
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347726799

Magic squares from simple squares and a method like Conways LUX

Preprint · December 2020

DOI: 10.13140/RG.2.2.28322.86726

CITATIONS

0
READS

213

1 author:

Some of the authors of this publication are also working on these related projects:

g-Circulant matrices View project

Hariprasad Manjunath

Indian Institute of Science

10 PUBLICATIONS   2 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Hariprasad Manjunath on 23 December 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/347726799_Magic_squares_from_simple_squares_and_a_method_like_Conways_LUX?enrichId=rgreq-c3ee8b73d26a3c58ccf16b18a78c58a2-XXX&enrichSource=Y292ZXJQYWdlOzM0NzcyNjc5OTtBUzo5NzE5Mzc2ODk5MDcyMDBAMTYwODczOTQxMTIwNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/347726799_Magic_squares_from_simple_squares_and_a_method_like_Conways_LUX?enrichId=rgreq-c3ee8b73d26a3c58ccf16b18a78c58a2-XXX&enrichSource=Y292ZXJQYWdlOzM0NzcyNjc5OTtBUzo5NzE5Mzc2ODk5MDcyMDBAMTYwODczOTQxMTIwNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/g-Circulant-matrices?enrichId=rgreq-c3ee8b73d26a3c58ccf16b18a78c58a2-XXX&enrichSource=Y292ZXJQYWdlOzM0NzcyNjc5OTtBUzo5NzE5Mzc2ODk5MDcyMDBAMTYwODczOTQxMTIwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c3ee8b73d26a3c58ccf16b18a78c58a2-XXX&enrichSource=Y292ZXJQYWdlOzM0NzcyNjc5OTtBUzo5NzE5Mzc2ODk5MDcyMDBAMTYwODczOTQxMTIwNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hariprasad-Manjunath?enrichId=rgreq-c3ee8b73d26a3c58ccf16b18a78c58a2-XXX&enrichSource=Y292ZXJQYWdlOzM0NzcyNjc5OTtBUzo5NzE5Mzc2ODk5MDcyMDBAMTYwODczOTQxMTIwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hariprasad-Manjunath?enrichId=rgreq-c3ee8b73d26a3c58ccf16b18a78c58a2-XXX&enrichSource=Y292ZXJQYWdlOzM0NzcyNjc5OTtBUzo5NzE5Mzc2ODk5MDcyMDBAMTYwODczOTQxMTIwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Institute_of_Science?enrichId=rgreq-c3ee8b73d26a3c58ccf16b18a78c58a2-XXX&enrichSource=Y292ZXJQYWdlOzM0NzcyNjc5OTtBUzo5NzE5Mzc2ODk5MDcyMDBAMTYwODczOTQxMTIwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hariprasad-Manjunath?enrichId=rgreq-c3ee8b73d26a3c58ccf16b18a78c58a2-XXX&enrichSource=Y292ZXJQYWdlOzM0NzcyNjc5OTtBUzo5NzE5Mzc2ODk5MDcyMDBAMTYwODczOTQxMTIwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hariprasad-Manjunath?enrichId=rgreq-c3ee8b73d26a3c58ccf16b18a78c58a2-XXX&enrichSource=Y292ZXJQYWdlOzM0NzcyNjc5OTtBUzo5NzE5Mzc2ODk5MDcyMDBAMTYwODczOTQxMTIwNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Magic squares from simple squares and a
method like Conways LUX

M Hariprasad
Department of Computational and Data Sciences,

Indian Institute of Science, Bangalore-560012, India
e-mail: mhariprasadkansur@gmail.com

Abstract: This article studies the duality between simple square arrangement of
numbers and magic squares. For even ordered simple square, corresponding topo-
logical arrangement arising from cycles and reverse cycles is discussed. A Con-
ways LUX like construction method is presented for singly even magic square.
The article concludes with few observational remarks on the duality property be-
tween magic squares and simple square arrangements.
Keywords: Magic squares, Duality, Algorithms
Ams subject classification : 00A08, 05A19, 06D50

1 Introduction and notations
A normal magic square is an arrangement of natural numbers from 1, 2, · · · , n2

into a square, such that every row, every columns and diagonals have the same
sum. The sum is called magic sum and it is equal to nn2+1

2
. There are sev-

eral methods for constructing the magic squares which involve following an ele-
mentary pattern, adjoining two or more elementary squares and so on. One such
method is well known for constructing the odd dimensional magic squares which
follow diagonal filling of the square, this was proposed by Simon de la Loubere
[1] also known as Siamese method [3]. In this article we discuss the relation
between the simple square arrangement of numbers from one to n2 and the odd
magic square obtained by Siamese method. Also the analysis shows why the
method is not applicable for constructing even dimensional magic square. Further
we present a construction method for singly even magic square.

Let In be the identity matrix of dimension n × n. Let C be the adjacency

matrix of a directed cycle, denoted by C =

[
0 1

In−1 0

]
. This matrix can also be

described by the relation i− j = 1 mod n having one for the i, j entry satisfying
the relation and zero otherwise. Let J be the left to right column flip of identity
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matrix, denoted by the relation i = −j +1 mod n. A be the square arrangement
of the integers from 1 to n2, having entry A(i, j) = (i−1)n+j where 1 ≤ i, j ≤ n.
The matrix CJ is denoted by the relation i + j = 2 mod n. Let A.B denote the
hadamard product of two matrices A and B. The non zero entris of A.Cj , are
called entries of j th cycle of A. Similarly the non zero entries of A.(CiJ) are
called the entries of ith reverse cycle of A.

2 Results
Lemma 2.1. The sum of entries of square arrangement A along any cycles and
along any reverse cycles is equal to the magic sum.

Proof. Any cycle is defined by the relation i − j = l mod n for 1 ≤ l ≤ n. So
we get, ∑

i−j=l mod n

A(i, j) =
∑

i−j=l mod n

(i− 1)n+ j. (1)

For every i we have a corresponding j in the relation, so when i varies among 1
to n, we have j also varying fron 1 to n. So the summation can be split,

∑
i−j=l mod n

A(i, j) =
n∑

i=1

(i− 1)n+
n∑

j=1

j, (2)

=
n2(n+ 1)

2
− n2 +

n(n+ 1)

2
, (3)

=
n(n2 + 1)

2
. (4)

Similarly the proof can be carried out for reverse cycles.

Also note that the sum of the central row and central column entries of odd
dimensional square arrangement is equal to the magic sum. The central column
sum of the matrix A is given by,

n−1∑
k=0

n+ 1

2
+ kn, (5)

= n
n+ 1 + (n− 1)(n)

2
, (6)

=
n(n2 + 1)

2
. (7)

2



Similarly the central row sum in the matrix A is given by,

n∑
k=1

n− 1

2
n+ k, (8)

= n
n(n− 1) + n+ 1

2
, (9)

=
n(n2 + 1)

2
. (10)

2.1 Row-Column systems
Now we axiomatize rows and columns of a square arrangement,

1. There are n rows in the square arrangement each having n elements, no two
rows intersect each other.

2. There are n non intersecting columns in the square arrangement each having
n elements and every column intersects every row exactly once.

From a set of n2 elements if we are able to identify such n rows and n columns,
then it is possible to put them in a square arrangement. By specifying the order
of rows and order of columns uniquely specifies the square arrangement hence
defining the diagonals.

Now we verify that the properties 1 and 2 are satisfied by n cycles and n
reverse cycles of the square arrangent A, when n is odd.
Property 1 : It is easy to see that Ck and C l do not intersect, as i− j = l mod n
uniquely determines i given j. Each Ci has n nonzero elements.
Property 2 : There are n reverse cycles. The relation i + j = l mod n uniquely
determines j given i. To see the intersection of the rows and column, we need i, j
satisfying

i− j = l mod n, (11)
i+ j = m mod n. (12)

For solving this, we get

2i = l +m mod n, (13)
2j = m− l mod n (14)

This system has unique solution when modulo inverse of 2 is defined with respect
to n. This is possible for odd n. So every row (cycle) intersect every column
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(reverse cycle) exactly once, when n is odd.
However when n is even, we have two cases,
l and m both even or both odd : in this case we have two solutions for i and j.
Which are

(
l+m
2
, l−m

2

)
and

(
l+m±n

2
, l−m±n

2

)
.

l is even m is odd or m is even l is odd : Then the system is not solvable.
Hence, for odd n, the square arrangement can be rearranged to obtain the

magic square. This can be done by looking at diagonals in the square lattice
arrangement by A. By looking at the diagonal arrangement, the linear rows and
columns of the matrix A will be reshaped into cycles and reverse cycles whereas
the cycles and reverse cycles will be reshaped into rows and columns.

2.2 Duality
Let (R,L) and (S, T ) be two row column systems. When a square A is reshaped
into a square B by reordering the elements in Ri ( and Lj ) of A into Si ( and Tj

) of B. If this reordering also maps Si ( and Tj ) of A into Ri( and Lj ) of B for
1 ≤ i, j ≤ n, then we say A and B have dual row column systems.

Let vec(A) be the n2 × 1 vector obtained by appending all the rows of A in a
single column. Let P be the permutation matrix which maps vec(A)→ vec(M).

Theorem 2.1. The two row column systems are dual of each other if and only if
P 2 = q ⊗ s for order n permutation matrices q and s.

Proof. Since P maps simple square to the magic square, in order for the row
column system to be dual, it should map magic square to the permuted simple
square. Thus we have,

Pvec(A) = vec(M), (15)

Pvec(M) = vec(Ã), (16)

P 2vec(A) = vec(Ã) (17)

Here the vector vecÃ has permutation of row elemnts due to column rearrange-
ments and permutation of row positions. All the row permutations must be same
because otherwise result into different column elements than the simple square.
Thus if two row column systems are dual, then P 2 = q ⊗ s.

As an example the 3×3 simple square
1 2 3
4 5 6
7 8 9

is mapped to magic square

8 1 6
3 5 7
4 9 2

via a matrix P by the relation,
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

0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0





1
2
3
4
5
6
7
8
9


=



8
1
6
3
5
7
4
9
2


.

The matrix P satisfies P 2 = J ⊗ J with J being left to right flip of identity
matrix.

Consider the 5 by 5 arrangement ,

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

. The corresponding lattice arrangement is given by,

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
11 12 13 14 15 11 12 13 14 15 11 12 13 14 15
16 17 18 19 20 16 17 18 19 20 16 17 18 19 20
21 22 23 24 25 21 22 23 24 25 21 22 23 24 25
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
11 12 13 14 15 11 12 13 14 15 11 12 13 14 15
16 17 18 19 20 16 17 18 19 20 16 17 18 19 20
21 22 23 24 25 21 22 23 24 25 21 22 23 24 25
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
11 12 13 14 15 11 12 13 14 15 11 12 13 14 15
16 17 18 19 20 16 17 18 19 20 16 17 18 19 20
21 22 23 24 25 21 22 23 24 25 21 22 23 24 25

.

By looking at the diagonals in the green cells, corresponding magic square is
given by

5



14 10 1 22 18
20 11 7 3 24
21 17 13 9 5
2 23 19 15 6
8 4 25 16 12

. Note that cycles and reverse cycles of this magic

square are rows and columns of 5 by 5 simple square arrangement. Magic squares
formed by green cells and pink cells together cover the lattice.

One can also look at the lattice formed by AT , for example,
1 4 7
2 5 8
3 6 9

.

By arranging this into a lattice we get,

1 4 7 1 4 7 1 4 7
2 5 8 2 5 8 2 5 8
3 6 9 3 6 9 3 6 9
1 4 7 1 4 7 1 4 7
2 5 8 2 5 8 2 5 8
3 6 9 3 6 9 3 6 9
1 4 7 1 4 7 1 4 7
2 5 8 2 5 8 2 5 8
3 6 9 3 6 9 3 6 9

.

The entries colored in the green are given by
8 1 6
3 5 7
4 9 2

, which is an order 3 magic square.

In case of even n, cycles and reverse cycles fail to form rows and columns. but
we obtain the following type of arrangement by listing the even and odd cycles

seperately. Consider the arrangement from order 4 square,

4 10 5 15
13 7 2 12
3 9 8 14
6 16 11 1

.

Here every row sum is magic sum and every coloured square sum is magic
sum, but every column sum is not the magic sum.

Similarly from the order 6 simple square arrangement, by listing even cycles
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and odd cycles seperately, we get
6 21 14 35 28 7
11 26 19 4 18 33
16 31 9 30 23 2
5 20 12 27 13 34
10 25 17 32 3 24
15 36 22 1 8 29

.

2.3 A LUX like method to construct singly even magic square
The method of constructing odd magic square can be used for constructing magic
square when n is a singly even number, i.e. it is twice an odd integer. Conways
LUX method is one such method [3]. We dedicate this section to John H Conway.
Let A be a matrix denoting the simple square. Then A can be looked as the odd
square of 2 × 2 blocks denoted by A2(i) for 1 ≤ i ≤

(
n
2

)2. Let A2 be the
matrix obtained by rearranging the blocks A2(i) according to the position of i in
the Siamese magic square of order

(
n
2

)
. Then we can see that sum of pairs of

columns, rows and diagonals (corresponding to the blocks) in A2 will be twice the
magic sum. We call the matrix A2 as the almost magic square.

For a simple square of order six,
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

.

By re-arranging the 2× 2 blocks according to 3× 3 magic square
8 1 6
3 5 7
4 9 2

we get,

27 28 1 2 17 18
33 34 7 8 23 24
5 6 15 16 25 26
11 12 21 22 31 32
13 14 29 30 3 4
19 20 35 36 9 10

. (18)

Here is a way of flipping pairs for a general (n = 2k) and k = 2t+ 1 :

Every 2 × 2 block is of the form
[

k k + 1
n+ k n+ k + 1

]
. The permutations of
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entries in this block can be uniquely represented by three corodinates (a, b, c)
where a =

∑
(column2 -column1) , b =

∑
(row2 -row1) and c =

∑
diagonal −

anti diagonal. Thus a, b and c taking possible values from 0,±2,±2n. The al-
lowed co ordinates are S = {(±2,±2n, 0), (±2n,±2, 0), (±2, 0,±2n), (±2n, 0,±2),
(0,±2,±2n), (0,±2n,±2)}.

Now the problem of constructing the magic square reduces to the problem of
constructing 2n+1 square with entries from S, such that :

• Sum of first co-ordinate along every column is zero.

• Sum of second co-ordinate along every row is zero.

• Sum of third co-ordinate along diagonal and anti diagonal are respectively
zero.

One such possibility is :

• Starting with v = [2;−2; 2;−2; 2;−2; · · · ; 0]k×1, the first co ordinates are

L = [v, v, v, · · ·Cv]k×k. Where C =

[
0 1

Ik−1 0

]
.

• Starting with w = [0, 2n,−2n, 2n,−2n, · · · ]1×k, the second co ordinates
are M = [w;w;w; · · ·wC]k×k.

• Starting with x = [2n; 0; 0; 0; 0; · · · ; 2]k×1, the third co ordinates are N =
[x, 0, 0, 0, · · · ,−Jx]k×k. Where J is the left to right flip of identity matrix.

The entries in the blocks of the matrix A2 permuted according to Pk×k such that
P (i, j) = (L(i, j),M(i, j), N(i, j)) will give the magic square.

For n = 6 we have k = 3 and we get the matrix

P =

 (2, 0, 2n) (2, 2n, 0) (0,−2n,−2)
(−2, 0, 2n) (−2, 2n, 0) (2,−2n, 0)
(0, 2n, 2) (0,−2n, 2) (−2, 0,−2n)

 .

By permuting the square (19) according to P , we get

33 28 1 2 23 24
27 34 7 8 18 17
12 5 16 15 31 32
6 11 22 21 25 26
14 13 36 35 4 9
19 20 29 30 10 3

. (19)
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3 Observations
The duality between the simple square arrangement and magic square also holds
in the doubly even magic squares construction which involves reflecting elements
about center of the simple square in x patterns (criss cross patterns) [2]. Since
there are even number of flips, the matrix P 2 = I .

This is because combining two rows (or columns) equidistant from the cen-
ter in the simple square form corresponding two rows (or columns) in the magic
square.

As an example we have order 4 magic square and simple square,
1 15 14 4

12 6 7 9
8 10 11 5
13 3 2 16

,

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

.

With rows in the original simple square being,

R1 =


1 0 0 1
0 0 0 0
0 0 0 0
0 1 1 0

 , R2 =


0 1 1 0
0 0 0 0
0 0 0 0
1 0 0 1

 , R3 =


0 0 0 0
0 1 1 0
1 0 0 1
0 0 0 0

 , R4 =


0 0 0 0
1 0 0 1
0 1 1 0
0 0 0 0

 .

Corresponding columns obtained by the transpose of the matrices

L1 =


1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0

 , L2 =


0 0 0 1
1 0 0 0
1 0 0 0
0 0 0 1

 , L3 =


0 0 1 0
0 1 0 0
0 1 0 0
0 0 1 0

 , L4 =


0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0

 .

Sum of entries of A along every row Ri and sum along every column Lj is
equal to the magic sum 34 (eg : in the green cells). In the magic square rows of A
are reshaped as Ri columns reshaped as Lj .

Now we consider the example of order 6 magic square and see that there need
not exist such a duality between the simple square and magic square.

For the order six magic square and simple square,
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11

,

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

.
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The sum of the entries corresponding to the inverse map of the first row ele-
ments is 84, however the magic sum is 111.

4 Conclusion
Using the duality between the simple square arrangement and magic squares odd
order magic square is obtained from the lattice of simple square. The duality is
also observed for the doubly even magic square. A Conways LUX like method
is presented for constructing singly even magic square. However existance of
duality for singly even magic square remains an open question. It is also noted by
an example that such duality may not exist for all magic squares.
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