, one can often still achieve a series expansion if one allows also
negative powers of the variable x see Laurent series. For example, f(x) = e−1/x2

can be written as a Laurent series.

Examples 9.3.5.

[author=wikibooks, file =text_files/taylor_series_in_context_of_power_series]

Several important Taylor series expansions follow. All these expansions are also
valid for complex arguments x.
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ex =
∑∞

n=0
xn

n! for all x

ln(1 + x) =
∑∞

n=1
(−1)n+1

n xn for |x| < 1
1

1−x =
∑∞

n=0 xn for |x| < 1
(1 + x)α =

∑∞
n=0 C(α, n)xn for all |x| < 1, and all complex α,

and the C(α, n) are the Binomial coefficients
which are defined somewhere else, or which can
be calculated on a case-by-case basis

sinx =
∑∞

n=0
(−1)n

(2n+1)!x
2n+1 for all x

cos x =
∑∞

n=0
(−1)n

(2n)! x2n for all x

tanx =
∑∞

n=1
B2n(−4)n(1−4n)

(2n)! x2n−1 for |x| < π
2

and the B2n are the Bernoulli numbers which are
defined somewhere else, or which can be calculated
on a case-by-case basis

sec x =
∑∞

n=0
(−1)nE2n

(2n)! x2n for |x| < π
2

and the E2n are the Euler numbers which are de-
fined somewhere else, or which can be calculated
on a case-by-case basis

arcsin x =
∑∞

n=0
(2n)!

4n(n!)2(2n+1)x
2n+1 for |x| < 1

arctanx =
∑∞

n=0
(−1)n

2n+1 x2n+1 for |x| < 1
sinhx =

∑∞
n=0

1
(2n+1)!x

2n+1 for all x

coshx =
∑∞

n=0
1

(2n)!x
2n x

tanh x =
∑∞

n=1
B2n4n(4n−1)

(2n)! x2n−1 for |x| < π
2

and the B2n are the Bernoulli numbers which are
defined somewhere else, or which can be calculated
on a case-by-case basis

sinh−1 x =
∑∞

n=0
(−1)n(2n)!

4n(n!)2(2n+1)x
2n+1 for |x| < 1

tanh−1 x =
∑∞

n=0
1

2n+1x2n+1 for |x| < 1

W0(x) =
∑∞

n=1
(−n)n−1

n! xn for |x| < 1
e

Comment.

[author=wikibooks, file =text_files/taylor_series_in_context_of_power_series]

The Taylor series may be generalised to functions of more than one variable with
the formula

∞∑
n1=0

· · ·
∞∑

nd=0

∂n1

∂xn1
· · · ∂nd

∂xnd

f(a1, · · · , ad)
n1! · · ·nd!

(x1 − a1)n1 · · · (xd − ad)nd

Of course, to use this formula one must know how to take derivatives in more
than one dimension! In fact, one way to define derivatives in any dimension, is to
say that they are the functions which give you the correct coefficients for a Taylor
polynomial to work!

9.4 Formal Convergence

Definition 9.4.1.

[author=wikibooks, file =text_files/convergent_sequences_and_series]
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A sequence is an infinite list of real numbers a1, a2, a3, . . . , where a1 is the firts
number on the list, a2 is the second number on the list etc.

Comment.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

We can also think of a sequence as a function from the natural numbers to the
real numbers: this just means that given n there’s some description of what an is.
In fact, most of the sequences we work with are explicitly given by a function, like
“an = 1/2n”.

Since we can list the integers 1,2,3,... we likewise list a sequence f(1), f(2),
f(3), f(4), . . .We shall denote a sequence by an italic capital letter, the set of real
values that function takes by the same non-italic capital letter , and the elements
of that set with the corresponding lower case letter, and subscripts. For example
sequence S takes values in the set S with elements s1, s2, s3... .

S is a set of reals, S is a function from the integers to the reals, two different
concepts. While we are being rigorous we must be careful not to confuse the two,
but in general usage the concepts are interchangable.

We can also denote sequences by their function. For example if we say the
function S is 3k, then the sequence consists of 3,6,9,. . . .

In particular we will be interested in special types of sequences that converge.
We first introduce three definitions.

Definition 9.4.2.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

A cauchy sequence is a sequence S where for every ε > 0, there exists an integer
n(ε) such that for all k > n(ε), |sk − sn(ε)| < ε.

Definition 9.4.3.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

A sequence, an is bounded above if there exists some number M such that an ≤ M
for all n. We define bounded below similarly.

Definition 9.4.4.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

A sequence, S, converges if there exists a number, s, such that for all ε > 0,
there exists an integer n(ε) such that for all k > n(ε), |s − sn(ε)| < ε. If the
series is convergent we call the number, s, the limit of the sequence S. We write,
s = limn→∞ sn

Theorem 9.4.1.
[author= wikibooks , file =text_files/convergent_sequences_and_series]

If there exists a number, s, such that for all ε > 0, there exists an integer n(ε)
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such that for all k > n(ε), |s− sn(ε)| < f(ε) where f is such that δ smaller than or
equal to some δ(ε) implies f(δ) ≤ ε, f(x) is positive for all positive x, and f(0)=0
then S converges.

Proof.
[author=wikibooks, file =text_files/convergent_sequences_and_series]

For any ε consider n(δ(ε)).

If n > n(δ(ε)) then

From given conditions, |s− sn(δ(ε))| < f(δ(ε)) ≤ ε

So, S meets the conditions in Definition 3.
Comment.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

This theorem means it is sufficient to prove that the difference between a term
and the limit is less than some continuous positive function of ε.

Discussion.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

Were going to prove a sequence is Cauchy if and only if it is convergent. To do
this we need some preliminary theorems.

Theorem 9.4.2.
[author= wikibooks , file =text_files/convergent_sequences_and_series]

Every Cauchy sequence is bounded above and below.

Proof.
[author=wikibooks, file =text_files/convergent_sequences_and_series]

We prove only that the sequence is bounded above. By definition 1 with ε = 1,
∃N such that ∀n > N |sn − sN | < 1. Define r = 2 + sup{s1, s2, ...sN} Then, by
definition sn < r ∀k ≤ N . If n¿N sn ≤ 1+sN < r. Therefore the sequence meets
definition 2 with s+ = r The cauchy sequence is bounded above.
Definition 9.4.5.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

A sequence is monotonically increasing if for all n, mn ≥ m implies an ≥ am a
sequence is monotonically decreasing if for all n, mn ≥ m implies an ≤ am.

Theorem 9.4.3.
[author= wikibooks , file =text_files/convergent_sequences_and_series]

If S is bounded above and monotonically increasing, S converges to sup S b. If S
is bounded below and monotonically decreasing, S converges to inf S

Proof.
[author=wikibooks, file =text_files/convergent_sequences_and_series]

For a monotonically increasing sequence bounded aboveS, and all ε > 0, we must
have sN > supS−ε for some N , else supS−ε is an upper bound of S, contradicting
definition of sup for all n > N , sN ≤ sn, by definition combine with first inequality
to get supS > sn > supS − ε rearrange |sn− supS| < ε for all n larger than some
N Hence supS is the limit of S 3b) is proved similarly
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Theorem 9.4.4.
[author= wikibooks , file =text_files/convergent_sequences_and_series]

(The sandwich theorem) Given three sequences, R, S , T, If R and T both converge,
lim R=lim T and ∃N ∀n > N rn ≤ sn ≤ tn Sequence S converges to the same
limit

Proof.
[author=wikibooks, file =text_files/convergent_sequences_and_series]

Let s = lim R = lim T . For any ε > 0, by definition of convergence, there exist
M, N such that ∀n > M |rn − s| < ε ∀n > N |tn − s| < ε Combing these two
inequalities with the conditions on R and T gives s − ε < rn ≤ sn ≤ tn < s + ε
for all n greater than the maximum of M and N on rearrangement, S satisfies the
definition of convergence, with limit s, and n(ε) = max{M,N}.

Theorem 9.4.5.
[author= wikibooks , file =text_files/convergent_sequences_and_series]

If R, and S are both convergent series ∀nrn ≤ sn ⇒ lim rn ≤ lim sn

Theorem 9.4.6.
[author= wikibooks , file =text_files/convergent_sequences_and_series]

A sequence S is convergent if and only if it is cauchy.

Proof.
[author=wikibooks, file =text_files/convergent_sequences_and_series]

Convergence implies cauchy. Assume S is convergent, with limit s For a ε >
0, choose n such that ∀k > n |sk − s| < ε/2 (always possible by defintion of
convegence) Via triangle inequality, |sk − sj | < |sk − s| + |s − sj | |sk − sj | <
ε/2 + ε/2 = ε, for j, k > n. This is defintion of cauchy.

Cauchy implies convergence. ¡ Let S be a cauchy sequence Define two sequences
R and T by rn = inf{smm ≥ n} tn = sup{smm ≥ n} rn = min(sn, rn+1) ≤ rn+1

R is monotonically increasing. Similarly T is monotonically decreasing. ∀m >
n r1 ≤ rn ≤ sm ≤ tn ≤ t1 so R and T are bounded above and below respectively.
Being bounded and monotonic, they converge to their supremum and infimum
repsectively. r = limn→∞ rn = sup inf{sm} t = limn→∞ tn = inf sup{sm} By
theorem 5 since rn ≤ tn for all n, r ≤ t. If, for some N, all sn with n > N
are greater than r, r is a lower bound to the sn but it is also an upper bound.
For r to be both the sn must be constant, making the series trivially convergent.
Similarly for t So, for all N, there must be n, m larger than N, with sn ≤ r sm ≥ t
∀N ∃n, m > N |sn−sm| ≥ |r−t| If r 6= t this contradicts the definition of Cauchy,
so r=t But S is bounded betweeen R and T, so by the sandwhich theorem, S is
convergent
Comment.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

We can now use cauchy and convergent interchangeably, as convenient. We will
often prove a sequence is convergent by proving it to be cauchy.

Discussion.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

If can add, multiply, and divide sequences in the obvious way, then the limit of a
sum/product/ratio of sequences will be the sum/product/ratio of their limits.
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Fact.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

We define (S + T ) by (s + t)n = sn + tn.

Addition on sequences inherits the group properties of the reals.

If S and T both converge, to s and t respectively, then for all ε > 0, ∃N∀n >
N |sn−s| < ε/2 |tn−t| < ε/2 (definition of limit) |sn−s|+|tn−t| > |sn+tn−s−t|
hence |sn + tn − (s + t)| < ε So, by definition of limit, S+T converges to s+t

Fact.

[author=wikibooks, file =text_files/convergent_sequences_and_series]

We define (ST ) by (st)n = sntn.

Mulitplication inherits commutativity and associativity from the reals.

If S and T both converge, to s and t respectively, then, then for all ε > 0,
∃N∀n > N |sn − s| < ε |tn − t| < ε (definition of limit) |sntn − st| = |(sn −
s)(tn− t)+s(tn− t)+ t(sn−s)| |sntn−st| < |sn−s||tn− t|+ |s||tn− t|+ |t||sn−s|
|(st)n − st| < ε2 + 2ε(|s|+ |t|)

The right handside is a monotonic increasing function of ε, therefore it can be
replaced by ε, and hence, by the definition of limit, ST converges to st.
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Chapter 10

Ordinary Differential
Equations

Discussion.

[author=wikibooks, file =text_files/introduction_to_ordinary_diffeqs]

Ordinary differential equations involve equations containing variables functions
their derivatives and their solutions.

In studying integration, you already have considered solutions to very simple
differential equations. For example, when you look to solving

∫
f(x) dx = g(x) for

g(x), you are really solving the differential equation D g(x) = f(x)

Discussion.

[author=duckworth, file =text_files/introduction_to_ordinary_diffeqs]

A differential equation is an equation involving x, y, y′, possibly y′′ etc, that we
are trying to solve for y (which is a function). Here are all of the types of equations
we will solve in this course:

• You will be given an equation and told what form the solution y should take.
For example:

1. Show that y = x− x−1 is a solution of xy′ + y = 2x.

2. Show that y = sin(x) cos(x) − cos(x) is a solution of y′ + tan(x)y =
cos2(x) such that y(0) = −1.

3. Find r such that y = erx is a solution of y′′ − y′ − 2y = 0.

• We can separate the equation as f(x)dx = g(y)dy. Then we integrate both
sides. For example:

1. dy
dx = y

x which separates as 1
y dy = 1

xdx.

2. (x2 + 1)y′ = xy which separates as 1
y dy = x

x2+1dx.

• Exponential growth and decay. All the problems in this section are varia-
tions on the following: y′ = cy, or dP

dt = rP , or “the rate of change of the
population is proportional to the population”. Allthough this type of equa-
tion is very usefull, it’s kind of stupid that the book waited until the fourth

289
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section to introduce it: we know already how to solve these, they’re all of
the form Cert!

10.1 Simple differential equations

Notation.

[author=wikibooks, file =text_files/ordinary_diffeqs]

The notations we use for solving differential equations will be crucial in the ease
of solubility for these equations.

This document will be using three notations primarily f ′ to denote the deriva-
tive of f D f to denote the derivative of f df

dx to denote the derivative of f (for
separable equations).

Definition 10.1.1.

[author=duckworth, file =text_files/ordinary_diffeqs]

The highest derivative which appears an a differential equation is called the order
of the differential equation.

Example 10.1.1.

[author=wikibooks, file =text_files/ordinary_diffeqs]

Consider the differential equation 3f ′′(x)+5xf(x) = 11 Since the equation’s high-
est derivative is 2, we say that the differential equation is of order 2.

Discussion.

[author=wikibooks, file =text_files/ordinary_diffeqs]

A key idea in solving differential equations will be that of Integration.

Let us consider the second order differential equation f = 2

How would we go about solving this?. It tells us that on differentiating twice,
we obtain the constant 2 so, if we integrate twice, we should obtain our result.

Integrating once first of all∫
f dx =

∫
2 dx f ′ = 2x + C1

We have transformed the apparently difficult second order differential equation
into a rather simpler one, viz.

f ′ = 2x + C1

This equation tells us that if we differentiate a function once, we get 2x + C1.
If we integrate once more, we should find the solution.∫

f ′ dx =
∫

2x + C1 dx f = x2 + C1x + C2
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This is the solution to the differential equation. We will get f = 2 for all values
of C1 and C2.

The values C1 and C2 are known as initial conditions.

Discussion.

[author=wikibooks, file =text_files/ordinary_diffeqs]

Why are initial conditions useful? ODEs (ordinary differential equations) are
useful in modelling physical conditions. We may wish to model a certain physical
system which is initially at rest (so one initial condition may be zero), or wound
up to some point (so an initial condition may be nonzero and be say 5 for instance)
and we may wish to see how the system reacts under such an initial condition.

When we solve a system with given initial conditions, we substitute them during
our process of integration. Without initial conditions, the answer we obtain is the
most general solution.

Example 10.1.2.

[author=duckworth, file =text_files/ODEs_with_solution_of_known_form]

One type of differential equation method involves being told what form a solution
should have where the “form” has some unknown constant, then plugging that
form into the differential equation to solve for the unknown constant.

This is similar to how we verify that a formula satisfies a certain differential
equation, so let’s start with an example like that.

Example 10.1.3.

[author=duckworth, file =text_files/ODEs_with_solution_of_known_form]

should take the function we’ve been given, find its derivative, plug that into the
equation and see if it works. We’ve been given y = x − x−1, its derivative is
y′ = 1 + x−2. The equation is xy′ + y = 2x. Plugging in we get

x(1 + x−2) + (x− x−1) ?= 2x

where I’ve written ?= because I am pretending that I don’t know if the equation
will work or not. Simplifying the left hand side (I always choose to work on just
one side when I can, otherwise, if you cancel stuff from both sidse, you end up
getting an equation which says “0 = 0”, which is true, but sometimes a little
confusing):

x + x−1 + x− x−1

which equals 2x, as we wanted to show.

10.2 Basic Ordinary Differential Equations

Discussion.
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[author=wikibooks, file =text_files/basic_ordinary_diffeqs]

In this section we will consider four main types of differential equations separable
homogeneous linear exact

There are many other forms of differential equation, however, and these will
be dealt with in the next section

Derivation.

[author=wikibooks, file =text_files/separable_ordinary_differential_equations]

A separable equation is one of the form

dy

dx
= f(x)/g(y).

In this context people always use dy/dx notation. Previously we have only dealt
with simple differential equations with g(y) = 1. How do we solve such a separable
equation as above?

We group x and dx terms together, and y and dy terms together as well. This
gives

g(y) dy = f(x) dx.

Integrating both sides (on the left we integrate with respect to y, and on the right
with respect to x) we get ∫

g(y) dy =
∫

f(x) dx + C.

The resulting equation gives an implicit solution for y(x). In practice, it is often
possible to solve this equation for y.

Example 10.2.1.

[author=duckworth, file =text_files/separable_ordinary_differential_equations]

Starting with dy
dx = y

x we divide by y to get 1
y

dy
dx = 1

x and we multiply by dx to get
1
y dy = 1

xdx. Note, you should always do the separation steps using multiplication
and division. You should never wind up with something like “f(y) + dy”; this is
meaningless nonsense!

O.k., so now we’ve got it separated, we integrate both sides:∫
1
y
dy =

∫
1
x

dx

ln |y| = ln |x|+ C

|y| = C|x| (new C!)

Example 10.2.2.

[author=wikibooks, file =text_files/separable_ordinary_differential_equations]

Here is a worked example illustrating the process.

We are asked to solve dy
dx = 3x2y
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Separating dy
y = (3x2) dx Integrating

∫
dy
y =

∫
3x2 dx ln y = x3 +C y = ex3+C

Letting k = eC where k is a constant we obtain y = kex3
which is the general

solution.

Example 10.2.3.

[author=wikibooks, file =text_files/separable_ordinary_differential_equations]

Just for practice, let’s verify that our answer in Example 10.2.2 really was a solu-
tion of the given differential equation. Note, this step is only for practice, it is not
usually part of finding a solution.

We obtained y = kex3
as the solution to dy

dx = 3x2y

Differentiating the solution, dy
dx = 3kx2ex3

Since y = kex3
, we can write dydx = 3x2y We see that we obtain our original

differential equation, so we can confirm our working as being correct.

Discussion.

[author=duckworth, file =text_files/separable_ordinary_differential_equations]

There’s one kind of problem of this type which deservers special mention: the
mixing problem! Some people seem to hate these, but that’s only because they
hate translating words into equations. Concentrate on this step and you’ll be fine.
In a mixing problem y represents some substance (often salt) which is mixed into
something else (usually water). The basic form of the differential equation is:

dy

dx
= rate in− rate out.

See, that’s not so hard. The part about translating is making “rate in” and “rate
out” into formulas. Usually, one of these you’ve been given directly in the problem,
e.g. “salty water with .5kg of salt per liter flows into the tank at rate of 7 liters per
minute”. In this case you would have rate in = .5 × 7. The other rate is usually
found by multiplying the concentration (which is like density) by the amount of
flow. E.g. “thoroughly mixed water flows out of the tank at the same rate as water
flows in”. In this case, we have:

Concentration =
total amount salt

total amount of water
=

y

total amount of water

What’s the total amount of water? I haven’t told you yet. Suppose the problem
started with the phrase “A hundred liter tank has salty water flowing in.” Then
we would have concentration = y/100. Finally, using the fact that the flow out
equals the flow in, equals 7 liters per minute, this would give us

rate out = concentration× 7
=

y

100
× 7

Thus, the final differential equation would be

dy

dx
= .5× 7− y

100
× 7
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Example 10.2.4.

[author=duckworth, file =text_files/separable_ordinary_differential_equations]

A hundred liter tank has salty water flowing in. Salty water with .5 kg/L flows into
the tank at rate of 7 L/min. Thoroughly mixed water flows out of the tank at the
same rate as water flows in. Find an equation for the amount of salt in the tank.

Translating these words into equations we have that the rate of salt in is .5× 7
and the rate of salt out is the concentration times 7, which becomes 5

100 ×7. Thus,
the differential equation would is

dy

dx
= .5× 7− y

100
× 7.

We separate this (with multiplication and division) as

1
.5× 7− 7y/100

dy = dx

Let’s move those constants around. Multiply both sides by 7, mulitply the top
and bottom of the fraction by 100.

100
50− y

dy = 7dx∫
100

50− y
dx =

∫
7dx

100 ln |50− y| = 7x + C

ln |50− y| =
1

100
(7x + C)

ln |50− y| =
7

100
x + C (new C!)

|50− y| = Ce.007x (new C!)
y = 50± Ce.007x

Example 10.2.5.

[author=duckworth, file =text_files/ODE_lengthy_example]

In this example we’re going to take a differential equation and analyze it every
way we can. (This is often done in real life problems where you don’t stop as soon
as you get a solution. You graph it, you find max/mins, you analyze it every way
you can.)

Suppose that y(t) is a solution of dy
dt = y4 − 6y3 + 5y2. (a) Which values of

y give contstant solutions? (b) Which values of y give increasing solutions? (c)
Which values of y give decreasing solutions?

Recall that there are infinitely many solutions to a differential equation; in our
case, we will see below that these correspond to the different values of C one can
have when finding an anti-derivative.
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The main idea is to translate these questions into ones involving derivatives.
So, (a) is equivalent to: which values of y make dy

dt = 0? (b) is equivalent to:
which values of y make dy

dt positive? (c) is equivalent to: which values of y make
dy
dt negative? Since we have an equation for dy

dt , these questions are easily solved:

dy
dt = 0 is equivalent to 0 = y4 − 6y3 + 5y2

is equivalent to 0 = y2(y − 5)(y − 1)
is equivalent to y = 0, 5, 1

So these are the solutions of part (a). The constant functions, y = 0, y = 5, y = 1
are all solutions of the differential equation.

For parts (b) and (c) we use a standard procedure: if you want to know when
a function is positive or negative (in this case dy

dt ), you find when it equals zero,
and then between each pair of points where it’s zero, it will stay positive or stay
negative: you can figure out which by testing a single point (or by looking at
the factors, if you have them). In our case we consider the intervals: y < 0,
0 < y < 1, 1 < y < 5, 5 < y. We can see that y2(y − 5)(y − 1) will be positive
for y values bigger than 5, between 0 and 1, and for values less than 0. We can
see that y2(y − 5)(y − 1) will be negative for y values between 1 and 5. In other
words, we have horizontal asymptotes at y = 0, y = 1 and y = 5. On one side
of an asymptote you can draw a nice curve that’s increasing, or decreasing, as
we just figured out, so that the graph curves as it gets closer and closer to the
asymptote, never quite touching the asymptote. Recall again that we can have
infinitely many solutions of this differential equation. Putting all this information
together, we can make a bunch of graphs of possible solutions, some of which I
show in Figure 10.1.

So far we’ve lookd at this problem without actually solving it. But, if we know
the method of separation we can solve this differential equation.

We divide both sides of dy
dt = y2(y − 5)(y − 1) to get

1
y2(y − 5)(y − 1)

dy = dt

To integrate the left hand side we need partial fractions (yay! I’m so glad we
learned that already!). We set that up as follows:

1
y2(y − 5)(y − 1)

=
A

y
+

B

y2
+

C

y − 5
+

D

y − 1

This is a relatively simple example to solve. Multiply both sides by y2(y−5)(y−1)
to get

1 = Ay(y − 5)(y − 1) + B(y − 5)(y − 1) + Cy2(y − 1) + Dy2(y − 5)

If set y = 0 you get B = 1
5 . If you set y = 1 you get D = − 1

4 . If you set y = 5
you get C = 1

100 . This leaves only A to solve for. Plug in the values we’ve found
for B, C and D, as well as any value for y that you like (besides 0, 1 or 5) and
solve for A = 6

25 . Now we integrate both sides:∫
6
25

1
y

+
1
5

1
y2

+
1

100
1

y − 5
− 1

4
1

y − 1
dy =

∫
dt

6
25

ln |y| − 1
5

1
y

+
1

100
ln |y − 5| − 1

4
ln |y − 1| = t + C
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Figure 10.1: A rough sketch of some solutions
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Figure 10.2: The whole real graph: −2 ≤ x ≤ 7
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Now, I want to graph this solution directly, and compare it to the graph we sort
of made up in Figure 10.1. But how can we graph it? I can’t solve this equation
of or y as a function of t. The trick is to graph t as a function of y; this is like
graphing the inverse of the function that we really want. Thus, the picture we get
will be like the one in Figure 10.1, except that we’ve switched the x and y axes
(you can think about this as reflection of the graph across the line y = x, or you
can think about this as “flipping” the graph so that the x-axis goes where the
y-axis was, and you’re looking at the graph through the back of the picture). So
the graphs below put t on the vertical axis and y on the horizontal axis (this is like
entering on our calculators t ↔ y1 and y ↔ x). Note that the different values of
C cause the graph to shift up and down. You can see here again why there should
be infinitely many solutions of this differential equation.

Figure 10.2 shows the whole graph for three different values of C.

It’s kind of hard to see the behavior of the graph when you look at the whole
picture. This is one way that hand-drawn graphs are better than real ones: I could
make each feature pretty clear in Figure 10.1, even though (actually because) it
was not perfectly accurate.

We can work around the limitations of the real graph by looking closely at each
part. In Figures 10.3–10.8 I zoom in on various parts of the graph. In each case
you get (roughly) the shape that I drew in Figure 10.1.

Well, I think we’ve analyzed this problem from every way we can. The point
was just to do the problem in two different ways; we combined tricks from inte-
gration (partial fractions) and used the method of separation. I guess we also got
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Figure 10.3: Real graph: −2 ≤ x ≤ 0
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Figure 10.4: Real graph: 0 ≤ x ≤ 1
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Figure 10.5: Real graph: 1 ≤ x ≤ 5
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Figure 10.6: Real graph: 1 ≤ x ≤ 1.01
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Figure 10.7: Real graph: 2 ≤ x ≤ 5
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Figure 10.8: Real graph: 5 ≤ x ≤ 7
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practice in looking at a graph, and even a little bit of review of inverse functions
(i.e. reversing the roles of x and y). Thanks for reading through this.

Definition 10.2.1.

[author=wikibooks, file =text_files/homogeneous_ordinary_differential_equations]

A homogeneous equation is in the form dy
dx = f(y/x)

This looks difficult as it stands, however we can utilize a substitution y=xv
and use the product rule.

The equation above then becomes, using the product rule dy
dx = v + x dv

dx .

Then v+x dv
dx = f(v) x dv

dx = f(v)−v dv
dx = f(v)−v

x which is a seperable equation
and can be solved as above.

However let’s look at a worked equation to see how homogeneous equations are
solved.

Example 10.2.6.

[author=wikibooks, file =text_files/homogeneous_ordinary_differential_equations]

We have the equation dy
dx = y2+x2

yx

This does not appear to be immediately seperable, but let us expand to get
dy
dx = y2

yx + x2

yx
dy
dx = x

y + y
x

Substituting y=xv which is the same as substituting v=y/x dy
dx = 1/v + v

Now v + x dv
dx = 1/v + v Cancelling v from both sides x dv

dx = 1/v Seperating
v dv = dx/x Integrating both sides v2 + C = ln(x)

(
y
x

)2 = ln(x) − C y2 =
x2 ln(x)− Cx2 y = x

√
ln(x)− C

which is our desired solution.
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Definition 10.2.2.

[author=wikibooks, file =text_files/linear_ordinary_differential_equations]

A linear first order differential equation is a differential equation in the form
a(x) dy

dx + b(x)y = c(x)

Rule 10.2.1.

[author=wikibooks, file =text_files/linear_ordinary_differential_equations]

Multiplying or dividing a linear first order differential equation by any non-zero
function of x makes no difference to its solutions so we could always divide by a(x)
to make the coefficient of the differential 1, but writing the equation in this more
general form may offer insights.

At first glance, it is not possible to integrate the left hand side, but there is
one special case. If b happens to be the differential of a then we can write

a(x)
dy

dx
+ b(x)y = a(x)

dy

dx
+ y

da

dx
= ddxa(x)y

and integration is now straightforward.

Since we can freely multiply by any function, lets see if we can use this freedom
to write the left hand side in this special form.

We multiply the entire equation by an arbitary I(x) getting

aI
dy

dx
+ bIy = cI

then impose the condition
d

dx
aI = bI.

If this is satisified the new left hand side will have the special form. Note that
multiplying I by any constant will leave this condition still satisfied.

Rearranging this condition gives

1
I

dI

dx
=

b− da
dx

a

We can integrate this to get

ln I(x) =
∫

b(z)
a(z)

dz − ln a(x) + c I(x) =
k

a(x)
e

R b(z)
a(z) dz.

We can set the constant k to be 1, since this makes no difference. Next we use I
on the original differential equation, getting

e
R b(z)

a(z) dz dy

dx
+ e

R b(z)
a(z) dz b(x)

a(x)
y = e

R b(z)
a(z) dz c(x)

a(x)
.

Because we’ve chosen I to put the left hand side in the special form we can rewrite
this as

d

dx
(ye

R b(z)
a(z) dz) = e

R b(z)
a(z) dz c(x)

a(x)
.
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Integrating both sides and dividing by I we obtain the final result

y = e−
R b(z)

a(z) dz

(∫
e

R b(z)
a(z) dz c(x)

a(x)
dx + C

)
.

We call I an integrating factor. Similar techniques can be used on some other
calclulus problems.

Example 10.2.7.

[author=wikibooks, file =text_files/linear_ordinary_differential_equations]

Consider
dy

dx
+ y tanx = 1 y(0) = 0.

First we calculate the integrating factor.

I = e
R

tan zdz = eln sec x = sec x.

Multiplying the equation by this gives

sec x
dy

dx
+ y sec x tanx = sec x

or
d

dx
y sec x = sec x

We can now integrate

y = cos x

∫ x

0

sec z dz = cos x ln(sec x + tanx)

Definition 10.2.3.

[author=wikibooks, file =text_files/exact_ordinary_differential_equations]

An exact equation is in the form f(x, y)dx+g(x, y)dy = 0 and, has the property
that Dxf = Dyg

Rule 10.2.2.

[author=wikibooks, file =text_files/exact_ordinary_differential_equations]

If we have an exact equation then there exists a function h(x, y) such that Dyh =
fandDxh = g

So then the solutions are in the form h(x, y) = c by using total differentials.
We can find the function h(x, y) by integration.

Example 10.2.8.

[author=wikibooks, file =text_files/exact_ordinary_differential_equations]

Consider the differential equation (3x2 + 6y2)dx + ((3x2 + 6y2 + 4y)dy

It is exact since Dx(3x2 + 6y2) = 6xDy(3x2 + 6y2 + 4y) = 6x
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Now, there exists a function h such that 1)Dxh = f = (3x2 + 6y2) 2) Dyh =
g = (3x2 + 6y2 + 4y)

IntegrateDxh, with treating y as a constant h(x, y) = 2y3 + 3x2y + r(y) (We
have the function r(y) because on differentiating with respect to x of the above
expression, r(y) disappears - this is the similar procedure of adding an arbitrary
constant)

So now, Dyh = 3x2 + 6y2 + r′(x) Comparing with (2), we see r′(y) = 4y, so
r(y) = 2y2 + C

So substituting above, we get h(x, y)2y3 + 3x2y + 2y2 + C = C1 where C1 is a
constant, and our most general solution is then 2y3 + 3x2y + 2y2 = k and we have
simply moved the two constants to the one side of the expression and made this
one constant

10.3 Higher order differential equations

Discussion.

[author=wikibooks, file =text_files/introduction_to_higher_order_diffeqs]

The generic solution of a nth order ODE will contain n constants of integration.
To calculate them we need n more equations. Most often, we have either boundary
conditions, the values of y and its derivatives take for two different values of x or
initial conditions, the values of y and its first n-1 derivatives take for one particular
value of x.

Derivation.

[author=wikibooks, file =text_files/reducible_higher_order_ODEs]

If the independent variable x does not occur in the differential equation then its
order can be lowered by one. This will reduce a second order ODE to first order.

Consider the equation

F

(
y,

dy

dx
,
d2y

dx2

)
= 0.

Define u = dy
dx . Then

d2y

dx2
=

du

dx
=

du

dy
· dy

dx
=

du

dy
· u.

Substitute these two expression into the equationa and we get

F

(
y, u,

du

dy
· u
)

= 0

which is a first order ODE.

Example 10.3.1.

[author=wikibooks, file =text_files/reducible_higher_order_ODEs]

Solve 1 + 2y2 D2 y = 0 if at x=0, y=Dy=1
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First, we make the substitution, getting 1 + 2y2udu
dy = 0 This is a first order

ODE. By rearranging terms we can separate the variables udu = − dy
2y2 Integrating

this gives u2/2 = c + 1/2y We know the values of y and u when x=0 so we can
find c c = u2/2 − 1/2y = 12/2 − 1/(2 · 1) = 1/2 − 1/2 = 0 Next, we reverse the
substitution dy

dx

2
= u2 = 1

y and take the square root dy
dx = ± 1√

y To find out which
sign of the square root to keep, we use the initial condition, Dy=1 at x=0, again,
and rule out the negative square root. We now have another separable first order
ODE, dy

dx = 1√
y Its solution is 2

3y
3
2 = x + d Since y=1 when x=0, d=2/3, and

y =
(
1 + 3x

2

) 2
3

Definition 10.3.1.

[author=wikibooks, file =text_files/linear_higher_order_ODEs]

An ODE of the form dny
dxn + a1(x) dn−1y

dxn−1 + ... + any = F (x) is called linear. Such
equations are much simpler to solve than typical non-linear ODE’s. Though only
a few special cases can be solved exactly in terms of elementary functions, there is
much that can be said about the solution of a generic linear ODE. A full account
would be beyond the scope of this book If F (x) = 0 for all x the ODE is called
homogeneous.

Fact.

[author=wikibooks, file =text_files/linear_higher_order_ODEs]

Two useful properties of generic linear equations are Any linear combination of
solutions of an homogenous linear equation is also a solution. If we have a solution
of a nonhomogenous linear equation and we add any solution of the corresponding
homogenous linear equation we get another solution of the nonhomogenous linear
equation

Rule 10.3.1.

[author=wikibooks, file =text_files/linear_higher_order_ODEs]

Variation of constants Suppose we have a linear ODE, dny
dxn +a1(x) dn−1y

dxn−1 + ...+
any = 0 and we know one solution, y = w(x).

The other solutions can always be written as y = wz. This substitution in the
ODE will give us terms involving every differential of z upto the nth, no higher,
so we’ll end up with an nth order linear ODE for z.

We know that z is constant is one solution, so the ODE for z must not contain
a z term, which means it will effectively be an n− 1th order linear ODE. We will
have reduced the order by one.

Lets see how this works in practice.

Example 10.3.2.

[author=wikibooks, file =text_files/linear_higher_order_ODEs]

Consider d2y
dx2 + 2

x
dy
dx −

6
x2 y = 0
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One solution of this is y = x2, so substitute y = zx2 into this equation.(
x2 d2z

dx2 + 2x dz
dx + 2z

)
+ 2

x

(
x2 dz

dx + 2xz
)
− 6

x2 x2z = 0

Rearrange and simplify. x2D2z + 6xDz = 0 This is first order for Dz. We can
solve it to get z = Ax−5 y = Ax−3

Since the equation is linear we can add this to any multiple of the other solution
to get the general solution,

y = Ax−3 + Bx2

Rule 10.3.2.

[author=wikibooks, file =text_files/linear_higher_order_ODEs]

Linear homogenous ODE’s with constant coefficents Suppose we have a
ODE (Dn + a1D

n−1 + ... + an−1D + a0)y = 0 we can take an inspired guess at a
solution (motivate this) y = epx For this function Dny = pny so the ODE becomes
(pn + a1p

n−1 + ... + an−1p + a0)y = 0

y=0 is a trivial solution of the ODE so we can discard it. We are then left with
the equation pn + a1p

n−1 + ... + an−1p + a0) = 0 This is called the characteristic
equation of the ODE.

It can have up to n roots, p1, p2 . . . pn, each root giving us a different solution
of the ODE.

Because the ODE is linear, we can add all those solution together in any linear
combination to get a general solution y = A1e

p1x + A2e
p2x + ... + Anepnx

To see how this works in practice we will look at the second order case. Solving
equations like this of higher order uses the exact same principles only the algrebra
is more complex.

Rule 10.3.3.

[author=wikibooks, file =text_files/linear_higher_order_ODEs]

Second order If the ODE is second order, D2y + bDy + cy = 0 then the charac-
teristic equation is a quadratic, p2 + bp + c = 0 with roots p± = −b±

√
b2−4c
2

What these roots are like depends on the sign of b2−4c, so we have three cases
to consider.

1/b2 > 4c

In this case we have two different real roots, so we can write down the solution
straight away. y = A+ep+ + A−ep−

2/b2 < 4c

In this case, both roots are imaginary. We could just put them directly in the
formula, but if we are interested in real solutions it is more useful to write them
another way.

Defining k2 = 4c− b2, then the solution is y = A+eikx− bx
2 + A−e−ikx− bx

2

For this to be real, the A¡nowiki¿’¡/nowiki¿s must be complex conjugates A± =
Ae±ia

Make this substitution and we can write, y = Ae−bx/2 cos(kx + a)
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If b is positive, this is a damped oscillation.

3/b2 = 4c

In this case the characteristic equation only gives us one root, p=-b/2. We
must use another method to find the other solution.

We’ll use the method of variation of constants. The ODE we need to solve is,
D2y−2pDy+p2y = 0 rewriting b and cin terms of the root. From the characteristic
equation we know one solution is y = epx so we make the substitution y = zepx,
giving (epxD2z+2pepxDz+p2epxz)−2p(epxDz+pepxz)+p2epxz = 0 This simplifies
to D2z = 0, which is easily solved. We get z = Ax + B y = (Ax + B)epx so the
second solution is the first multiplied by x.

Higher order linear constant coefficent ODE’s behave similarly an exponential
for every real root of the characteristic and a exponent multiplied by a trig factor
for every complex conjugate pair, both being multiplied by a polynomial if the
root is repeated.

E.g, if the characteristic equation factors to (p − 1)4(p − 3)(p2 + 1)2 = 0 the
general solution of the ODE will be y = (A+Bx+Cx2+Dx3)ex+Ee3x+F cos(x+
a) + Gx cos(x + b)

The most difficult part is finding the roots of the characteristic equation.

Rule 10.3.4.

[author=wikibooks, file =text_files/linear_higher_order_ODEs]

Linear nonhomogenous ODE’s with constant coefficents First, let’s con-
sider the ODE Dy− y = x a nonhomogenous first order ODE which we know how
to solve.

Using the integrating factor e−x we find y = ce−x + 1− x

This is the sum of a solution of the coresponding homogenous equation, and a
polynomial.

Nonhomogeneous ODE’s of higher order behave similarly.

If we have a single solution, yp of the nonhomogeneous ODE, called a particular
solution, (Dn+a1D

n−1+· · ·+an)y = F (x) then the general solution is y = yp+yh,
where yh is the general solution of the homogeneous ODE.

Find yp For an arbitary F(x) requires methods beyond the scope of this chapter,
but there are some special cases where finding yp is straightforward.

Remember that in the first order problem yp for a polynomial F(x) was itself
a polynomial of the same order. We can extend this to higher orders.

Example D2y + y = x3 − x + 1 Consider a particular solution yp = b0 +
b1x + b2x

2 + x3 Substitute for y and collect coefficients x3 + b2x
2 + (6 + b1)x +

(2b2 + b0) = x3 − x + 1 So b2 = 0, b1 = −7, b0 = 1, and the general solution is
y = a sinx + b cos x + 1− 7x + x3

This works because all the derivatives of a polynomial are themselves polyno-
mials.

Two other special cases are F (x) = Pnekx yp(x) = Qnekx F (x) = An sin kx+
Bn cos kx yp(x) = Pn sin kx + Qn cos kx where Pn, Qn, An, and Bn are all poly-
nomials of degree n.
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Making these substitutions will give a set of simultaneous linear equations for
the coefficients of the polynomials.

Rule 10.3.5.

[author=wikibooks, file =text_files/linear_higher_order_ODEs]

Non-Linear ODE’s If the ODE is not linear, first check if it is reducible. If it is
neither linear nor reducible there is no generic method of solution. You may, with
sufficient ingenuity and algebraic skill, be able to transform it into a linear ODE.

If that is not possible, solving the ODE is beyond the scope of this book.



Chapter 11

Vectors

Discussion.

[author=wikibooks, file =text_files/introduction_to_vectors]

In most mathematics courses up until this point, we deal with scalars. These are
quantities which only need one number to express. For instance, the amount of
gasoline used to drive to the grocery store is a scalar quantity because it only
needs one number 2 gallons.

In this unit, we deal with vectors. A vector is a directed line segment – that
is, a line segment that points one direction or the other. As such, it has an initial
point and a terminal point. The vector starts at the initial point and ends at
the terminal point, and the vector points towards the terminal point. A vector is
drawn as a line segment with an arrow at the terminal point

The same vector can be placed anywhere on the coordinate plane and still be
the same vector – the only two bits of information a vector represents are the
magnitude and the direction. The magnitude is simply the length of the vector,
and the direction is the angle at which it points. Since neither of these specify a
starting or ending location, the same vector can be placed anywhere. To illustrate,
all of the line segments below can be defined as the vector with magnitude

√
32

and angle 45 degrees

Multiple locations for the same vector.

It is customary, however, to place the vector with the initial point at the origin
as indicated by the blue vector. This is called the standard position.

11.1 Basic vector arithmetic

Discussion.

[author=wikibooks, file =text_files/vector_operations]

In most mathematics courses up until this point, we deal with scalars. These are
quantities which only need one number to express. For instance, the amount of
gasoline used to drive to the grocery store is a scalar quantity because it only
needs one number 2 gallons.

307



308 CHAPTER 11. VECTORS

In this unit, we deal with vectors.

Definition 11.1.1.

[author=wikibooks, file =text_files/vector_operations]

A vector is a directed line segment – that is, a line segment that points one direction
or the other. As such, it has an initial point and a terminal point. The vector
starts at the initial point and ends at the terminal point, and the vector points
towards the terminal point. A vector is drawn as a line segment with an arrow at
the terminal point

The same vector can be placed anywhere on the coordinate plane and still be
the same vector – the only two bits of information a vector represents are the
magnitude and the direction. The magnitude is simply the length of the vector,
and the direction is the angle at which it points. Since neither of these specify a
starting or ending location, the same vector can be placed anywhere. To illustrate,
all of the line segments below can be defined as the vector with magnitude

√
32

and angle 45 degrees

It is customary, however, to place the vector with the initial point at the origin
as indicated by the blue vector. This is called the standard position.

Comment.

[author=wikibooks, file =text_files/vector_operations]

In standard practice, we don’t express vectors by listing the length and the di-
rection. We instead use component form, which lists the height (rise) and width
(run) of the vectors. It is written as follows

From the diagram we can now see the benefits of the standard position the
two numbers for the terminal point’s coordinates are the same numbers for the
vector’s rise and run. Note that we named this vector u. Just as you can assign
numbers to variables in algebra (usually x, y, and z), you can assign vectors to
variables in calculus. The letters u, v, and w are usually used, and either boldface
or an arrow over the letter is used to identify it as a vector.

When expressing a vector in component form, it is no longer obvious what the
magnitude and direction are. Therefore, we have to perform some calculations to
find the magnitude and direction.

Definition 11.1.2.

[author=wikibooks, file =text_files/vector_operations]

The magnitude of a vector is defined as

|~u| =
√

u2
x + u2

y

where ux is the width, or run, of the vector uy is the height, or rise, of the vector.
You should recognize this formula as simply the distance formula between two
points. It is – the magnitude is the distance between the initial point and the
terminal point.
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Definition 11.1.3.

[author=wikibooks, file =text_files/vector_operations]

The direction of a vector is defined as,

tan θ =
uy

ux

where θ is the direction of the vector. This formula is simply the tangent formula
for right triangles.

Comment.

[author=duckworth, file =text_files/vector_operations]

Note that the definition of direction of a vector assumes that you have fixed x
and y axes in the R2 plane. In more general settings “direction” of a vector is
too vague, instead, one would refer more speceficially to “the angle between two
vectors.”

Definition 11.1.4.

[author=duckworth, file =text_files/vector_operations]

Let ~u =
[
ux

uy

]
and ~v =

[
vx

vy

]
be any vectors. We define ~u+~v to be the vector given

by [
ux + vx

uy + vy

]
.

Comment.

[author=wikibooks, file =text_files/vector_operations]

Graphically, adding two vectors together places one vector at the end of the other.
This is called tip-to-tail addition The resultant vector, or solution, is the vector
drawn from the initial point of the first vector to the terminal point of the second
vector when they are drawn tip-to-tail

Example 11.1.1.

[author=wikibooks, file =text_files/vector_operations]

For example, [
4
6

]
+
[

1
−3

]
=
[
5
3

]

Definition 11.1.5.

[author=wikibooks, file =text_files/vector_operations]

Let c be a real number and ~u any vector. We define the scalar product c~u as
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the vector:

c~u =
[
cux

cuy

]

Comment.

[author=wikibooks, file =text_files/vector_operations]

Graphically, multiplying a vector by a scalar changes only the magnitude of the
vector by that same scalar. That is, multiplying a vector by 2 will “stretch” the
vector to twice its original magnitude, keeping the direction the same.

Example 11.1.2.

[author=duckworth, file =text_files/vector_operations]

Note that the length of
[
3
5

]
is
√

9 + 25 =
√

34. Nowe we calculate 2
[
3
5

]
=
[

6
10

]
.

Note that the length of
[

6
10

]
is
√

36 + 100 =
√

136 = 2
√

34.

Fact.

[author=wikibooks, file =text_files/vector_operations]

Since multiplying a vector by a constant results in a vector in the same direction,
we can reason that two vectors are parallel if one is a constant multiple of the
other – that is, that ~u is parllel to ~v if ~u = c~v for some constant c.

Definition 11.1.6.

[author=duckworth, file =text_files/vector_operations]

Let ~u =
[
ux

uy

]
and ~v =

[
vx

vy

]
be any vectors. We define the dot product ~u · ~v to

be the real number given by

ux · vx + uy · vy.

Comment.

[author=duckworth, file =text_files/vector_operations]

Note, we have used the notation “·” both for multiplying vectors and for multiply-
ing real numbers. We rely on the reader to whether the things being multiplied
are vectors or real numbers.

Definition 11.1.7.

[author=wikibooks, file =text_files/vector_operations]
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The angle θ between two vectors ~u and ~v is (implicitly) by the equation

~u · ~v = |~u||~v| cos θ

where θ is the angle difference between the two vectors.

Fact.

[author=duckworth, file =text_files/vector_operations]

Two vectors ~u and ~v are perpendicular to each other if and only if ~u · ~v = 0.

Definition 11.1.8.

[author=wikibooks, file =text_files/vector_operations]

A unit vector is a vector with a magnitude of 1. The unit vector of u is a
vector in the same direction as ~u, but with a magnitude of 1. In other words, the
unit vector of u is given by the formula 1

|~u|~u. The process of finding the unit vector
of u is called normalization.

Definition 11.1.9.

[author=duckworth, file =text_files/vector_operations]

We define the standard basis or standard unit vectors. Define the vector î as[
1
0

]
. Thus î points from the origin directly to the right with a length of 1. Define

the vector ĵ as
[
0
1

]
. Thus ĵ points from the origin directly up with a length of

1. It may not be obvious to the student why it’s even worth giving these vectors
names; these vectors are occasionally convenient when writing formulas.

Comment.

[author=duckworth, file =text_files/vector_operations]

Using the standard unit vectors we can write an arbitrary vector ~u this way

u = uxî + uy ĵ

where ux and uy are the x and y-components of u, respectively.

Discussion.

[author=wikibooks, file =text_files/polar_coordinates]

Polar coordinates are an alternative two-dimensional coordinate system, which is
often useful when rotations are important. Instead of specifying the position along
the x and y axes, we specify the distance from the origin, r, and the direction, an
angle θ .

Looking at this diagram, we can see that the values of x and y are related to
those of r and θ by the equations

x = r cos θ r =
√

x2 + y2

y = r sin θ tan θ = y
x
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Because tan−1 is multivalued, care must be taken to select the right value.

Just as for Cartesian coordinates the unit vectors that point in the x and y
directions special, so in polar coordinates the unit vectors that point in the r and
θ directions are special.

We will call these vectors r̂ and θ̂, pronounced r-hat and theta-hat. Putting
a circumflex over a vector this way is often used to mean the unit vector in that
direction.

Again, on looking at the diagram we see,

i = r̂ cos θ − θ̂ sin θ r̂ = x
r i + y

r j

j = r̂ sin θ + θ̂ cos θ θ̂ = −y
r i + x

r j

Discussion.

[author=wikibooks, file =text_files/three_dimensional_vectors]

Two-dimensional Cartesian coordinates as we’ve discussed so far can be easily
extended to three-dimensions by adding one more value z. If the standard (x, y)
coordinate axes are drawn on a sheet of paper, the z axis would extend upwards
off of the paper.

Similar to the two coordinate axes in two-dimensional coordinates, there are
three coordinate planes in space. These are the xy-plane, the yz-plane, and the
xz-place. Each plane is the “sheet of paper” that contains both axes the name
mentions. For instance, the yz-plane contains both the y and z axes and is per-
pendicular to the x axis.

Therefore, vectors can be extended to three dimensions by simply adding the
z value. For example:

~u =

x
y
z


To faciliate standard form notation, we add another standard unit vector

~k =

0
0
1


Again, both forms (component and standard) are equivalent. For example,1

2
3

 = 1~i + 2~j + 3~k

Magnitude in three dimensions is the same as in two dimensions, with the
addition of a z term in the square root:

|~u| =
√

u2
x + u2

y + u2
z
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Definition 11.1.10.

[author=wikibooks, file =text_files/three_dimensional_vectors]

The cross product of two vectors is defined as the following determinant:

~u× ~v =

∣∣∣∣∣∣
~i ~j ~k
ux uy uz

vx vy vz

∣∣∣∣∣∣
and is vector.

The cross product of two vectors is at right angles to both vectors. The mag-
nitude of the cross product is the product of the magnitude of the vectors and
sin(θ) where θ is the angle between the two vectors:

|~u× ~v| = |~u||~v| sin(θ).

This magnitude is the area of the parallelogram defined by the two vectors.

Fact.

[author=wikibooks, file =text_files/three_dimensional_vectors]

The cross product is linear and anticommutative. In other words, for any numbers
a and b, and any vectors ~u, ~v and ~w, we have

~u× (a~v + b~w) = a~u× ~v + b~u× ~w

and
~u× ~v = −~v × ~u

If both vectors point in the same direction, their cross product is zero.

Facts.

[author=wikibooks, file =text_files/three_dimensional_vectors]

If we have three vectors we can combine them in two ways, a triple scalar product,

~u · (~v × ~w)

and a triple vector product
~u× (~v × ~w)

The triple scalar product is a determinant

~u · (~v × ~w) =

∣∣∣∣∣∣
ux uy uz

vx vy vz

wx wy wz

∣∣∣∣∣∣
If the three vectors are listed clockwise, looking from the origin, the sign of this
product is positive. If they are listed anticlockwise the sign is negative.

The order of the cross and dot products doesn’t matter:

~u · (~v × ~w) = (~u× ~v) · ~w

Either way, the absolute value of this product is the volume of the paralllelpiped
defined by the three vectors, u, v, and w
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The triple vector product can be simplified:

~u× (~v × ~w) = (~u · ~w)~v − (~u · ~v)~w

This form is easier to do calculations with.

The triple vector product is not associative.

~u× (~v × ~w) 6= (~u× ~v)× ~w.

There are special cases where the two sides are equal, but in general the brackets
matter and must not be omitted.

Discussion.

[author=wikibooks, file =text_files/three_dimensional_vectors]

We will use r to denote the position of a point.

The multiples of a vector, a all lie on a line through the origin. Adding a
constant vector b will shift the line, but leave it straight, so the equation of a line
is, ~r = ~as +~b

This is a parametric equation. The position is specified in terms of the param-
eter s.

Any linear combination of two vectors, a and b lies on a single plane through
the origin, provided the two vectors are not colinear. We can shift this plane by a
constant vector again and write ~r = ~as +~bt + ~c

If we choose a and b to be orthonormal vectors in the plane (i.e unit vectors
at right angles) then s and t are cartesian coordiantes for points in the plane.

These parametric equations can be extended to higher dimensions.

Instead of giving parametic equations for the line and plane, we could use
constraints. E.g, for any point in the x− y-plane z = 0.

For a plane through the origin, the single vector normal to the plane, n, is at
right angle with every vector in the plane, by defintion, so ~r · ~n = 0 is a plane
through the origin, normal to n.

For planes not through the origin we get (~r − ~a) · ~n = 0 ~r · ~n = a

A line lies on the intersection of two planes, so it must obey the constraint for
both planes, i.e ~r · ~n = a ~r · ~m = b

These constraint equations con also be extended to higher dimensions.

Discussion.

[author=wikibooks, file =text_files/three_dimensional_vectors]

For any curve given by vector function of t, f(t), we can define a unit tangent
vector t,

~t =
1

|d~f/dt|
d~f

dt
,

where t depends only on the geometry of the curve, not on the parameterisation.
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Now, for any unit vector v we have

1 = ~v · ~v
1 = vxvx + vyvy + vzvz

0 = 2vxv̇x + 2vy v̇y + 2vxv̇y

0 = ~v · ~̇v

so v and its derivative are always at right angles.

This lets us define a second unit vector, at right angles to the tangent, which
also depends only on the geometry of the curve.

~n =
1

|d~t/dt|
d~t

dt
,

n is called the normal to the curve. The curve lies in its n−t-plane near any point.
This plane is called the osculating plane.

Since we’ve got two perpendicular unit vectors we can define a third.

~b = ~t× ~n

This vector is called the binormal. All three of these vectors depend only on the
geometry of the curve, which makes them useful when studying that curve.

We can, for example, use them to define curvature.

Discussion.

[author=wikibooks, file =text_files/three_dimensional_vectors]

Suppose x = (x(t), y(t), z(t)). We can use Pythagoras to calculate the length of
an infintesimal segment of the curve.

ds =
√

dx2 + dy2 + dz2

= dt
√

v2
x + v2

y + v2
z

where s is the length measured along the curve and v is the derivative of x with
respect to t, analogous to velocity.

Integrating this, we get

s =
∫ √

v2
x + v2

y + v2
z dt

ds

dt
= |~v|

For a circle, x = (a cos(t), a sin(t), 0), this gives d
dt = a and the circumference

of the circle as 2πa just as expected.

The curvature of a curve ~x is defined to be

κ = |
∣∣∣∣d~x

ds

∣∣∣∣
For circles, this is the reciprocal of the radius. E.g

κ =
∣∣ d
ds (cos t, sin t)

∣∣
= dt

ds

∣∣ d
dt (cos t, sin t)

∣∣
= 1

a |(− sin t, cos t)|
= 1

a
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We can get the general expression for κ by writing v and a in terms of t and n

~v = ~tds
dt

~a = d
dt

(
~tds

dt

)
= d2s

dt2
~t +ds

dt
d~t
dt

= d2s
dt2

~t +
(

ds
dt

)2 d~t
ds

= d2s
dt2

~t +
(

ds
dt

)2
κ~n

where the last line follows from the definitions of n and κ.

We can now take the cross product of velocity and acceleration to get

~v × ~a = κ

(
ds

dt

)3

~b

but b is a unit vector and |ds/dt| = |v| so

κ =
|~v × ~a|
|~v|3

For a two-dimensional curve there is an alternative interpretation of κ. Since
t and n are both unit vectors they must be of the form

~t = (cos θ, sin θ) ~t = (− sin θ, cos θ)

Differentiating these vectors gives

d

ds
~t = (− sin θ, cos θ)

dθ

ds

d

ds
~t = (− cos θ,− sin θ)

dθ

ds
.

Comparing this with the previous definitions we see that

κ =
dθ

ds

d

ds
~t = κ~n

d

ds
~n = −κ~t

So for a two-dimensional curve, the curvature is the rate at which the tangent and
normal vectors rotate.

A similar expression can be deduced for three dimensional curves.

11.2 Limits and Continuity in Vector calculus

Discussion.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

In your previous study of calculus, we have looked at functions and their behaviour.
Most of these functions we have examined have been all in the form f : R → R, and
only occasional examination of functions of two variables. However, the study of
functions of several variables is quite rich in itself, and has applications in several
fields.

We write functions of vectors - many variables - as follows fRm → Rn and f(x)
for the function that maps a vector in Rm to a vector in Rn.

Before we can do calculus in Rn, we must familiarise ourselves with the struc-
ture of Rn. We need to know which properties of R can be extended to Rn



11.2. LIMITS AND CONTINUITY IN VECTOR CALCULUS 317

Discussion.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Topology in Rn We are already familar with the nature of the regular real number
line, which is the set R, and the two-dimensional plane, R2. This examination of
topology in Rn attempts to look at a generalization of the nature of n-dimensional
spaces; R, or R23, or Rn.

Discussion.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Lengths and distances If we have a vector in R2, we can calculate its length
using the Pythagorean theorem. For instance, the length of the vector (2, 3) is√

22 + 32 =
√

13

Definition 11.2.1.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

We can generalize this to Rn. We define a vector’s length, written —x—, as the
square root of the squares of each of its components. That is, if we have a vector
x = (x1, ..., xn), |x| =

√
x2

1 + x2
2 + · · ·+ x2

n

Now that we have established some concept of length, we can establish the
distance between two vectors. We define this distance to be the length of the two
vectors’ difference. We write this distance d(x, y), and it is d(x,y) = |x − y| =√∑

(xi − yi)2

This distance function is sometimes referred to as a metric. Other metrics
arise in different circumstances. The metric we have just defined is known as the
Euclidean metric.

Definition 11.2.2.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Open and closed balls In R, we have the concept of an interval, in that we
choose a certain number of other points about some central point. For example,
the interval [-1, 1] is centered about the point 0, and includes points to the left
and right of zero.

In R2 and up, the idea is a little more difficult to carry on. For R2, we need
to consider points to the left, right, above, and below a certain point. This may
be fine, but for R3 we need to include points in more directions.

We generalize the idea of the interval by considering all the points that are a
given, fixed distance from a certain point - now we know how to calculate distances
in Rn, we can make our generalization as follows, by introducing the concept of an
open ball and a closed ball respectively, which are analogous to the open and closed
interval respectively. an open ball B(a, r) is a set in the form {x ∈ Rn|d(x, a) < r}
an closed ball B(a, r) is a set in the form {x ∈ Rn|d(x, a) ≤ r}

In R, we have seen that the open ball is simply an open interval centered about
the point x=a. In R2 this is a circle with no boundary, and in R3 it is a sphere
with no outer surface. (What would the closed ball be?)
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Neighbourhoods A neighbourhood is an important concept to determine whether
a set later, is open or closed. A set N in Rn is called a neighbourhood (usually
just abbreviated to nhd) of a in Rn such that a is contained in N, and that for
some r, an open ball of radius r about a is a subset of N.

More symbolically, for every r > 0, x ∈ N when d(x, a) < r.

Simply put, all points sufficiently close to a, are also in N. We have some
terminology with certain points and their neighbourhoods - a point in a set with
a neighbourhood lying completely in that set is known as an interior point of that
set. The set of all interior points of a set S is known as the interior of the set S
and is written So.

Definition 11.2.3.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Open and closed sets With these ideas now, we can formulate the concept of
an open set and a closed set.

We say that a set is open if every point in that set is an interior point of that
set, which means that we can construct a neighbourhood of every point in that
set. Symbolically, for all a ∈ S, there is a r > 0, so all x satisfying d(x, a) < r is
in S.

We have the fact that open balls are open sets. With the idea of the complement
of a set S being all the points that are not in S, written Sc or S′, a closed set is
a set with its complement being open.

Example 11.2.1.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

It is important to note that most sets are not open or closed. Think about a box
in R2 with its top and bottom included, and it’s left and right sides open - this
set is {(x, y)||x| < 1and|y| ≤ 1}.

Definition 11.2.4.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Limit points A limit point of some set S is a point where, if we construct a
neighbourhood about that point, that neighbourhood always contains some other
point in S.

Example 11.2.2.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Here’s an example. If S = {1/n|n ∈ Z+}, and we pick the point 0, we can always
construct a neighbourhood about 0 which includes some other point of S. This
brings up the important point that a limit point need not be in that set. Note
that 0 is clearly not in S - but is a limit point of that set.
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Definition 11.2.5.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

If we include all the limit points of a set including that set, we call that set the
closure of S, and we write it S.

Comment.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Limit points allow us to also characterize whether a set is open or closed - a set is
closed if it contains all its limit points.

Definition 11.2.6.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Boundary points If we have some area, say a field, then the common sense
notion of the boundary is the points next to both the inside and outside of the
field. For any set S we can define this rigorously by saying the boundary of the
set contains all those points such that we can find points both inside and outside
the set. We call the set of such points ∂S.

Typically, when it exists the dimension of ∂S is one lower than the dimension
of S. e.g the boundary of a volume is a surface and the boundary of a surface is a
curve.

This isn’t always true but it is true of all the sets we will be using.

Example 11.2.3.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

The boundary of a closed ball in R2 is the circle surrounding the interior of that
ball. In symbols this means that ∂B((0, 0), 1) = {(x, y)|x2 + y2 = 1}

Definition 11.2.7.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Bounded sets A set S is bounded if it is contained in some ball centered at 0.

Definition 11.2.8.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Curves and parametrizations If we have a function f : R → Rn, we say that
the image of f (i.e. the set {f(t)|t ∈ R}) is a curve in Rn and that f is its
parametrization.

Parametrizations are not necessarily unique - for example, f(t) = (cos t, sin t)
such that t ∈ [0, 2π) is one parametrization of the unit circle, and g(t) = (cos 7t, sin 7t)
such that t ∈ [0, 2π/7) is another parameterization.
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Definition 11.2.9.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Collision and intersection points Say we have two different curves. It may be
important to consider when the two curves cross each other - where they intersect
when the two curves hit each other at the same time - where they collide.

Definition 11.2.10.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Intersection points Firstly, we have two parametrizations f(t) and g(t), and we
want to find out when they intersect, this means that we want to know when the
function values of each parametrization are the same. This means that we need
to solve f(t) = g(s) because were seeking the function values independent of the
times they intersect.

Example 11.2.4.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

For example, if we have f(t) = (t, 3t) and g(t) = (t, t2), and we want to find
intersection points f(t) = g(s) = (t, 3t) = (s, s2), t = s and 3t = s2 with solutions
(t, s) = (0, 0) and (3, 3)

So, the two curves intersect at the points (0, 0) and (3, 9).

However, if we want to know when the points ”collide”, with f(t) and g(t), we
need to know when both the function values and the times are the same, so we
need to solve instead f(t) = g(t)

For example, using the same functions as before, f(t) = (t, 3t) and g(t) = (t, t2),
and we want to find collision points f(t) = g(t)(t, 3t) = (t, t2), t = t and 3t = t2

which gives solutions t = 0, 3 So the collision points are (0, 0) and (3, 9).

We may want to do this to actually model physical problems, such as in bal-
listics.

Definition 11.2.11.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Continuity and differentiability If we have a parametrization f : R → Rn,
which is built up out of component functions in the form f(t) = (f1(t), ..., fn(t)),
then we say that f is continuous if and only if each component function is also.

In this case the derivative of f(t) is ai = (f1(t), ..., fn(t)). This is actually a
specific consequence of a more general fact we will see later.

Definition 11.2.12.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Tangent vectors Recall in single-variable calculus that on a curve, at a certain
point, we can draw a line that is tangent to that curve at exactly at that point.
This line is called a tangent. In the several variable case, we can do something
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similar.

We can expect the tangent vector to depend on f ′(t) and we know that a line
is its own tangent, so looking at a parametrised line will show us precisely how to
define the tangent vector for a curve.

An arbitary line is f(t) = at + b, with fi(t) = ait + bi, so fi(t) = ai and
f(t) = a, which is the direction of the line, its tangent vector.

Similarly, for any curve, the tangent vector is f ′(t).

The gradient of the line f(t) in the one-variable case is f ′(t), likewise, the
tangent vector to a curve in the several variable case is the vector f ′(t) (this
vector must not be 0).

Definition 11.2.13.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Angle between curves We can then formulate the concept of the angle between
two curves by considering the angle between the two tangent vectors. If two
curves, parametrized by f1 and f2 intersect at some point, which means that
f1(s) = f2(t) = c, the angle between these two curves at c is the angle between
the tangent vectors f1(s) and f2(t) is given by arccos f ′1(s)−f ′2(s)

|f ′1(s)||f ′2(t)|

Definition 11.2.14.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Tangent lines With the concept of the tangent vector as being analogous to
being the gradient of the line in the one variable case, we can form the idea of the
tangent line. Recall that we need a point on the line and its direction.

If we want to form the tangent line to a point on the curve, say p, we have the
direction of the line f ′(p), so we can form the tangent line x(t) = p + tf ′(p)

Definition 11.2.15.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Different parametrizations One such parametrization of a curve is not neces-
sarily unique. Curves can have several different parametrizations. For example,
we already saw that the unit circle can be parametrized by g(t) = (cos(at), sin(at))
such that t ∈ [0, 2π/a).

Generally, if f is one parametrization of a curve, and g is another, with f(t0) =
g(s0) there is a function u(t) such that u(t0) = s0, and g(u(t)) = f(t) near t0.

This means, in a sense, the function u(t) ”speeds up” the curve, but keeps the
curves shape.

Definition 11.2.16.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Surfaces A surface in space can be described by the image of a function f : R2 →
Rn. We call f the parametrization of that surface.
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Example 11.2.5.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

For example, consider the function f(α, β) = α(2, 1, 3) + β(−1, 2, 0) This de-
scribes an infinite plane in R3. If we restrict α and β to some domain, we get
a parallelogram-shaped surface in R3.

Comment.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Surfaces can also be described explicitly, as the graph of a function z = f(x, y)
which has a standard parametrization as f(x, y) = (x, y, f(x, y)), or implictly, in
the form f(x, y, z) = c.

Definition 11.2.17.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Level sets The concept of the level set (or contour) is an important one. If
you have a function f(x, y, z), a level set in R3 is a set of the form {(x, y, z) |
f(x, y, z) = c}. Each of these level sets is a surface.

Level sets can be similarly defined in any Rn.

Level sets in two dimensions may be familiar from maps, or weather charts.
Each line represents a level set. For example, on a map, each contour represents
all the points where the height is the same. On a weather chart, the contours
represent all the points where the air pressure is the same.

Discussion.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Intersections of surfaces Different surfaces can intersect and produce curves
as well. How can these be found? If the surfaces are simple, we can try and solve
the two equations of the surfaces simultaneously.

Discussion.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Limits and continuity Before we can look at derivatives of multivariate func-
tions, we need to look at how limits work with functions of several variables first,
just like in the single variable case.

Definition 11.2.18.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

If we have a function f : R → Rn, we write

lim
x→a

f(x) = b
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if for all positive ε, there is a corresponding positive number δ such that |f(x)−b| <
ε whenever |x− a| < δ, with x 6= a.

Comment.

[author=duckworth, file =text_files/formal_issues_of_vector_calculus]

Definition 11.2.18 means that by making difference between x and a smaller, we
can make the difference between f(x) and b as small as we want.

For grammatical convenience we sometimes describe the situation in Defini-
tion 11.2.18 in different ways.

We read this definition as “the limit of f(x), as x approaches a, equals b.” We
also write “f(x) → b as x → a”. We also will write “limx→a f = b” (where we
leave out the “x” in “f(x)”), or even lim f = b (where we leave out the “x → a”).
These abbreviated forms are not used just out of laziness; it’s sometimes better to
simplify notation by leaving out unnecessary details.

Fact.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Since this is an almost identical formulation of limits in the single variable case,
many of the limit rules in the one variable case are the same as in the multivariate
case.

Let f and g be functions mapping Rm to Rn, and h(x) a scalar function map-
ping Rm to R. Suppose limx→a f(x) = b, limx→a g(x) = c, and limx→a h(x) = H.
Then the following hold:

• limx→a(f + g) = b + c,

• limx→a(h(x)f(x)) = Hb,

• limx→a(f · g) = b · c,

• limx→a(f × g) = b× c.

• if n = 1 and c 6= 0, then limx→a
f
g = b

c .

• If H 6= 0 then limx→a
f
h = b

H

Discussion.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Continuity Again, we can use a similar definition to the one variable case to
formulate a definition of continuity for multiple variables.

Definition 11.2.19.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

If f : Rm → Rn, then f is continuous at a point a in Rm if f(a) is defined and
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limx→a f(x) = f(a)

Comment.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Just as for functions of one dimension, if f , g are both continuous at x = a, then
f + g, λf (for a scalar λ ), f · g, and f × g are also continuous at x = a. If
φ : Rm → R is continus at x = a, and φ(a) 6= 0, then φ(x)f(x), f/φ are also
continuous at x = a.

Comment.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

From these facts we also have that if A is some matrix which is n×m in size, with
x in Rm, a function f(x) = Ax is continuous in that the function can be expanded
in the form x1a1 + ... + xmam, which can be easily verified from the points above.

Fact.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Let f : Rm → Rn and write f(x) in the form f(x) = (f1(x), ..., fn(x). Then f is
continuous if and only if each fi is continuous.

Fact.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Finally, if f is continuous at x = a, and g is continuos at f(a), then g(f(x)) is
continuous at x = a.

Comment.

[author=wikibooks, file =text_files/formal_issues_of_vector_calculus]

Special note about limits It is important to note that 1-variable functions can
have multiple limits too since we are looking at limits of functions of more than one
variable, we must note that we can approach a point in more than one direction,
and thus, the direction that we approach that point counts in our evaluation of
the limit. It may be the case that a limit may exist moving in one direction, but
not in another. ex

11.3 Derivatives in vector calculus

Discussion.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]
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Before we define the derivative in higher dimensions, it’s worth looking again at
the definition of derivative in one variable.

For one variable the definition of the derivative at a point p, is limx→p
f(x)−f(p)

x−p =
f(p)

We cant divide by vectors, so this defintion cant be immediately extended to
the multiple variable case. However, we can divide by the absolute value of a
vector, so lets rewrite this definition in terms of absolute values

Still needs probably a little more explanation here limx→p
|f(x)−f(p)−f(p)(x−p)|

|x−p| =
0 after pulling f(p) inside and putting it over a common denominator.

So, how can we use this for the several-variable case?

If we switch all the variables over to vectors and replace the constant,(which
performs a linear map in one dimension) with a matrix (which is also a linear map),
we have limx→p

|f(x)−f(p)−A(x−p)|
|x−p| = 0 If this limit exists for some fRm → Rn,

and there is a matrix A which is m × n, we refer to this matrix as being the
derivative and we write it as Dpf .

A point on terminology - in referring to the action of taking the derivative, we
write Dpf , but in referring to this matrix itself, it is known as the Jacobian matrix
and is also written Jpf . More on the Jacobian later.

Discussion.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]

Affine approximations We say that f is differentiable at p if we have, for x
close to p, that |f(x)− (f(p)+A(x− p)| is small compared to |x− p|. If this holds
then f(x) is approximately equal to f(p) + A(x− p).

We call an expression of the form g(x) + c affine, when g(x) is linear and c is
a constant. f(p) + A(x− p) is an affine approximation to f(x).

Discussion.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]

Jacobian matrix and partial derivatives The Jacobian matrix of a function
is in the form (Jpf)ij = ∂fi

∂xj

∣∣∣
p

for a fRm → Rn, Jpf is a m× n matrix.

The consequence of this is that if f is differentiable at p, all the partial deriva-
tives of f exist at p.

However, it is possible that all the partial derivatives of a function exist at
some point yet that function is not differentiable there.

Discussion.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]

Continuity and differentiability

Furthermore, if all the partial derivatives exist, and are continuous in some
neighbourhood of a point p, then f is differentiable at p. This has the conse-
quence that functions which have their component functions built from continuous
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functions (such as rational functions, differentiable functions or otherwise), f is
differentiable everywhere f is defined.

We use the terminology continuously differentiable for a function differentiable
at p which has all its partial derivatives existing and are continuous in some
neighbourhood at p.

Discussion.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]

Rules of taking Jacobians If fRm → Rn, and h(x)Rm → R are differentiable
at p Jp(f + g) = Jpf + Jpg Jp(hf) = hJpf + f(p)Jph Jp(f · g) = gT Jpf + fT Jpg
Important make sure the order is right - matrix multiplication is not commutative!

Discussion.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]

Chain rule The chain rule for functions of several variables is as follows. For
fRm → Rn and gRn → Rp, and g◦f differentiable at p, then the Jacobian is given
by
(
Jf(p)g

)
(Jpf) Again, we have matrix multiplication, so one must preserve this

exact order. Compositions in one order may be defined, but not necessarily in the
other way.

come back to this Higher derivatives If one wishes to take higher-order partial
derivatives, we can proceed in two ways if the order is small, calculate the first
derivative, and then calculate the derivative of that and so forth, or nest using the
chain rule as follows

Discussion.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]

Alternate notations For simplicity, we will often use various standard abbrevi-
ations, so we can write most of the formulae on one line. This can make it easier
to see the important details.

Notation.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]

We can abbreviate partial differentials with a subscript, e.g, ∂xh(x, y) = ∂h
∂x ∂x∂yh =

∂y∂xh When we are using a subscript this way we will generally use the Heavi-
side D rather than ∂, Dxh(x, y) = ∂h

∂x DxDyh = DyDxh Mostly, to make the
formulae even more compact, we will put the subscript on the function itself.
Dxh = hx hxy = hyx

If we are using subscripts to label the axes, x1, x2, . . . , then, rather than having
two layers of subscripts, we will use the number as the subscript.

h1 = D1h = ∂1h = ∂x1h = ∂h
∂x1

We can also use subscripts for the components of a vector function, u =
(ux, uy, uy) or u = (u1, u2 . . . un).



11.4. DIV, GRAD, CURL, AND OTHER OPERATORS 327

If we are using subscripts for both the components of a vector and for partial
derivatives we will separate them with a comma.

ux,y = ∂ux

∂y

The most widely used notation is hx. Both h1 and ∂1h are also quite widely
used whenever the axes are numbered. The notation ∂xh is used least frequently.

We will use whichever notation best suits the equation we are working with.

Discussion.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]

Directional derivatives Normally, a partial derivative of a function with respect
to one of its variables, say, xj , takes the derivative of that “slice” of that function
parallel to the xjth axis. needs pic

More precisely, we can think of cutting a function f(x1, ..., xn) in space along
the xjth axis, with keeping everything but the xj variable constant.

From the definition, we have the partial derivative at a point p of the function
along this slice as ∂f

∂xj
= limt→0

f(p+tej)−f(p)
t

provided this limit exists.

Discussion.

[author=wikibooks, file =text_files/derivatives_in_vector_calculus]

Instead of the basis vector, which corresponds to taking the derivative along
that axis, we can pick a vector in any direction (which we usually take as be-
ing a unit vector), and we take the directional derivative of a function as ∂f

∂d =
limt→0

f(p+td)−f(p)
t where d is the direction vector.

If we want to calculate directional derivatives, calculating them from the limit
definition is rather painful, but, we have the following if fR → R is differentiable
at a point p, —p—=1, ∂f

∂d = Dpf(d)

There is a closely related formulation which well look at in the next section.

11.4 Div, Grad, Curl, and other operators

Definition 11.4.1.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Gradient vectors The partial derivatives of a scalar tell us how much it changes
if we move along one of the axes. What if we move in a different direction?

Well call the scalar f, and consider what happens if we move an infintesimal
direction dr=(dx,dy,dz), using the chain rule. df = dx∂f

∂x + dy ∂f
∂y + dz ∂f

∂z

This is the dot product of dr with a vector whose components are the partial
derivatives of f, called the gradient of f
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grad f = ∇f =
(

∂f(p)
∂x1

, · · · , ∂f(p)
∂xn

)
We can form directional derivatives at a point p, in the direction d then by

taking the dot product of the gradient with d ∂f(p)
∂d = d · ∇f(p).

Notice that grad f looks like a vector multiplied by a scalar. This particular
combination of partial derivatives is commonplace, so we abbreviate it to ∇ =(

∂
∂x , ∂

∂y , ∂
∂z

)
We can write the action of taking the gradient vector by writing this as an

operator. Recall that in the one-variable case we can write d/dx for the action
of taking the derivative with respect to x. This case is similar, but ∇ acts like a
vector.

We can also write the action of taking the gradient vector as∇ =
(

∂
∂x1

, ∂
∂x2

, · · · ∂
∂xn

)

Comment.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Properties of the gradient vector Let f be a vector function and p a point
in the domain of f . Then ∇f(p) is a vector pointing in the direction of steepest
slope of f . Therefore |∇f(p)| is the rate of change of that slope at that point.

Example 11.4.1.

[author=wikibooks, file =text_files/gradients_divergence_curl]

For example, if we consider h(x, y) = x2 + y2. The level sets of h are concentric
circles, centred on the origin, and ∇h = (hx, hy) = 2(x, y) = 2r grad h points
directly away from the origin, at right angles to the contours.

Along a level set, (∇f)(p) is perpendicular to the level set {x|f(x) = f(p) at x =
p}.

If dr points along the contours of f , where the function is constant, then df
will be zero. Since df is a dot product, that means that the two vectors, df and
grad f, must be at right angles, i.e the gradient is at right angles to the contours.

Fact.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Algebraic properties Like d/dx, ∇ is linear. For any pair of constants, a and b,
and any pair of scalar functions, f and g d

dx (af +bg) = a d
dxf +b d

dxg ∇(af +bg) =
a∇f + b∇g

Since its a vector, we can try taking its dot and cross product with other
vectors, and with itself.

Definition 11.4.2.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Divergence If the vector function u maps Rn to itself, then we can take the dot



11.4. DIV, GRAD, CURL, AND OTHER OPERATORS 329

product of u and ∇ . This dot product is called the divergence. In symbols
diverge u = ∇u · u = ∂u1

∂x1
+ ∂u2

∂x2
+ · · · ∂un

∂xn

Comment.

[author=wikibooks, file =text_files/gradients_divergence_curl]

diverge v tells us how much u is converging or diverging. It is positive when the
vector is diverging from some point, and negative when the vector is converging
on that point.

Example 11.4.2.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Define the vector function v = (1+x2, xy). Then diverge v = 3x, which is positive
to the right of the origin, where v is diverging, and negative to the left of the
origin, where v is diverging.

Fact.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Like d
dx and ∇, diverge is linear. In symbols: if u and v are vector functions and

a and b are scalars, then ∇ · (au + bv) = a∇u · u + b∇v · v

Comment.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Later in this chapter we will see how the divergence of a vector function can be
integrated to tell us more about the behaviour of that function.

Comment.

[author=wikibooks, file =text_files/gradients_divergence_curl]

To find the divergence we took the dot product of ∇ and a vector with ∇ on the
left. If we reverse the order we get u · ∇ = uxDx + uyDy + uzDz

To see what this means consider i · ∇ This is Dx, the partial differential in
the i direction. Similarly, u · ∇ is the the partial differential in the u direction,
multiplied by —u—

Definition 11.4.3.

[author=wikibooks, file =text_files/gradients_divergence_curl]

If u is a three-dimensional vector function on R3 then we can take its cross product
with ∇u. This cross product is called the curl. In symbols:

curlu = ∇u× u =

∣∣∣∣∣∣
i j k

Dx Dy Dz

ux uy uz

∣∣∣∣∣∣
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The curl of u tells us if the vector u is rotating around a point. The direction
of curl u is the axis of rotation.

We can treat vectors in two dimensions as a special case of three dimensions,
with uz = 0 and Dzu = 0. We can then extend the definition of curl u to two-
dimensional vectors and obtain curlu = Dyux −Dxuy. This two dimensional curl
is a scalar. In four, or more, dimensions there is no vector equivalent to the curl.

Example 11.4.3.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Consider the function u defined by u = (−y, x). These vectors are tangent to
circles centred on the origin, so appear to be rotating around it anticlockwise. It
is easy to calculate curlu = Dy(−y)−Dxx = −2.

Example 11.4.4.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Consider the function u defined by u = (−y, x − z, y), which is similar to the
previous example. An easy calculation shows that

curlu =

∣∣∣∣∣∣
i j k

Dx Dy Dz

−y x− z y

∣∣∣∣∣∣ = 2i + 2k.

This u is rotating round the axis i + k.

Comment.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Later in this chapter we will see how the curl of a vector function can be integrated
to tell us more about the behaviour of that function.

Rules 11.4.1.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Product and chain rules Just as with ordinary differentiation, there are product
rules for ∇, diverge and curl.

Let g be a scalar and v a vector function.

The divergence of gv is ∇(gv) · gv = g∇ · v + (v · ∇)g.

The curl of gv is ∇× (gv) = g(∇× v) + (∇g)× v.

Let u and v be two vector functions.

The gradient of u ·v is ∇(u ·v) = u× (∇×v)+v× (∇×u)+(u ·∇)v +(v ·∇)u.

The divergence of u× v is ∇ · (u× v) = v · (∇× u)− u · (∇× v).

The curl of u× v is ∇× (u× v) = (v · ∇)u− (u · ∇)v + u(∇ · v)− v(∇ · u).

Rules 11.4.2.
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[author=wikibooks, file =text_files/gradients_divergence_curl]

We can also write chain rules. In the general case, when both functions are vectors
and the composition is defined, we can use the Jacobian defined earlier. ∇u(v)|r =
Jv ∇v|r where Ju is the Jacobian of u at the point v.

Normally J is a matrix but if either the range or the domain of u is R1 then
it becomes a vector. In these special cases we can compactly write the chain rule
using only vector notation.

If g is a scalar function of a vector and h is a scalar function of g then ∇h(g) =
dh
dg∇g If g is a scalar function of a vector then ∇ = (∇g) d

dg This substitution can
be made in any of the equations containing ∇.

Definition 11.4.4.

[author=wikibooks, file =text_files/gradients_divergence_curl]

Second order differentials We can also consider dot and cross products of ∇
with itself, whenever they can be defined. Once we know how to simplify products
of two ∇’s well know out to simplify products with three or more.

The divergence of the gradient of a scalar f is ∇2f(x1, x2, . . . xn) = ∂2f
∂x2

1
+ ∂2f

∂x2
2
+

. . . + ∂2f
∂x2

n

This combination of derivatives is the Laplacian of f . It is commmonplace in
physics and multidimensional calculus because of its simplicity and symmetry.

Discussion.

[author=wikibooks, file =text_files/gradients_divergence_curl]

We can also take the Laplacian of a vector, ∇2u(x1, x2, . . . xn) = ∂2u
∂x2

1
+ ∂2u

∂x2
2
+ . . .+

∂2u
∂x2

n

The Laplacian of a vector is not the same as the divergence of its gradient
∇(∇ · u)−∇2u = ∇× (∇× u)

Both the curl of the gradient and the divergence of the curl are always zero.
∇×∇f = 0 ∇ · (∇× u) = 0

This pair of rules will prove useful.

11.5 Integration in vector calculus

Discussion.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

We have already considered differentiation of functions of more than one variable,
which leads us to consider how we can meaningfully look at integration.

In the single variable case, we interpret the definite integral of a function to
mean the area under the function. There is a similar interpretation in the multiple
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variable case for example, if we have a paraboloid in R3, we may want to look at
the integral of that paraboloid over some region of the xy plane, which will be the
volume under that curve and inside that region.

Definition 11.5.1.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

Riemann sums When looking at these forms of integrals, we look at the Riemann
sum. Recall in the one-variable case we divide the interval we are integrating over
into rectangles and summing the areas of these rectangles as their widths get
smaller and smaller. For the multiple-variable case, we need to do something
similar, but the problem arises how to split up R2, or R3, for instance.

To do this, we extend the concept of the interval, and consider what we call a
n-interval. An n-interval is a set of points in some rectangular region with sides of
some fixed with in each dimension, that is, a set in the form {x ∈ Rn | ai ≤ xi ≤
bi with i = 0, ..., n}, and its area/size/volume (which we simply call its measure
to avoid confusin) is the product of the lengths of all its sides.

So, an n-interval in R2 could be some rectangular partition of the plane, such
as {(x, y) | x ∈ [0, 1]andy ∈ [0, 2]|}. Its measure is 2.

If we are to consider the Riemann sum now in terms of sub-n-intervals of a
region Ω, it is

∑
iSi⊂Ω f(x∗i )m(Si) where m(Si) is the measure of the division of Ω

into k sub-n-intervals Si, and x∗i is a point in Si. The index is important - we only
perform the sum where Si falls completely within Ω - any Si that is not completely
contained in Ω we ignore.

As we take the limit as k goes to infinity, that is, we divide up Ω into finer and
finer sub-n-intervals, and this sum is the same no matter how we divide up Ω ,
we get the integral of f over Ω which we write

∫
Ω

f For two dimensions, we may
write

∫ ∫
Ω

f and likewise for n dimensions.

Iterated integrals Thankfully, we need not always work with Riemann sums
every time we want to calculate an integral in more than one variable. There are
some results that make life a bit easier for us.

For R2, if we have some region bounded between two functions of the other
variable (so two functions in the form f(x) = y, or f(y) = x), between a con-
stant boundary (so, between x = a and x =b or y = a and y = b), we have∫ b

a

∫ g(x)

f(x)
h(x, y) dx

An important theorem (called Fubinis theorem) assures us that this integral is
the same as

∫ ∫
Ω

f .

Definition 11.5.2.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

Parametric integrals If we have a vector function, u, of a scalar parameter,
s, we can integrate with respect to s simply by integrating each component of u
seperately.

v(s) =
∫

u(s) ds ⇒ vi(s) =
∫

ui(s) ds

Similarly, if u is given a function of vector of parameters, s, lying in Rn, in-
tegration with respect to the parameters reduces to a multiple integral of each
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component.

Definition 11.5.3.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

Line integrals In one dimension, saying we are integrating from a to b uniquely
specifies the integral.

In higher dimensions, saying we are integrating from a to b is not sufficient. In
general, we must also specify the path taken between a and b.

We can then write the integrand as a function of the arclength along the curve,
and integrate by components.

Example 11.5.1.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

Given a scalar function h(r) we write∫
C

h(r) dr =
∫

C

h(r)
dr

ds
ds =

∫
C

h(r(s))t(s) ds

where C is the curve being integrated along, and t is the unit vector tangent to
the curve.

Rule 11.5.1.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

There are some particularly natural ways to integrate a vector function, u, along
a curve, ∫

C

u ds

∫
C

u · dr

∫
C

u× dr

∫
C

u · nds

where the third possibility only applies in 3 dimensions.

Again, these integrals can all be written as integrals with respect to the ar-
clength, s. ∫

C

u · dr =
∫

C

u · t ds or
∫

C

u× dr =
∫

C

u× t ds

If the curve is planar and u a vector lieing in the same plane, the second
integral can be usefully rewritten. Say, u = utt + unn + ubb where t, n, and b are
the tangent, normal, and binormal vectors uniquely defined by the curve.

Then u× t = −bun + nub

For the 2-d curves specified b is the constant unit vector normal to their plane,
and ub is always zero.

Therefore, for such curves,
∫

C
u× dr =

∫
C

u · nds

Discussion.

[author=wikibooks, file =text_files/integration_in_vector_calculus]
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Inverting differentials We can use line integrals to calculate functions with
specified divergence, gradient, or curl.

If grad V = u V (p) =
∫ p

p0
u · dr + h(p) where h is any function of zero gradient

and curl u must be zero.

If div u = V u(p) =
∫ p

p0
V dr+w(p) where w is any function of zero divergence.

If curl u = v u(p) = 1
2

∫ p

p0
v × dr + w(p) where w is any function of zero curl.

Example 11.5.2.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

For example, if V = r2 then ∇V = 2(x, y, z) = 2r and∫ r

0

2u · du =
∫ r

0

2 (udu + vdv + wdw)

= u2
∣∣∣r
0

+ v2
∣∣∣r
0

+ w2
∣∣∣r
0

= x2 + y2 + z2 = r2

so this line integral of the gradient gives the original function.

Example 11.5.3.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

Similarly, if v = k then u(p) =
∫ p

p0
k × dr

Consider any curve from 0 to p = (x, y, z), given by r = r(s) with r(0) = 0 and
r(S) = p for some S, and do the above integral along that curve.

u(p) =
∫ S

0

k × dr

ds
ds

=
∫ S

0

(
drx

ds
j − dry

ds
i

)
ds

= j

∫ S

0

drx

ds
ds− i

∫ S

0

dry

ds
ds

= jrx(s)
∣∣∣S
0
− iry(s)

∣∣∣S
0

= pxj − pyi = xj − yi

The curl of u is
1
2

∣∣∣∣∣∣
i j k

Dx Dy Dz

−y x 0

∣∣∣∣∣∣ = k = v

as expected.

Comment.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

We will soon see that these three integrals do not depend on the path, apart from
a constant.
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Discussion.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

Surface and Volume Integrals Just as with curves, it is possible to parameterise
surfaces then integrate over those parameters without regard to geometry of the
surface.

That is, to integrate a scalar function V over a surface A parameterised by r
and s we calculate ∫

A

V (x, y, z) dS =
∫ ∫

A

V (r, s) detJ drds

where J is the Jacobian of the tranformation to the parameters.

To integrate a vector this way, we integrate each component seperately.

However, in three dimensions, every surface has an associated normal vector
n, which can be used in integration. We write

dS = ndS.

For a scalar function V and a vector function v this gives us the integrals∫
A

V dS,

∫
A

v · dS,

∫
A

v × dS

These integrals can be reduced to parametric integrals but, written this way, it is
clear that they reflect more of the geometry of the surface.

When working in three dimensions, dV is a scalar, so there is only one option
for integrals over volumes.

Discussion.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

Gausss divergence theorem We know that, in one dimension,
∫ b

a
Dfdx = f |ba

Integration is the inverse of differentiation, so integrating the differential of a
function returns the original function.

This can be extended to two or more dimensions in a natural way, drawing on
the analogies between single variable and multivariable calculus.

The analog of D is ∇ , so we should consider cases where the integrand is a
divergence.

Instead of integrating over a one-dimensional interval, we need to integrate
over a n-dimensional volume.

In one dimension, the integral depends on the values at the edges of the interval,
so we expect the result to be connected with values on the boundary.

This suggests the following theorem.

Theorem 11.5.1.
[author= wikibooks , file =text_files/integration_in_vector_calculus]∫

V
∇ · u dV =

∫
∂V

n · udS
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Comment.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

This is indeed true, for vector fields in any number of dimensions.

This is called Gausss theorem.

Theorem 11.5.2.
[author= wikibooks , file =text_files/integration_in_vector_calculus]

There are two other, closely related, theorems for grad and curl∫
V

∇u dV =
∫

∂V

undS,

and ∫
V

∇× u dV =
∫

∂V

n× udS,

with the last theorem only being valid where curl is defined.

Discussion.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

Stokes curl theorem These theorems also hold in two dimensions, where they
relate surface and line integrals. Gausss divergence theorem becomes

Theorem 11.5.3.
[author= wikibooks , file =text_files/integration_in_vector_calculus]∫

S

∇ · u dS =
∮

∂S

n · uds

where s is arclength along the boundary curvw and the vector n is the unit normal
to the curve that lies in the surface S, i.e in the tangent plane of the surface at
its boundary, which is not necessarily the same as the unit normal associated with
the boundary curve itself.

Theorem 11.5.4.
[author= wikibooks , file =text_files/integration_in_vector_calculus]

Similarly, we get ∫
s

∇× u ds =
∫

C

n× uds (1),

where C is the boundary of S.

Comment.

[author=wikibooks, file =text_files/integration_in_vector_calculus]

In the last theorem the integral does not depend on the surface S.

To see this, suppose we have different surfaces, S1 and S2, spanning the same
curve C, then by switching the direction of the normal on one of the surfaces we
can write ∫

S1+S2

∇× u dS =
∫

S

∇× u dS −
∫

S

∇× u dS (2).

The left hand side is an integral over a closed surface bounding some volume
V so we can use Gausss divergence theorem.
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∫
S1+S2

∇× u dS =
∫

V
∇ · ∇ × u dV

but we know this integrand is always zero so the right hand side of (2) must
always be zero, i.e the integral is independant of the surface.

This means we can choose the surface so that the normal to the curve lieing in
the surface is the same as the curves intrinsic normal

Then, if u itself lies in the surface, we can write

u = (u · n) n + (u · t) t

just as we did for line integrals in the plane earlier, and substitute this into (1)
to get the following.

Stokes’s Curl Theorem 11.5.5.
[author= wikibooks , file =text_files/integration_in_vector_calculus]∫

S

∇× u dS =
∫

C

u · dr
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Chapter 12

Partial Differential
Equations

Discussion.

[author=wikibooks, file =text_files/introduction_partial_diffeqs]

Any partial differential equation of the form h1
∂u
∂x1

+h2
∂u
∂x2

· · ·+hn
∂u

∂xn
= b where

h1, h2, . . . hn, and b are all functions of both u and Rn can be reduced to a set of
ordinary differential equations.

To see how to do this, we will first consider some simpler problems.

12.1 Some simple partial differential equations

Discussion.

[author=wikibooks, file =text_files/partial_diffeqs]

We will start with the simple PDE uz(x, y, z) = u(x, y, z) (1) Because u is only
differentiated with respect to z, for any fixed x and y we can treat this like the
ODE, du/dz=u. The solution of that ODE is cez, where c is the value of u when
z=0, for the fixed x and y

Therefore, the solution of the PDE is u(x, y, z) = u(x, y, 0)ez

Instead of just having a constant of integration, we have an arbitary function.
This will be true for any PDE.

Notice the shape of the solution, an arbitary function of points in the xy, plane,
which is normal to the z axis, and the solution of an ODE in the z direction.

Discussion.

[author=wikibooks, file =text_files/partial_diffeqs]

Now consider the slightly more complex PDE axux + ayuy + azuz = h(u) (2)
where h can be any function, and each a is a real constant.

339
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We recognise the left hand side as being a · ∇ , so this equation says that the
differential of u in the a direction is h(u). Comparing this with the first equation
suggests that the solution can be written as an arbitary function on the plane
normal to a combined with the solution of an ODE.

Remembering from earlier that any vector r can be split up into components
parallel and perpendicular to a, r = r⊥ + r‖ =

(
r − (r·a)a

|a|2

)
+ (r·a)a

|a|2 we will use
this to split the components of r in a way suggested by the analogy with (1).

Lets write r = (x, y, z) = r⊥ + sa s = r·a
a·a and substitute this into (2), using

the chain rule. Because we are only differentiating in the a direction, adding any
function of the perpendicular vector to s will make no difference.

First we calculate grad s, for use in the chain rule, ∇s = a
a2

d
ds

On making the substitution into (2), we get, h(u) = a·∇s d
dsu(s) = a·a

a·a
d
dsu(s) =

du
ds which is an ordinary differential equation with the solution s = c(r⊥)+

∫ u dt
h(t)

The constant c can depend on the perpendicular components, but not upon the
parallel coordinate. Replacing s with a monotonic scalar function of s multiplies
the ODE by a function of s, which doesn’t affect the solution.

Example 12.1.1.

[author=wikibooks, file =text_files/partial_diffeqs]

Consider the equation: u(x, t)x = u(x, t)t

For this equation, a is (1,−1), s = x − t, and the perpendicular vector is
(x + t)(1, 1). The reduced ODE is du/ds = 0 so the solution is u = f(x + t).

To find f we need initial conditions on u. Are there any constraints on what
initial conditions are suitable?

Consider, if we are given u(x, 0), this is exactly f(x), u(3t, t), this is f(4t)
and f(t) follows immediately u(t3 + 2t, t), this is f(t3 + 3t) and f(t) follows, on
solving the cubic. Consider u(−t, t), then this is f(0), so if the given function isn’t
constant we have a inconsistancy, and if it is the solution isn’t specified off the
initial line.

Similarly, if we are given u on any curve which the lines x + t = c intersect
only once, and to which they are not tangent, we can deduce f .

Derivation.

[author=wikibooks, file =text_files/partial_diffeqs]

For any first order PDE with constant coefficients, the same will be true. We
will have a set of lines, parallel to r = at, along which the solution is gained by
integrating an ODE with initial conditions specified on some surface to which the
lines arent tangent.

If we look at how this works, well see we havent actually used the constancy
of a, so lets drop that assumption and look for a similar solution.

The important point was that the solution was of the form u = f(x(s), y(s)),
where (x(s), y(s)) is the curve we integrated along – a straight line in the previous
case. We can add constant functions of integration to s without changing this
form.
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Consider a PDE, a(x, y)ux + b(x, y)uy = c(x, y, u) For the suggested solution,
u = f(x(s), y(s)), the chain rule gives du

ds = dx
ds ux + dy

ds uy Comparing coefficients
then gives dx

ds = a(x, y) dy
ds = b(x, y) du

ds = c(x, y, u) so weve reduced our original
PDE to a set of simultaneous ODEs. This procedure can be reversed.

The curves (x(s), y(s)) are called characteristics of the equation.

Example 12.1.2.

[author=wikibooks, file =text_files/partial_diffeqs]

Solve yux = xuy given u = f(x) for x ≥ 0. The ODEs are dx
ds = y dy

ds =
−x du

ds = 0 subject to the initial conditions at s = 0, x(0) = r y(0) = 0 u(0) =
f(r) r ≥ 0 This ODE is easily solved, giving x(s) = r cos s y(s) = sin s u(s) =
f(r) so the characteristics are concentric circles round the origin, and in polar
coordinates u(r, θ) = f(r).

Considering the logic of this method, we see that the independance of a and b
from u has not been used either, so that assumption too can be dropped, giving
the general method for equations of this quasilinear form.

12.2 Quasilinear partial differential equations

Discussion.

[author=wikibooks, file =text_files/quasilinear_partial_diffeqs]

Summarising the conclusions of the last section, to solve a PDE a1(u,x) ∂u
∂x1

+
a2(u,x) ∂u

∂x2
· · ·+ an(u,x) ∂u

∂xn
= b(u,x) subject to the initial condition that on the

surface, (x1(r1, . . . , rn − 1, . . . xn(r1, . . . , rn − 1), u = f(r1, . . . , rn − 1) –this being
an arbitary paremetrisation of the initial surface–

We transform the equation to the equivalant set of ODEs, dx1
ds = a1 . . . dxn

ds =
an

du
ds = b subject to the initial conditions xi(0) = f(r1, . . . , rn−1) u = f(r1, r2, . . . rn−1)

Solve the ODEs, giving xi as a function of s and the ri. Invert this to get s and
the ri as functions of the xi. Substitute these inverse functions into the expression
for u as a function of s and the ri obtained in the second step.

Both the second and third steps may be troublesome.

The set of ODEs is generally non-linear and without analytical solution. It
may even be easier to work with the PDE than with the ODEs.

In the third step, the ri together with s form a coordinate system adapted for
the PDE. We can only make the inversion at all if the Jacobian of the transfor-

mation to Cartesian coordinates is not zero,

∣∣∣∣∣∣∣∣
∂x1
∂r1

· · · ∂x1
∂rn−1

a1

...
. . .

...
∂xn

∂r1
· · · ∂xn

∂rn−1
an

∣∣∣∣∣∣∣∣ 6= 0 This is

equivalent to saying that the vector (a1, . . . , an) is never in the tangent plane to a
surface of constant s.

If this condition is not false when s=0 it may become so as the equations are
integrated. We will soon consider ways of dealing with the problems this can cause.
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Even when it is technically possible to invert the algebraic equations it is
obvious inconvenient to do so.

Example 12.2.1.

[author=wikibooks, file =text_files/quasilinear_partial_diffeqs]

To see how this works in practice, we will a/ consider the PDE, uux +uy +ut = 0
with generic initial condition, u = f(x, y) on t = 0

Naming variables for future convenience, the corresponding ODEs are dx
dτ =

u dy
dτ = 1 dz

dτ = 1 du
dτ = 0 subject to the initial conditions at τ = 0, x =

r y = s t = 0 u = f(r, s)

These ODEs are easily solved to give x = r + f(r, s)τ y = s + τ t = τ u =
f(r, s)

These are the parametric equations of a set of straight lines, the characteristics.

The determinant of the Jacobian of this coordinate transformation is

∣∣∣∣∣∣
1 + τ ∂f

∂r τ ∂f
∂s f

0 1 1
0 0 1

∣∣∣∣∣∣ =
1 + τ ∂f

∂r

This determinant is 1 when t=0, but if fr is anywhere negative this determinant
will eventually be zero, and this solution fails.

In this case, the failure is because the surface sfr = −1 is an envelope of the
characteristics.

For arbitary f we can invert the transformation and obtain an implicit expres-
sion for u u = f(x− tu, y − x) If f is given this can be solved for u.

Example 12.2.2.

[author=wikibooks, file =text_files/quasilinear_partial_diffeqs]

Consider the form of equation ax = f(x, y). The implicit solution is u = a(x −
tu) ⇒ u = ax

1+at This is a line in the u-x plane, rotating clockwise as t increases. If
a is negative, this line eventually become vertical. If a is positive, this line tends
towards u=0, and the solution is valid for all t.

Example 12.2.3.

[author=wikibooks, file =text_files/quasilinear_partial_diffeqs]

Consider the form of equation f(x, y) = x2. The implicit solution is u = (x −
tu)2 ⇒ u = 1+2tx−

√
1+4tx

2t2 which looks like [[ImageQuasilinearPDEexample1.png—
equation solution]] This solution clearly fails when 1+4tx < 0, which is just when
sfr = −1 . For any t¿0 this happens somewhere. As t increases this point of
failure moves toward the origin.

Notice that the point where u=0 stays fixed. This is true for any solution of
this equation, whatever f is.

We will see later that we can find a solution after this time, if we consider
discontinuous solutions. We can think of this as a shockwave.
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Example 12.2.4.

[author=wikibooks, file =text_files/quasilinear_partial_diffeqs]

Consider the form of equation f(x, y) = sin(xy). The implicit solution is u(x, y, t) =
sin ((x− tu)(y − x)) and we can not solve this explitly for u. The best we can man-
age is a numerical solution of this equation.

Example 12.2.5.

[author=wikibooks, file =text_files/quasilinear_partial_diffeqs]

/We can also consider the closely related PDE uux+uy+ut = y The corresponding
ODEs are dx

dτ = u dy
dτ = 1 dz

dτ = 1 du
dτ = y subject to the initial conditions at

τ = 0, x = r y = s t = 0 u = f(r, s)

These ODEs are easily solved to give x = r + τf + 1
2sτ2 + 1

6τ3 y = s+ τ t =
τ u = f + sτ + 1

2τ2 Writing f in terms of u, s, and τ , then substituting into the
equation for x gives an implicit solution u(x, y, t) = f(x−ut+ 1

2yt2− 1
6 t3, y− t)+

yt− 1
2 t2

It is possible to solve this for u in some special cases, but in general we can
only solve this equation numerically. However, we can learn much about the global
properties of the solution from further analysis

12.3 Initial value problems

Discussion.

[author=wikibooks, file =text_files/intial_value_partial_diffeqs_with_discontin_

sols]

So far, weve only considered smooth solutions of the PDE, but this is too restric-
tive. We may encounter initial conditions which arent smooth, e.g.

ut = cux u(x, 0) =
{

1, x ≥ 0
0, x < 0

If we were to simply use the general solution of this equation for smooth initial
conditions,

u(x, t) = u(x + ct, 0)

we would get

u(x, t) =
{

1, x + ct ≥ 0
0, x + ct < 0

which appears to be a solution to the original equation. However, since the partial
differentials are undefined on the characteristic x+ct=0, so it becomes unclear
what it means to say that the equation is true at that point.

We need to investigate further, starting by considering the possible types of
discontinuities.

If we look at the derivations above, we see weve never use any second or higher
order derivatives so it doesnt matter if they arent continuous, the results above
will still apply.
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The next simplest case is when the function is continuous, but the first deriva-
tive is not, e.g |x|. Well initially restrict ourselves to the two-dimensional case,
u(x, t) for the generic equation.

a(x, t)ux + b(x, t)ut = c(u, x, t) (1)

Typically, the discontinuity is not confined to a single point, but is shared by
all points on some curve, (x0(s), t0(s))

Then we have
x > x0 limx→x0 = u+

x < x0 limx→x0 = u−

We can then compare u and its derivatives on both sides of this curve.

It will prove useful to name the jumps across the discontinuity. We say

[u] = u+ − u− [ux] = ux+ − ux− [ut] = ut+ − ut−

Now, since the equation (1) is true on both sides of the discontinuity, we can
see that both u+ and u−, being the limits of solutions, must themselves satisfy
the equation. That is,

a(x, t)u+x + b(x, t)u+t = c(u+, x, t)
a(x, t)u−x + b(x, t)u−t = c(u−, x, t) where

x = x0(s)
t = t0(s)

Subtracting then gives us an equation for the jumps in the differentials

a(x, t)[ux] + b(x, t)[ut] = 0

We are considering the case where u itself is continuous so we know that [u]=0.
Differentiating this with respect to s will give us a second equation in the differ-
ential jumps.

dx0
ds [ux] + dx0

dt [ut] = 0

The last two equations can only be both true if one is a multiple of the other,
but multiplying s by a constant also multiplies the second equation by that same
constant while leaving the curve of discontinuity unchanged, hence we can without
loss of generality define s to be such that

dx0
ds = a dt0

ds = b

But these are the equations for a characteristic, i.e discontinuities propagate
along characteristics. We could use this property as an alternative definition of
characteristics.

We can deal similarly with discontinuous functions by first writing the equation
in conservation form, so called because conservation laws can always be written
this way.

(au)x + (bu)t = axu + btu + c (1)

Notice that the left hand side can be regarded as the divergence of (au, bu).
Writing the equation this way allows us to use the theorems of vector calculus.

Consider a narrow strip with sides parallel to the discontinuity and width h
[[imagePDEsJumpsSetup.PNG]] could be improved

We can integrate both sides of (1) over R, giving∫
R
(au)x + (bu)t dxdt =

∫
R
(ax + bt)u + c dxdt

Next we use Greens theorem to convert the left hand side into a line integral.∮
∂R

audt− budx =
∫

R
(ax + bt)u + c dxdt
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Now we let the width of the strip fall to zero. The right hand side also tends
to zero but the left hand side reduces to the difference between two integrals along
the part of the boundary of R parallel to the curve.∫

au+dt− bu+dx−
∫

au−dt− bu−dx = 0

The integrals along the opposite sides of R have different signs because they
are in opposite directions.

For the last equation to always be true, the integrand must always be zero, i.e(
adt0

ds − bdx0
ds

)
[u] = 0

Since, by assumption [u] isnt zero, the other factor must be, which immediately
implies the curve of discontinuity is a characteristic.

Once again, discontinuities propagate along characteristics.

Discussion.

[author=wikibooks, file =text_files/intial_value_partial_diffeqs_with_discontin_

sols]

Above, we only considered functions of two variables, but it is straightforward to
extend this to functions of n variables.

The initial condition is given on an n-1 dimensional surface, which evolves
along the characteristics. Typical discontinuities in the initial condition will lie
on a n-2 dimensional surface embedded within the initial surface. This surface of
discontinuity will propagate along the characteristics that pass through the initial
discontinuity. diagram needed

The jumps themselves obey ordinary differential equations, much as u itself
does on a characteristic. In the two dimensional case, for u continuous but not
smooth, a little algebra shows that

d[ux]
ds = [ux]

(
∂c
∂u + a bx

b − ax

)
while u obeys the same equation as before,
du
ds = c

We can integrate these equations to see how the discontinuity evolves as we
move along the characteristic.

We may find that, for some future s, [ut, xt] passes through zero. At such
points, the discontinuity has vanished, and we can treat the function as smooth
at that characteristic from then on.

Conversely, we can expect that smooth functions may, under the righr circum-
stances, become discontinuous.

To see how all this works in practice well consider the solutions of the equation

ut + uux = 0 u(x, 0) = f(x)

for three different initial conditions.

The general solution, using the techniques outlined earlier, is

u = f(x− tu)

u is constant on the characteristics, which are straight lines with slope depen-
dent on u.
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First consider f such that

f(x) =

1 x > a
x
a a ≥ x > 0
0 x ≤ 0

a > 0

While u is continuous its derivative is discontinuous at x=0, where u=0, and
at x=a, where u=1. The characteristics through these points divide the solution
into three regions.

[[ImagePDEexcont1.png]]

All the characteristics to the right of the characteristic through x=a, t=0 inter-
sect the x-axis to the right of x=1, where u=1 so u is 1 on all those characteristics,
i.e whenever x-t¿a.

Similarly the characteristic through the origin is the line x=0, to the left of
which u remains zero.

We could find the value of u at a point in between those two characteristics
either by finding which intermediate characteristic it lies on and tracing it back to
the initial line, or via the general solution.

Either way, we get

f(x) =


1 x− t > a
x

a+t a + t ≥ x > 0
0 x ≤ 0

At larger t the solution u is more spread out than at t=0 but still the same
shape.

We can also consider what happens when a tends to 0, so that u itself is
discontinuous at x=0.

If we write the PDE in conservation form then use Greens theorem, as we did
above for the linear case, we get

[u]dx0
ds = 1

2 [u2]dt0
ds

[u2] is the difference of two squares, so if we take s=t we get
dx0
dt = 1

2 (u− + u+)

In this case the discontinuity behaves as if the value of u on it were the average
of the limiting values on either side.

However, there is a caveat.

Since the limiting value to the left is u− the discontinuity must lie on that
characteristic, and similarly for u+ i.e the jump discontinuity must be on an in-
tersection of characteristics, at a point where u would otherwise be multivalued.

For this PDE the characteristic can only intersect on the discontinuity if

u− > u+

If this is not true the discontinuity can not propogate. Something else must
happen.

The limit a=0 is an example of a jump discontinuity for which this condition
is false, so we can see what happens in such cases by studying it.

Taking the limit of the solution derived above gives
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f(x) =

1 x > t
x
t t ≥ x > 0
0 x ≤ 0

If we had taken the limit of any other sequence of initials conditions tending
to the same limit we would have obtained a trivially equivalent result.

Looking at the characteristics of this solution, we see that at the jump discon-
tinuity characteristics on which u takes every value betweeen 0 and 1 all intersect.

At later times, there are two slope discontinuities, at x=0 and x=t, but no
jump discontinuity.

This behaviour is typical in such cases. The jump discontinuity becomes a pair
of slope discontinuities between which the solution takes all appropriate values.

Example 12.3.1.

[author=wikibooks, file =text_files/intial_value_partial_diffeqs_with_discontin_

sols]

Now, lets consider the same equation with the initial condition

f(x) =

 1 x ≤ 0
1− x

a a ≥ x > 0
0 x > a

a > 0

This has slope discontinuities at x=0 and x=a, dividing the solution into three
regions.

The boundaries between these regions are given by the characteristics through
these initial points, namely the two lines

x = t x = a

These characteristics intersect at t=a, so the nature of the solution must change
then.

In between these two discontinuities, the characteristic through x=b at t=0 is
clearly

x =
(
1− b

a

)
t + b 0 ≤ b ≤ a

All these characteristics intersect at the same point, (x,t)=(a,a).

We can use these characteristics, or the general solution, to write u for t¡a

u(x, t) =


1 x ≤ t

a−x
a−t a ≥ x > t

0 x > a
a > t ≥ 0

As t tends to a, this becomes a step function. Since u is greater to the left
than the right of the discontinuity, it meeets the condition for propogation deduced
above, so for t¿a u is a step function moving at the average speed of the two sides.

u(x, t) =
{

1 x ≤ a+t
2

0 x > a+t
2

t ≥ a ≥ 0

This is the reverse of what we saw for the initial condition previously consid-
ered, two slope discontinuities merging into a step discontinuity rather than vice
versa. Which actually happens depends entirely on the initial conditions. Indeed,
examples could be given for which both processes happen.

In the two examples above, we started with a discontinuity and investigated
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how it evolved. It is also possible for solutions which are initially smooth to become
discontinuous.

For example, we saw earlier for this particular PDE that the solution with the
initial condition u = x2 breaks down when 2xt+1=0. At these points the solution
becomes discontinuous.

Typically, discontinuities in the solution of any partial differential equation,
not merely ones of first order, arise when solutions break down in this way and
progogate similarly, merging and splitting in the same fashion.

12.4 Non linear PDE’s

Discussion.

[author=wikibooks, file =text_files/nonlinear_partial_diffeqs]

It is possible to extend the approach of the previous sections to reduce any equation
of the form F (x1, x2, . . . , xn, u, ux1 , ux2 , . . . , uxn

) = 0 to a set of ODEs, for any
function, F.

We will not prove this here, but the corresponding ODEs are dxi

dτ = ∂F
∂ui

dui

dτ =

−
(

∂F
∂xi

+ ui
∂F
∂u

)
du
dτ =

∑n
i=1 ui

∂F
∂ui

If u is given on a surface parameterised by r1 . . . rn then we have, as before, n
initial conditions on the n, xi, τ = 0 xi = fi(r1, r2, . . . , rn−1) given by the pa-
rameterisation and one initial condition on u itself, τ = 0 u = f(r1, r2, . . . , rn−1)
but, because we have an extra n ODEs for the ui’s, we need an extra n initial
conditions.

These are, n-1 consistency conditions, τ = 0 ∂f
∂ri

=
∑n−1

j=1 ui
∂fi

∂rj
which state

that the ui’s are the partial derivatives of u on the initial surface, and one initial
condition τ = 0 F (x1, x2, . . . , xn, u, u1, u2, . . . , un) = 0 stating that the PDE
itself holds on the initial surface.

These n initial conditions for the ui will be a set of algebraic equations, which
may have multiple solutions. Each solution will give a different solution of the
PDE.

Example 12.4.1.

[author=wikibooks, file =text_files/nonlinear_partial_diffeqs]

Consider ut = u2
x + u2

y, u(x, y, 0) = x2 + y2 The initial conditions at τ = 0 are
x = r y = s t = 0 u = r2 + s2

ux = 2r uy = 2s ut = 4(r2 + s2) and the ODEs are
dx
dτ = −2ux

dy
dτ = −2uy

dt
dτ = 1 du

dτ = ut − 2(u2
x + u2

y)
dux

dτ = 0 duy

dτ = 0 dut

dτ = 0

Note that the partial derivatives are constant on the characteristics. This
always happen when the PDE contains only partial derivatives, simplifying the
procedure.

These equations are readily solved to give x = r(1− 4τ) y = s(1− 4τ) t =
τ u = (r2 + s2)(1− 4τ)

On eliminating the parameters we get the solution, u = x2+y2

1−4t which can easily
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be checked.

12.5 Higher order PDE’s

Derivation.

[author=wikibooks, file =text_files/second_order_partial_diffeqs]

Suppose we are given a second order linear PDE to solve

a(x, y)uxx +b(x, y)uxy +c(x, y)uyy = d(x, y)ux +e(x, y)uy +p(x, y)u+q(x, y) (1)

The natural approach, after our experience with ordinary differential equations
and with simple algebraic equations, is attempt a factorisation. Lets see how far
this takes us.

We would expect factoring the left hand of (1) to give us an equivalent equation
of the form

a(x, y)(Dx + α+(x, y)Dy)(Dx + α−(x, y)Dy)u

and we can immediately divide through by a. This suggests that those particular
combinations of first order derivatives will play a special role.

Now, when studying first order PDEs we saw that such combinations were
equivalent to the derivatives along characteristic curves. Effectively, we changed
to a coordinate system defined by the characteristic curve and the initial curve.

Here, we have two combinations of first order derivatives each of which may
define a different characteristic curve. If so, the two sets of characteristics will
define a natural coordinate system for the problem, much as in the first order
case.

In the new coordinates we will have

Dx + α+(x, y)Dy = Dr Dx + α−(x, y)Dy = Ds

with each of the factors having become a differentiation along its respective charac-
teristic curve, and the left hand side will become simply ur’s giving us an equation
of the form

urs = A(r, s)ur + B(r, s)us + C(r, s)u + D(r, s).

If A, B, and C all happen to be zero, the solution is obvious. If not, we can hope
that the simpler form of the left hand side will enable us to make progress.

However, before we can do all this, we must see if (1) can actually be factorised.

Multiplying out the factors gives

uxx +
b(x, y)
a(x, y)

uxy +
c(x, y)
a(x, y)

c(x, y)uyy = uxx + (α+ + α−)uxy + α+α−uyy

On comparing coefficients, and solving for the α s we see that they are the roots
of

a(x, y)α2 + b(x, y)α + c(x, y) = 0

Since we are discussing real functions, we are only interested in real roots, so
the existence of the desired factorisation will depend on the discriminant of this
quadratic equation.



350 CHAPTER 12. PARTIAL DIFFERENTIAL EQUATIONS

If b(x, y)2 > 4a(x, y)c(x, y) then we have two factors, and can follow the pro-
cedure outlined above. Equations like this are called hyperbolic

If b(x, y)2 = 4a(x, y)c(x, y) then we have only factor, giving us a single char-
acteristic curve. It will be natural to use distance along these curves as one co-
ordinate, but the second must be determined by other considerations. The same
line of argument as before shows that use the characteristic curve this way gives
a second order term of the form ur,r, where weve only taken the second derivative
with respect to one of the two coordinates. Equations like this are called parabolic

If b(x, y)2 < 4a(x, y)c(x, y) then we have no real factors. In this case the best
we can do is reduce the second order terms to the simplest possible form satisfying
this inequality, i.e ur,r +us,s It can be shown that this reduction is always possible.
Equations like this are called elliptic

It can be shown that, just as for first order PDEs, discontinuities propagate
along characteristics. Since elliptic equations have no real characteristics, this
implies that any discontinuities they may have will be restricted to isolated points
i.e, that the solution is almost everywhere smooth.

This is not true for hyperbolic equations. Their behaviour is largely controlled
by the shape of their characteristic curves.

These differences mean different methods are required to study the three types
of second equation. Fortunately, changing variables as indicated by the factorisa-
tion above lets us reduce any second order PDE to one in which the coefficients of
the second order terms are constant, which means it is sufficient to consider only
three standard equations.

uxx + uyy = 0 uxx − uyy = 0 uxx − uy = 0

We could also consider the cases where the right hand side of these equations
is a given function, or proportional to u or to one of its first order derivatives,
but all the essential properties of hyperbolic, parabolic, and elliptic equations are
demonstrated by these three standard forms.

Derivation.
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While weve only demonstrated the reduction in two dimensions, a similar reduction
applies in higher dimensions, leading to a similar classification. We get, as the
reduced form of the second order terms,

a1
∂2u
∂x2

1
+ a2

∂2u
∂x2

2
+ · · ·+ an

∂2u
∂x2

n

where each of the ai’s is equal to either 0, +1, or -1.

If all the ai’s have the same sign the equation is elliptic

If any of the ai’s are zero the equation is parabolic

If exactly one of the ai’s has the opposite sign to the rest the equation is
hyperbolic

In 2 or 3 dimensions these are the only possibilities, but in 4 or more dimensions
there is a fourth possibility at least two of the ai’s are positive, and at least two
of the ai’s are negative.

Such equations are called ultrahyperbolic. They are less commonly encountered
than the other three types, so will not be studied here.
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When the coefficients are not constant, an equation can be hyperbolic in some
regions of the xy plane, and elliptic in others. If so, different methods must be
used for the solutions in the two regions.

Derivation.
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The canonical parabolic equation is the diffusion equation

∇2h = ht

Here, we will consider some simple solutions of the one-dimensional case.

The properties of this equation are in many respects intermediate between
those of hyperbolic and elliptic equation.

As with hyperbolic equations but not elliptic, the solution is well behaved if
the value is given on the initial surface t=0.

However, the characteristic surfaces of this equation are the surfaces of constant
t, thus there is no way for discontinuities to propagate to positive t.

Therefore, as with elliptic equations but not hyberbolic, the solutions are typ-
ically smooth, even when the initial conditions arent.

Furthermore, at a local maximum of h, its Laplacian is negative, so h is de-
creasing with t, while at local minima, where the Laplacian will be positive, h will
increase with t. Thus, initial variations in h will be smoothed out as t increases.

In one dimension, we can learn more by integrating both sides,

∫ b

−a
htdt =

∫ b

−a
hxxdx

d
dt

∫ b

−a
h dt = [hx]b−a

Provided that hx tends to zero for large x, we can take the limit as a and b
tend to infinity, deducing

d

dt

∫ ∞

−∞
h dt

so the integral of h over all space is constant.

This means this PDE can be thought of as describing some conserved quantity,
initially concentrated but spreading out, or diffusing, over time.

This last result can be extended to two or more dimensions, using the theorems
of vector calculus.

We can also differentiate any solution with respect to any coordinate to obtain
another solution. E.g if h is a solution then

∇2hx = ∂x∇2h = ∂x∂th = ∂thx

so hx also satisfies the diffusion equation.

Derivation.
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Looking at this equation, we might notice that if we make the change of variables

r = αx τ = α2

then the equation retains the same form. This suggests that the combination of
variables x2/t, which is unaffected by this variable change, may be significant.

We therefore assume this equation to have a solution of the special form

h(x, t) = f(η) where η =
x

t1/2

then
hx = ηxfη = t−1/2fη ht = ηtfη = − η

2t
fη

and substituting into the diffusion equation eventually gives

fηη +
η

2
fη = 0

which is an ordinary differential equation.

Integrating once gives

fη = Ae−
η2

4

Reverting to h, we find

hx = A√
t
e−

η2

4

h = A√
t

∫ x

−∞ e−s2/4tds + B

= A
∫ x/2

√
t

−∞ e−z2
dz + B

This last integral can not be written in terms of elementary functions, but its
values are well known.

In particular the limiting values of h at infinity are

h(−∞, t) = B h(∞, t) = B + A
√

π,

taking the limit as t tends to zero gives

h =
{

B x < 0
B + A

√
π x > 0

and the entire solution looks like We see that the initial discontinuity is immedi-
ately smoothed out. The solution at later times retains the same shape, but is
more stretched out.

The derivative of this solution with respect to x

hx =
A√
t
e−x2/4t

is itself a solution, with h spreading out from its initial peak, and plays a significant
role in the further analysis of this equation.

The same similiarity method can also be applied to some non-linear equations.
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Derivation.
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We can also obtain some solutions of this equation by separating variables.

h(x, t) = X(x)T (t) ⇒ X ′′T = XṪ

giving us the two ordinary differential equations

d2X

dx2
+ k2X = 0

dT

dt
= −kT

and solutions of the general form

h(x, t) = Ae−kt sin(kx + α).

12.6 Systems of partial differential equations

Discussion.
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We have already examined cases where we have a single differential equation and
found several methods to aid us in finding solutions to these equations. But
what happens if we have two or more differential equations, that depend on each
other? For example, consider the case where Dtx(t) = 3y(t)2 +x(t)t and Dty(t) =
x(t) + y(t) Such a set of differential equations are said to be coupled. Systems
of ordinary differential equations such as these are what we will look into in this
section.

First order systems A general system of differential equations can be written
in the form Dtx = F(x, t)

Instead of writing the set of equations in a vector, we can write out each

equation explicitly, in the form Dtx1 = F1(x1, . . . , xn, t)
... Dtxi = Fi(x1, . . . , xn, t)

If we have the system at the very beginning, we can write it as Dtx = G(x, t)
where x = (x(t), y(t)) = (x, y) and G(x, t) = (3y2 + xt, x + y) or, writing each
equation out as shown above.

Why are these forms important? Often, this arises as a single, higher order
differential equation that is changed into a simpler form in a system. For example,
with the same example, Dtx(t) = 3y(t)2 + x(t)t Dty(t) = x(t) + y(t)

we can write this as a higher order differential equation by simple substitution.
Dty(t) − y(t) = x(t) then Dtx(t) = 3y(t)2 + (Dty(t) − y(t))t Dtx(t) = 3y(t)2 +
tDty(t)− ty(t)

Notice now that the vector form of the system is dependent on t since G(x, t) =
(3y2 + xt, x + y) the first component is dependent on t. However, if instead we
had H(x) = (3y2 + x, x + y) notice the vector field is no longer dependent on
t. We call such systems autonomous. They appear in the form Dtx = H(x)
We can convert between an autonomous system and a non-autonomous one by
simply making a substitution that involves t, such as y=(x, t), to get a system
Dty = (F(y), 1) = (F(x, t), 1)
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In vector form, we may be able to seperate f in a linear fashion to get something
that looks like F(x, t) = A(t)x + b(t) where A(t) is a matrix and b is a vector.
The matrix could contain functions or constants, clearly, depending on whether
the matrix depends on t or not.
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Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the ef-
fective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the au-
thor and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

355
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A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of histori-
cal connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above def-
inition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as “Acknowledgements”, “Dedications”, “Endorse-
ments”, or “History”.) To “Preserve the Title” of such a section when you
modify the Document means that it remains a section “Entitled XYZ” according
to this definition.

The Document may include Warranty Disclaimers next to the notice which
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states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this Li-
cense. You may not use technical measures to obstruct or control the reading or
further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-network
location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:



358 CHAPTER 12. PARTIAL DIFFERENTIAL EQUATIONS

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may
be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if
the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
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If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are mul-
tiple Invariant Sections with the same name but different contents, make the title
of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the
various original documents, forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and any sections Entitled “Ded-
ications”. You must delete all sections Entitled “Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection, pro-
vided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
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independent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of
this License, and all the license notices in the Document, and any Warranty Dis-
claimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagree-
ment between the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”,
or “History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:
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Copyright c©YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the “with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.


