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To study the eigenvalues of low order singular and non-singular

magic squareswe beginwith some aspects of general squarematri-

ces. Additional properties follow for general semimagic squares

(same row and column sums), with further properties for general

magic squares (semimagic with same diagonal sums). Parameter-

izations of general magic squares for low orders are examined,

including factorization of the linesum eigenvalue from the char-

acteristic polynomial.

For nth order natural magic squares with matrix elements 1, . . . ,n2

we find examples of some remarkably singular cases. All cases of

the regular (or associative, or symmetric) type (antipodal pair sum

of 1+ n2) with n− 1 zero eigenvalues have been found in the only

complete sets of these squares (in fourth and fifth order). Both the

Jordan form and singular value decomposition (SVD) have been

useful in this study which examines examples up to eighth order.

In fourth order these give examples illustrating a theorem by Mat-

tingly that even order regularmagic squares have a zero eigenvalue

with odd algebraic multiplicity, m. We find eight cases with m = 3

which have a nondiagonal Jordan form. The regular group of 48

squares is completed by 40 squares with m = 1, which are diagon-

able. A surprise finding is that the eigenvalues of 16 fourth order

pandiagonal magic squares alternate between m = 1, diagonable,

and m = 3, non-diagonable, on rotation by π/2. Two eighth order

natural magic squares, one regular and the other pandiagonal, are

also examined, found to have m = 5, and to be diagonable.

Mattingly also proved that odd order regular magic squares have

a zero eigenvalue with even multiplicity,m = 0, 2, 4, . . .. Analyzing
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results for natural fifth ordermagic squares fromexact backtracking

calculationswe find 652withm = 2, and fourwithm = 4. There are

also 20,604 singular seventh order natural ultramagic (simulta-

neously regular and pandiagonal) squares withm = 2, demonstrat-

ing that the co-existence of regularity and pandiagonality permits

singularity. The singular odd order examples studied are all non-

diagonable.

©2008 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Types of magic squares

Here we consider the general case of a square array, A, with real elements ars, deferring to a later

section (6.11.2) some rarer types which make more sense once we discuss magic squares composed of

sets of sequential natural numbers (see e.g. [31]).

• Semi-magic squares: when all row and column sums are constrained to have the same magic

sum, S(A):

n∑
r=1

ars =
n∑

r=1
asr = S(A) for s = 1, 2, . . . ,n, (1)

the resultant matrices describe semimagic (or doubly affine) squares.

• Magic squares: if in addition to the above, both the principal diagonal and the dexter diagonal

[11] also sum to S(A):

n∑
r=1

arr =
n∑

r=1
ar,n−r+1 = S(A) for s = 1, 2, . . . ,n, (2)

we have a general magic square.

• A pandiagonal magic square has all the broken (or co-)diagonals (n consecutive elements

parallel to the main diagonals under tiling, as indicated below for the set sloping down to the

right) with the same magic sum, S(A):

♠ � ♣ ♦
♦ ♠ � ♣
♣ ♦ ♠ �
� ♣ ♦ ♠

(3)

It may help to tile a copy of a magic square to an edge of itself to see the continuity of n element

lines, or even to wrap the square onto a torus (see e.g. [26]) to join all opposite edges for the

same effect (periodic boundary conditions).

• Regular (or associative, or symmetric) magic squares exist if all pairs of elements which are

antipodal to each other have the same pair sum:

aij + an−i+1,n−j+1 = constant; i, j = 1, . . . ,n (4)

For odd n the centre element, which can be seen as pairing with itself, must be half of this

constant.

• Ultramagic squares have both the regular and pandiagonal properties.
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1.2. Magic squares considered as matrices

McClintock [50] evidently reckoned that if magic squares were worthy of study by “an Euler or a

Cayley” then they have legitimacy. Magic squares considered as matrices have a rich connection with

linear algebra. As far as we have been able to determine, Fox [23] in 1956 was the first to use the

term ‘magic square matrix’ in the context used here. His context was the inverse when the matrix

was non-singular. Studies fall into several categories according to the nature of their matrix elements:

(a) general results for fields, e.g., rational, real, complex numbers, (b) general results for rings, e.g.,

the integers (which have no multiplicative inverse), and (c) the fascinating cases of sequential natural

numbers. In order to clarify what is already known from a considerable but widely spread literature

we first review themore general case of magic squares composed of real entries, before examining the

natural (or classical) cases composedof equally spaced sequential integer elements, thenthorderwith

entries consisting of the first n2 natural numbers, which often possess strikingly simple properties.

A recent review of scientific aspects of magic squares has been given by Loly [42]. Here the focus is

with the mathematics. In much of the literature normal is used in place of natural, but since normal

matrices have another meaning in the literature on linear algebra, we have chosen to use natural,

while classical could include closely related magic squares comprised of 0, . . . , (n2 − 1), which are

sometimes convenient mathematically.

The present work began by noting a strikingly simple eigenvector associated with the magic sum

(the “magic eigenvalue”or linesum) inexperimental computationsonnaturalmagic squares fromthird

order to more than 20th order. Initially Mathematica� was used in this study, which then continued

using Maple� for a study of the complete set of fourth order magic squares, before changing focus

to find examples of singular magic squares which illustrate two theorems of Mattingly [48]. However

many of the results can be obtained through simple analysis of characteristic equations. The examples

studied include degenerate (multiple) zero eigenvalues which can render the matrix non-diagonable

(e.g. [14,62,15,76]). Eventually the need for a proper introduction led to a careful review of earlier

work on magic squares for orders n = 3, 4, and 5, a number of new results, and some insight into

higher order magic squares through examples up to eighth order. Singular value decomposition (SVD)

and the Jordan form of matrices have been helpful in discussing the singular cases.

In studying the eigenproperties of natural magic squares, which may be singular or not, this work

sheds light on the determinants of natural magic squares when they do not vanish. Of course, histori-

cally magic squares and determinants predate the 19th century invention of matrices.

2. Preliminary observations

A few properties of general square matrices are worth noting at the start, before proceeding with

those additional properties possessedbygeneral semimagic squares, andfinally generalmagic squares.

From any of the standard texts on linear algebra or matrix computations (e.g. [33,51]), and when A is

an n× nmatrix we list the following:

(a) There are two conventions for the characteristic polynomial, (i) p(λ) = det(A− λI), with a term

(−1)nλn, or (ii) P(λ) = det(λI − A), with a term +λn (see Horn and Johnson [33]). Then P(λ) =
(−1)np(λ). The characteristic equation is obtained by setting each equal to zero and thus the sign

of λn may be taken to be+1 in both cases. N.B. InMathematica� the CharacteristicPolynomial
function corresponds to (i), while in Maple� the charpoly function corresponds to (ii).

(b) If λi are the eigenvalues of A, the roots of the characteristic equation, P(λ) = 0, may be written

as a product of terms equal to a polynomial:

n∏
i

(λ− λi) = λn + c1λ
n−1 + c2λ

n−2 + · · · + cn = 0, (5)

where we followed Meyer’s [51] notation for the remaining coefficients of the characteristic

equation.
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In standard notation, e.g., Meyer [51], one can write the coefficients of (5) as

ck = (−1)ksk , (6)

where

sk =
∑

(all k × k principal minors). (7)

The trace of A is then

s1 =
n∑

i=1
λi = −c1, (8)

the sum of all 2× 2 principal minors of A is

s2 =
∑
i /=j

λiλj = c2, (9)

and the determinant of A:

sn =
n∏

i=1
λi = (−1)ncn. (10)

(c) A and its transpose AT have the same characteristic polynomial, the same eigenvalues, with the

same multiplicities, since det(λI − AT ) = det(λI − A).

(d) IfAhasndistinct eigenvalues then it is diagonalizable (semisimple). Amatrixwith somemultiple

eigenvalues may not be diagonizable.

(e) Thedeterminant ofA is the product of its eigenvalues (having inmind its algebraicmultiplicities)

and is equal to p(0), the constant term in p(λ).

(f) The trace ofA is the sumof its eigenvalues (having inmind its algebraicmultiplicities) and except

for possibly for a sign, is equal to the coefficient of λn−1 in the polynomial p(λ).

(g) For A the following conditions are equivalent: (i) A is singular (non-invertible). (ii) The deter-

minant of A is zero. (iii) λ = 0 is an eigenvalue of A. If the matrix is singular, there may still be

useful information in the other coefficients of (5).

Hereafter we will use x in place of λ, noting that some authors use z, e.g., Amir-Moez and Fredricks

[2].

2.1. Rotations and reflections

Prompted by Hruska’s [35] study which used two orientations of the third order natural magic

square, Loly [43] began a detailed examination of the effect of rotations, as well as reflections, on both

the determinant and the characteristic equation for general square matrices. The dihedral group D4

[36] transforms a plane square into itself under rotations by units ofπ/2 radians (a quarter turn, or 90◦),
and by reflections about the horizontal and vertical medians. Reflections about the diagonals can be

obtained by a combination of group elements, and constitute transposes about both diagonals.Wewill

call the four front views and the four back views of a squarematrix the eight phases (or variants) of the

matrix. They will be shown in an explicit numerical example later in Section 4.2. There are generally

two distinct diagonals for these eight phases which can be divided into two interlaced sets, one for

each diagonal (see later in Section 4.2 for an explicit third order example where they are labelled (a)

and (b)). Recently Chu [14] and Styan [62] have called the four matrices associated with one diagonal

“sweet” and those associated with the other diagonal “sour”.
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Finding curious effects for fourth and fifth order magic squares, Loly [43] realized that these issues

were best approached by first considering the situation for general square matrices. Loly’s [43] results

include: (i) for non-singular matrices the sign of the determinant of a general square matrix changes

under a rotation of π/2 for n mod 4 > 1 (or for n = 2+ 4r and n = 3+ 4r, r = 0, 1, 2, . . .), i.e., for n =
2, 3;6, 7; . . ., but not for n = 4, 5;8, 9; . . ., and, (ii) there are just two characteristic equations, one for

each diagonal, with potentially two sets of eigenproperties for the eight phases. This behaviour of the

determinant and eigenproperties for the eight phases of a general square matrix under D4 does not

appear to be well known.

We shall see later in Section 6 that even when the determinant vanishes in singular cases there are

differences when one looks at the eigenproperties of the sweet and sour phases, except in extreme

singular cases.

2.2. Semimagic squares

Beyond S(A) in (1) we may identify further properties. The magic sum (1) does not change under

rotations by π/2 or by reflection about the horizontal or vertical medians, and the uniform (n-agonal)

right and left eigenvectors (1, 1, . . . , 1) and (1, 1, . . . , 1)T , have a common eigenvalue, say λ1, equal to

the magic sum (e.g., see [64]). In 1984 Amir-Moéz and Fredricks [2] proved that the remaining roots:

λ2, . . . , λn, (11)

which they called complementary characteristic roots, are unchanged by addition of complex factors

of En, the n× nmatrix of all ones. Also, for semimagic squares with non-negative elements, Khan [37]

proved that λ1 is not less than the absolute value of any other eigenvalue, and since Perron’s theorem

(see e.g. [33]) states that amatrix with positive entries has a unique eigenvalue of maximummodulus,

then λ1 must be the largest eigenvalue for a semimagic square with positive entries.

3. General magic squares

The trace ofmagic squares is obviously invariant under rotation or reflection because each diagonal

has the same sum. Amir-Moéz and Fredricks [2] then proved a powerful factorization theorem for the

characteristic polynomial:

(x − λ1)q(x), (12)

where

q(x) = xn−1 + an−3xn−3 + · · · + a0. (13)

We note the absence of an xn−2 term in (13). This follows since one of the eigenvalues of amagic square

is the magic sum from 2.2, and the trace is the sum of the eigenvalues, so that the other eigenvalues

must sum to zero (see e.g. [64,29,75]). It is also easy to show that in (13), the coefficient an−3 = c2, the

sum of the 2× 2 principal minors in (9) (see also e.g. [76]).

The result in (13) has been overlooked inmuch of the subsequent literature, perhaps because Amir-

Moéz and Fredricks [2] only applied it to the invertibility of the general third order magic square.

However it elegantly describes some results discussed later which we found in examples of low order

magic squares. From (13), using (5) and (6), it also follows that:

cn = −λ1a0, (14)

from which the determinant can be obtained via (10).

3.1. Parameterization of general magic squares

The general nth order magic square can be parametrized in terms of n(n− 2) variables (see e.g.

[68,13,74,16,49]). This is the number ofmatrix elements (n2), less twice the number of rows (columns).

Moreover if the line constant is fixed, then there is one less independent variable.

We continue by reviewing aspects of general third and fourth order magic squares in order to set

the scene for an appreciation later of the unique role of integer magic squares.
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3.2. Parameterization of general third order magic squares

The earliest reference we have been able to find is due to Lucas [46] in 1891, and the essence of that

result is repeated in many places, often without prior referencing (see e.g. [40,39,13]).

First we add a common average value, c, to each cell of Lucas’s parameterization [46] to give the

general expression of a magic square of order three:

Lucas =
⎡
⎣

c + u c + v− u c − v

c − u− v c c + u+ v

c + v c + u− v c − u

⎤
⎦ , (15)

where the sum of all rows columns and the main diagonals is now 3c. It is also a regular magic square

with antipodal pairs summing to 2c. The characteristic equation is then:

x3 − 3cx2 + 3(v2 − u2)x − 9c(v2 − u2) = 0. (16)

3.2.1. Factoring out the magic eigenvalue

Relatively little attention has been paid to the simple factorizing out of the magic sum eigenvalue,

3c, from the characteristic equation (16). We provide that now, finding a simple quadratic for the

complementary eigenvalues:

(x − 3c)(x2 − 3u2 + 3v2) = 0. (17)

The determinant is 9c(v2 − u2), showing that the matrix is singular if u = ±v, or if the centre value c

vanishes. The eigenvalues are 3c, and a signed pair ±√3
√
u2 − v2, which are either real or imaginary.

The sum of this pair of eigenvalues vanishes as expected and the absence of the linear term in the

second bracket is also in accord with (13).

Interchanging u and v, which is a reflection about the middle row, changes the signs of the coeffi-

cients of x and x0 in the characteristic equation.

These eigenvalues have been given in many places, but not quite as simply, although several are

particularly instructive for the present study. Wardlaw [75] posed the third order parameterization

as a problem for readers of the American Mathematical Monthly in May 1991 to determine whether

the matrix corresponding to 3× 3 magic squares is singular or not, for in the latter case it has a

non-vanishing determinant and is therefore invertible. That journal reported receiving 57 solutions,

printing one by Hartman [29] in December 1992.

3.2.2. The basic rotation

Rotate (15) by π/2 clockwise:
⎡
⎣

c + v c − v− u c + u

c + u− v c c + v− u

c − u c + u+ v c − v

⎤
⎦ . (18)

Now the characteristic equation is

x3 − 3cx2 + 3(u2 − v2)x − 9c(u2 − v2) = 0, (19)

where the linear and constant terms have changed sign: the determinant has changed sign, −9c(v2 −
u2); eigenvalues are 3c, as before, but with a signed pair ±√3

√
v2 − u2, so that if those eigenvalues

were previously real (imaginary), they are now imaginary (real). Now simultaneous transformations

{v→ u,u→ (−)v} restore thematrix to our Lucas form in (15). Note that Dernham [17] stated the result

for the determinant of this magic square changing sign on reflection, but erred in stating that rotation

did not change the sign.

3.3. Parameterization for fourth order magic squares

So far we have only looked in detail only at the third order case, so it would be cautionary not to

assume that everything is similar for higher orders. The simple alternation between real and imaginary
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eigenvalues forn = 3appears toonlybe true for special cases inhigherorders, and thenonly for singular

squares. The effect of rotations discussed in Section 2.1 might suggest that fourth order magic squares

are simpler under rotation, than are the third order variety, because fourth order determinants do

not change sign under rotation or reflection, but we shall see later that this is definitely not the case

because of changes in other coefficients of the characteristic polynomials. In 1910 Bergholt [7] found a

parameterization for the fourth order general magic square, which is also found in Kraitchik [40], Ball

and Coxeter [3] and Descombes [18]:

⎡
⎢⎢⎣

A− a C + a+ c B+ b− c D− b

D+ a− d B C A− a+ d

C − b+ d A D B+ b− d

B+ b D− a− c A− b+ c C + a

⎤
⎥⎥⎦ . (20)

Factoring out the magic sum eigenvalue, A+ B+ C + D from the characteristic polynomial leaves

behind a complicated cubic equation with no quadratic term in accord with (13):

x3 + βx + γ = 0. (21)

If the remaining eigenvalues are called p, q, r, then by forming:

(x − p)(x − q)(x − r) = x3 − (p+ q+ r)x2 + (pq+ qr + rp)x − pqr = 0, (22)

we see that the sum p+ q+ r vanishes because the trace is themagic sum, in accord with the theorem

of Amir-Moez and Fredricks [2]. This will be useful later in analyzing fourth order results.

3.4. Parameterization for fifth order magic squares

The parameterization of the general fifth order magic square (see [13,18]), after factoring out the

magic eigenvalue, leaves a reduced form of quartic, namely one without a cubic term. For the regular

case, after factoring out the magic eigenvalue, one is left with an even more reduced form of quartic,

namely one with no cubic and linear terms:

x4 + βx2 + γ = 0, (23)

which being even in x, means that the solutions for x are simply two signed pairs of quadratic solutions,

which is consistent with Mattingly’s [48] theorem with m = 0.

Chernick [13] outlined a procedure for carrying out these parameterizations for arbitrary order.

3.5. Powers of magic squares

van den Essen [22] showed that odd powers of third order magic squares were also magic via an

analysis which recognizes the important role of semimagic squares.

Thompson [64] studiedoddpowers ofmagic squares for third, fourth andfifth orders and in thepro-

cess focussedon the invertibilityof the squaresbyanalyzing their eigenvalue structure. BothThompson

[64] and van den Essen [22] showed that odd powers of 3× 3 magic squares are themselves magic,

and Thompson [64] also shows that pandiagonal magic squares in fourth and fifth orders have this

property. Excluding the line sum eigenvalue, Thompson [64] conjectured that these results follow

from the symmetrical placement of the remaining eigenvalues about the origin, i.e., as signed pairs.

Thompson’s [64] analysis is useful in the present paper when we come to examine specific examples

provided by complete sets of natural magic squares.

Chu [14] and Styan et al. [62], and their collaborators [15], have recently studied odd powers of

magic squares, obtaining several interesting theorems. Trenkler [66] discussed the eigenvalues of the

general third order magic square by studying the eigenvalues of its square and found a signed pair of

eigenvalues inaddition to the line sumeigenvalue.Gauthier [28] also lookedatpowersandpolynomials

of the general third order magic square.
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4. Natural magic squares

Natural semimagic andmagic squares using the equally spaced set 1, . . . ,n2 have amagic sumgiven

by

Sn = n

2
(n2 + 1). (24)

We note that these natural squares are by definition not symmetric. That all the sk in (7) are now

integers means that the value of the determinant is a positive or negative integer, unless it vanishes.

4.1. Integer versus real squares

The recreational mathematics literature is dominated by construction and counting, so it is not

surprising to find there an emphasis on squares with the natural numbers for their matrix elements.

It is clear that natural magic squares can be scaled by real, complex or rational factors to produce

corresponding behaviour (properties) for an infinite subset of general magic squares. The reverse

situation, from general squares with real elements, cannot generally scale to an integer square. Brock

[9] has an insightful discussion of the rarity of singular matrices which is broader than the present

concern with magic squares, and Hetzel et al. [32] have discussed the related issue of when integer

matrices are diagonalizable.

It is worth noting that there is a close relationship between pandiagonal and regular magic squares

which causes some confusion in the extant literature, e.g., neither natural regular nor natural pandiag-

onal squares exist for singly even order, i.e., n = 6, 10, . . . (see e.g. [58,73,56]), although they may exist

in the general case. Clearly the finite sets of squares found under the restriction to natural squares offer

a special opportunity.

We note that the physical moment of inertia of magic squares is constant for all natural magic

squares of a given order [41]. This concept can be extended to general semimagic squares, but it does

not then give an invariant for a given order because their elements are not constrained to a particular

equally spaced set of values.

Non-classical magic squares use a non-sequential set of integers, while in this paper all the magic

squares studied use the natural sequence 1, . . . ,n2.

4.2. Lo Shu – the unique third order natural magic square

The original ancient Chinese orientation of the Lo Shu (or Lo-shu, Loshu, Luoshu, …) is

L =
⎡
⎣
4 9 2

3 5 7

8 1 6

⎤
⎦ (25)

It has the following pairs of eigenvectors and eigenvalues, beginning with the linesum:
⎧⎨
⎩
1

1

1

⎫⎬
⎭↔ 15,

⎧⎨
⎩
− 2

7 i
√
6− 5

7
2
7 i
√
6− 2

7
1

⎫⎬
⎭↔ −2i

√
6,

⎧⎨
⎩

2
7 i
√
6− 5

7

− 2
7 i
√
6− 2

7
1

⎫⎬
⎭↔ 2i

√
6. (26)

For L the determinant has the value 360, the characteristic polynomial is x3 − 15x2 + 24x − 360 =
(x − 15)(x2 + 24). From (5) c1 = −15, c2 = 24, c3 = −360. For n = 3 the determinant divided by n and

by the line sum λ1 is also an integer (see [17]). Also, since L and its transpose do not commute, this

magic square is not a normal matrix, i.e., one which commutes with its conjugate transpose (see e.g.

[5]).

Other authors have used a different orientation (or phase), e.g., Hruska [35] studied two of those

phases. Beginning with the Lo Shu phase, we rotate with operator R successively clockwise by π/2

in Table 1 before taking the transpose of the original to display its reverse side and then listing its

rotations.
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Table 1 Rotation of the Lo Shu magic square (R is the basic rotation by π/2 and L⊥ is a transpose about the dexter diagonal),

c1 = −15, (a) and (b) are the alternating eigenvalue sets, (c) is Hruska’s [35] A, (d) is in Frenicle’s [24] standard form [6], (e) is

the horizontal flip of L, and (f) is Hruska’s [35] B and the vertical flip of L.

Phase Face Top row c2 c3 Eigenvalues

L (25) 1 4, 9, 2 +24 −360 (a) 15,±2i√6
RL 1 8, 3, 4 −24 360 (b) 15,±2√6
R2L (c) 1 6, 1, 8 +24 −360 (a)

R3L (d) 1 2, 7, 6 −24 360 (b)

LT 2 4, 3, 8 +24 −360 (a)

RLT (e) 2 2, 9, 4 −24 360 (b)

R2LT ≡ L⊥ 2 6, 7, 2 +24 −360 (a)

R3LT (f ) 2 8, 1, 6 −24 360 (b)

In Table 1, two groups of four phases whose members alternate share one of two characteristic

polynomials. From (5) the signs of c2 and c3 coefficients alternate but c1 is always −15, and from (6)

the trace is always s1 = +15. Why this happens is now clear in general from Loly [43].

Hereafter we only need consider one of each set, for which we choose a pair related by the basic

rotation. It may be of interest to note that the physicist (Loly) used rotations, while themathematician

and statistician Styan [62] used the reversal (flip) permutation operator J of all ones along the dexter

diagonal. In computer codes the J operator is often convenient, because of the absence of a built-in

rotation operator in some software packages.

In the case of a general third order magic square, both c2 and c3 either alternate in sign or vanish

as shown earlier in (16). Later we show more complicated results on rotation for fourth order magic

squares. Despite these rotational and flip effects it has been common to count just one of the eight

phases as distinct in most studies.

Anticipating additional information needed for higher order magic squares, especially for singular

squares, we introduce these aspects in this simplest case. First the Jordan form (see e.g. [5]), which

consists of Jordanblockson thediagonal. The LoShu shows the simplest formwithfirst order (diagonal)

1-by-1 Jordan blocks:

JF(L) =
⎡
⎣
15 0 0

0 2i
√
6 0

0 0 −2i√6

⎤
⎦ (27)

showing the non-degenerate eigenvalues in a diagonalized matrix.

Second, singular value decomposition (SVD) (see [34,21]), in which the singular values are the

square roots of the eigenvalues of the two Gramian products of the transpose of a matrix with itself

(see e.g. [25]). For the Lo Shu these Gramian products are

LTL =
⎡
⎣
89 59 77

59 107 59

77 59 89

⎤
⎦ and LLT =

⎡
⎣
101 71 53

71 83 71

53 71 101

⎤
⎦ . (28)

In general these Gramians are symmetric matrices, but in the Lo Shu case they are also bisymmetric.

They both have the same characteristic polynomials and thus the same eigenvalues, 225, 48, 12, the

square roots of which give the singular values: 15, 4
√
3, 2
√
3. These singular values are the same for all

phases, as shown by Loly [43] for general square matrices.

5. Complete sets of natural magic squares

Central to the present contribution is the availability of complete finite sets of naturalmagic squares

for order 4, numbering 880 distinct squares, and also for order 5. Those of order four were first enu-

merated by Frénicle de Bessy [24] (see also [6]) in 1693, and have been classified in various ways, with

the count definitively analyzed by Ollerenshaw and Bondi [55] (see also [8]). In 1973 Schroeppel (see

[26,4]) used anearly PDP-10 computer to count thefifth order set, finding275, 305, 224distinct squares
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by an exhaustive backtracking procedure. We (see [73]) also used a similar backtracking approach for

fifth order, and for the ultramagic subset of seventh order.

However, apart from a study of the determinants for the whole 880 by Trigg [70] and Brown [10],

there has until recently been no thorough eigenvalue study, and much less for fifth order. It is well

within the scope of a summer project for undergraduates to analyze these datasets. While our work in

fourth order began with a dataset assembled by Heinz [30] in terms of Dudeney’s [20] classification,

the present authors have also used versions of a backtracking approach begun by one of us [73] for

that order, for which the resulting dataset could be reordered into any desired sequence. Dudeney [20]

identified 12 Groups based on patterns of element pairs which add to half the magic sum of 34. We

summarize some aspects of these groups later in Tables 3 and 8.

5.1. The MATLAB� algorithms

In 1993 Moler [53] noted that natural magic squares generated by standard algorithms encoded

in the MATLAB� magic(n) function were all singular in even order, but nonsingular in odd order.

Shortly after Moler’s observations Kirkland and Neumann [38] examined the doubly-even natural

magic squares produced by the MATLAB� algorithm, finding for all orders, 4k, k = 1, 2, . . ., a rank

3 square and a general formula for their eigenvalues and singular value decomposition. In view of

the elegant results from that study the fourth order square produced by MATLAB� is worth further

discussion since it provides valuable guidance in interpreting results for other magic squares:

magic(4) =

⎡
⎢⎢⎣
16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

⎤
⎥⎥⎦ . (29)

Thedeterminantofmagic(4)vanishesand its characteristicpolynomialmaybewrittenasx(x3 − 34x2 −
80x + 2720) = x(x − 34)(x2 − 80), so that the eigenvalues are 0, 34,±4√5. This magic square has rank

3, with singular values 34, 8
√
5, 2
√
5, 0. The Jordan form for this case is diagonal.

This magic square is closely related to one made famous by Albrecht Dürer in his 1514 engraving

Melencholia I, differing only by the exchange of the middle columns to reveal that date.

For order n = 4k Kirkland and Neumann [38] gave the 3 non-zero eigenvalues as Sn,± n
2

√
n(n2−1)

3
,

and their three non-zero singular values as Sn,
n
2

√
n2(n2−1)

3
and n

2

√
(n2−1)

3
, i.e., rank 3, which agree for

n = 4 with the computed values above, while giving insight into a general form for one square in each

higher order (n = 8, 12, 16, . . .).

Regular (or associative, or symmetric) natural magic squares satisfy the antipodal constraint:

aij + an−i+1,n−j+1 = n2 + 1; i, j = 1, . . . ,n. (30)

The odd and doubly-even algorithms in MATLAB� produce regular magic squares, while the singly

even algorithm does not.

5.2. Mattingly’s theorems

More recently Mattingly [48] shed considerable light on Moler’s [53] observations by analyzing

regular, but not necessarily natural, magic squares with the help of Perron’s theorem, and through

the use of deflation techniques to produce a skew-centrosymmetric matrix where the magic constant

eigenvalue is replaced by a zero eigenvalue. In essence, Mattingly proved that regular magic squares

have an odd multiplicity of non-zero eigenvalues, meaning that, e.g., in fourth order there may in

principle be either one or three zero eigenvalues, while in fifth order there may be either none, two or

four zero eigenvalues.

It is worth noting that Mattingly’s [48] analysis of regular magic squares depends largely on the

semimagic property and is also applicable to squares with real or complex elements.

We have identified all singular regular natural magic squares in orders four and five, and discuss

these in the light ofMattingly’swork [48]. In both caseswe findmaximally singular caseswith just one
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non-zero eigenvalue. Our new results come from explicit studies of the only complete sets of natural

magic squares, those of order four and five, and we have extracted the regular subset from each of

those sets.

Mattingly’s theorems are now illustrated separately for even and odd orders in the light of our new

results.

6. Even order natural magic squares

Mattingly [48] showed that regular natural magic squares of even order are singular by proving

that they have zero eigenvalues of odd multiplicity,m = 1, 3, 5, . . . , (n− 1), but gave only one example

of order four (4-by-4) with a single zero eigenvalue, m = 1.

6.1. Example of a 4-by-4 regular magic square with one zero eigenvalue

Mattingly’s [48] fourth order example is the transpose about the dexter diagonal of Dürer’s famous

magic square which is listed as Dudeney [20] Group III, Frénicle index 175:

F175 =

⎡
⎢⎢⎣
1 12 8 13

14 7 11 2

15 6 10 3

4 9 5 16

⎤
⎥⎥⎦ . (31)

F175 has the following pairs of eigenvectors and eigenvalues:

⎧⎪⎪⎨
⎪⎪⎩

−1
−3
3

1

⎫⎪⎪⎬
⎪⎪⎭
↔ 0,

⎧⎪⎪⎨
⎪⎪⎩

7

−3
−5
1

⎫⎪⎪⎬
⎪⎪⎭
↔ −8,

⎧⎪⎪⎨
⎪⎪⎩

1
7

− 5
7

− 3
7
1

⎫⎪⎪⎬
⎪⎪⎭
↔ 8,

⎧⎪⎪⎨
⎪⎪⎩

1

1

1

1

⎫⎪⎪⎬
⎪⎪⎭
↔ 34.

The determinant vanishes and the characteristic polynomial factors as follows: x4 − 34x3 − 64x2 +
2176x = x(x + 8)(x − 8)(x − 34). It is worth noting that all these eigenvalues are integers, something

of a rarity (see [47]). The Jordan form is diagonal, and the singular values are 34, 8
√
5, 2
√
5, 0 for rank

3. The trace of all fourth order natural magic squares is always s1 = 34 = S4.

Trenkler [67] has recently completed an interesting study of all Dürer-like magic squares.

6.2. Example of a 4-by-4 regular magic square with three zero eigenvalues

One of these squares is Dudeney Group III, Frénicle index 790:

F790 =

⎡
⎢⎢⎣
5 4 16 9

11 14 2 7

10 15 3 6

8 1 13 12

⎤
⎥⎥⎦ . (32)

Maple� gives the eigenvectors:

⎧⎪⎨
⎪⎩

−1
1
3
− 1

3
1

⎫⎪⎬
⎪⎭
↔ 0,

⎧⎨
⎩
1
1
1
1

⎫⎬
⎭↔ 34, with the characteristic equation x3(x − 34) =

0, showing the magic constant eigenvalue, S4 = 34, and the triple degeneracy of the zero eigenvalue.

F790 has rank 3 and the same singular values as F175. There are seven more magic squares in this

group with the same spectra.

Going beyond Mattingly’s examples, Chu [14] and Styan et al [62] noted that the eight natural

regular squares with three zero eigenvalues are non-diagonable. We demonstrate this for F790 using

the Jordan form which has these eigenvalues on the diagonal, but is not diagonal, being composed of

the linesum eigenvalue and a 3-by-3 Jordan block:
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Table 2

Regular types in Group III compared. (The prefix R denotes a rotation of π/2.)

Singular square (c4 = 0) c2 c3 Eigenvalues

F790,m = 3, all phases 0 0 34, 0, 0, 0

F175,m = 1 (sweet) −64 +2176 34,±8, 0
RF175,m = 1 (sour) +64 −2176 34,±8i, 0

JF(F790) =

⎡
⎢⎢⎣
34 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎦ (33)

This nondiagonal Jordan form is an example of an upper (or lower) triangular canonical form (see e.g.

[52]).

Table 2 summarizes the effect of rotation on these two examples.

Note the sign alternation for c2 and c3 on rotation for F175 and RF175. Square F790 with just one

non-vanishing eigenvalue has the same characteristic equation for all phases, while F175 is similar to

the pattern of the third order square, with the fourth eigenvalue vanishing.

6.3. Parameterization of regular n = 4 natural magic squares

There are fewer independent variables when other constraints are applied, e.g., the pandiagonal, or

the regular condition. The regular fourth order magic squares, which are of prime importance for the

present study, have five independent variables and the magic eigenvalue factorizes out as expected

[45]. If we fix the linesum at 34 and the antipodal pair sum at 17, the value for natural n = 4 magic

squares, this set may be parameterized as follows:
⎡
⎢⎢⎣

17− b a+ b+ c − 17 b− a+ d 34− d− c − b

17− c 17− a a+ c − d d

17− d d− a− c + 17 a c

b+ c + d− 17 a− b− d+ 17 34− a− b− c b

⎤
⎥⎥⎦ . (34)

This matrix has rank 3, with a characteristic polynomial which factorizes as

x(x − 34)(x2 + 1156+ 4d2 − 68b+ 4db+ 4c2 − 4da+ 4cb− 136c + 4ca− 68d) (35)

showing that all regular fourth order magic squares are singular, a specific instance of Mattingly’s

theorem for even n [48].

The Jordan form of (34) is diagonal:

⎡
⎢⎢⎣
0 0 0 0

0 34 0 0

0 0 δ 0

0 0 0 −δ

⎤
⎥⎥⎦ , (36)

where δ = 2
√
da− ac − c2 + 34c − bc − d2 − bd+ 17b+ 17d− 289.

With the values for a = 3, b = 12, c = 6, d = 7 corresponding to F790 the sumof the constants in the

second bracket vanishes of (35), as expected. For the values in F790 the δ’s in (36) vanish, appearing

to leave a diagonal Jordan form, in contrast to the specific result earlier that F790 is not diagonable.

Perhaps this is a result of the presence of three zero eigenvalues not being anticipated in the general

parameterization above in (34).

6.4. Change of multiplicity on rotation in Group I

Up to this point we focused on the regular Group III because of Mattingly’s theorems [48]; however

it seemed appropriate to check some other fourth order magic squares. Since the pandiagonal magic
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squares have a central place in the annals of magic square studies, it seemed appropriate to examine

these first. From Dudeney’s Group I we present square F109 which on rotation alternates between

m = 3 and m = 1:

F109 =

⎡
⎢⎢⎣
1 8 11 14

15 10 5 4

6 3 16 9

12 13 2 7

⎤
⎥⎥⎦ . (37)

The eigenvalues are 34, 8, 0, −8, and the characteristic polynomial: x4 − 34x3 − 64x2 + 2176x = x(x −
34)(x − 8)(x + 8). F109 has a diagonal Jordan form and rank 3 from singular values 34, 4

√
17, 2
√
17, 0.

The Gramian matrices for Groups I and II are symmetric, unlike the regular squares of Group III which

are bisymmetric.

However if F109 is rotated by π/2 to RF109, or flipped, it has different eigenproperties. Now the

eigenvalues are 34, 0, 0, 0, i.e., triply degenerate zero eigenvalues, with the characteristic polynomial:

x4 − 34x3, clearly different from the characteristic polynomial for F109. RF109 is non-diagonable with

the same Jordan form as F790 in (33).

Thompson [64] also focussed on this pandiagonal Group I, with a particular interest for when

powers of the squares remained magic.

6.5. Dudeney’s Group II magic squares

Group II exhibits a new feature called semi-bent diagonals. For even order any combination of

half diagonals from the corners which is not straight is called a bent-diagonal, as are those shifted

left–right or up–down, including those wrapped over the edges. Following a particular symbol in the

diagram below shows the bent diagonals which are staggered to the right:

♠ � ♣ ♦
♦ ♠ � ♣
♦ ♠ � ♣
♠ � ♣ ♦

(38)

For orders n = 8 and n = 16 Franklin (see [61]) introduced squares with bent diagonal sums equal

to the row and column sums, which themselves are comprised of equal sum half rows and columns.

Franklin’s squares are semimagic because they do not have magic main diagonals, and are further

discussed in Section 6.11.2.

The Group II magic squares have alternating semi-bent diagonals with the magic sum, interleaved

with oneswhich do not have that sum. In Dudeney’s Groups II through VI-P, shown in the next section,

there is a similar semi-pandiagonal alternation of magic and non-magic pandiagonals.

The alternation of the number of zero eigenvalues on rotation shown in the previous section for

some Group I magic squares does not occur for the regular set, Group III, but does occur for some in

Group II, the semi-pandiagonal semi-bent set. Loly and Tromp [45] observed that Groups I and II have

“global” constraints, i.e., surviving under tiling, whereas the regular constraint in Group III, having

centred antipodal pairs is “local”.

6.6. Multiplicities of the singular fourth order squares

We have analyzed the complete set of the 880 order four natural magic squares, where there

are 640 singular magic squares. In Group III of this set there are 48 regular squares, 40 with m = 1

(including one from the MATLAB� algorithm), which are highlighted in Table 3. A summary for these

640 natural fourth order magic squares according to Dudeney’s [20] Groups and their multiplicity of

zero eigenvalues (m) which takes into account the effects of rotation (or flipping) are shown in Table

3.

Recently Vehkalahti [76] has used Mustonen’s Survo [54] graphics package to animate the 640

singular magic squares in order to rapidly compare the squares in a given Group.
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Table 3 Census of singular fourth order magic squares by Dudeney [20] Group andmultiplicity (m) [30]. The last column shows

that eight squares in Groups I and II oscillate betweenm = 1 andm = 3 on change of phase by rotation or flipping. The regular

Group III is shown in bold, and VI-S (simple) has no pandiagonal or bent features.

Group Type Number m = 1 m = 3 1← m→ 3

I Pandiagonal 48 32 0 16

II Semi-pandiagonal, semi-bent 48 32 0 16

III Regular, semi-pandiagonal 48 40 8 0

IV Semi-pandiagonal 96 96 0 0

V Semi-pandiagonal 96 96 0 0

VI-P Semi-pandiagonal 96 96 0 0

VI-S Simple 208 208 0 0

6.7. Some general observations concerning the singular cases

Thompson [64] approaches these singular cases in amore general way. Using the trace property he

gives three cases to consider: (i) gives the complementary eigenvalues as 0,±λ, which would accom-

modate our m = 3 result in (6.2) if λ = 0, and the m = 1 case otherwise, while (ii) gives λ,ωλ,ω2λ,

where ω is the complex cube root of unity, as well as the possibility of a non-singular result if λ /= 0 to

describe an invertible square. In cases (i) and (ii) these non-zero eigenvalues are symmetrical about

the origin. Clearly the m = 3 results for fourth order natural regular squares are covered if λ = 0 in

either of these cases! Thompson’s case (iii) is relevant for the non-singular examples in Section 6.9

where the characteristic eigenvalues are not symmetrical about the origin.

6.8. Singular values for Groups I, II and III

A further breakdown follows from the analysis of the singular values, especially for those cases

exhibiting three vanishing eigenvalues, in part because of the invariance of the SVD results under

rotation or flipping.

For Groups I, II, and III there are just three sets of singular values which are common to each Group

(see Table 4).

The SVD results do not differentiate between the 16 squares alternating betweenm = 1 andm = 3

in each of Groups I and II, and the unchangingm = 3 pattern for eight squares in Group III because the

SVD values are invariant under rotation (see [43]).

Set α has already been shown above in connection with the MATLAB� magic(4) and Kirkland

and Neumann’s study [38], while set β appeared for F109 in (37). The expressions in brackets follow

from Kirkland and Neumann [38] for α, while those for β and γ were first inspired from the decimal

expressions by those for α, and then confirmed by Gramian analysis. For Group III we construct Table

5 to show which eigenvalue (EV) cases are found for each of the three SVD.

While all three Groups have m = 3 cases, only in Group III do their eigenvalues not change in

magnitude under rotation, because in those eight cases the value of m does not change. This Group

also differs from the other two in that the magnitude of the eigenvalues values of none of the other

members changes magnitude under rotation, changing only between real and imaginary. Rather than

list all 48 members we display only the 16 members with the SVD sets α and β, noting that there are

also a further 16 members in Table 5 with the SVD sets α and γ , and 16 members with the SVD sets β

and γ .

Table 4

The three SVD sets for Groups I, II and III (the fourth singular value vanishes for singular squares).

SVD set First Second Third

α 34 17.88854382
(
8
√
5
)

4.472135955
(
2
√
5
)

β 34 16.49242250
(
4
√
17

)
8.246211251

(
2
√
17

)

γ 34 16.12451550
(
2
√
5
√
13

)
8.944271910

(
4
√
5
)
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Table 5

Eigenvalues found for each SVD set in Group III. (The m = 3 cases are shown in bold.)

SVD set EV cases (in addition all have 0, 34)

α 0,0;±8;±8i;±4√5; ± 4i
√
5;±4√3;±4i√3;

β 0,0;±8;±8i;±2√34;±2i√34;±2√30;±2i√30;
γ ±4√5; ± 4i

√
5;±4√3;±4i√3;±2√34;±2i√34;±2√30;±2i√30

Table 6

α and β SVD sets for Group III with Dudeney indices. (All have additional eigenvalues 0, 34.)

EVs EVs rotated SVD set Frenicle indices

0, 0 0, 0 α 290, 360, 790, 803

0, 0 0, 0 β 299, 377, 489, 535

±8 ±8i α 113, 175, 835, 850

±8 ±8i β 122, 185, 637, 695

Table 7

Non-singular examples compared (type: simple).

Square c2 c3 c4 Eigenvalues

Group 11, F181 −40 +1552 −6528 34,−8, 4± 2
√
2i

RF181 +8 −80 −6528 34,−5.30783, 2.65391± 5.3972i

Group 7, F268 −110 +3964 −7616 34,−11.3873, 9.26392, 2.1234

RF268 −142 +5052 −7616 34,−12.6382, 11.0315, 1.60667

Note that the m = 3 cases with three vanishing eigenvalues occur only for SVD sets α and β, and

from Tables 5 and 6 that each eigenvalue set appears only in two SVD sets.

6.9. Two non-singular examples

All the non-singular fourth order magic squares have rank 4. We have selected the Dudeney Group

XI, Frénicle index 181 square for illustration of another eigenvalue pattern:

F181 =

⎡
⎢⎢⎣
1 12 13 8

16 9 4 5

2 7 14 11

15 6 3 10

⎤
⎥⎥⎦ , (39)

with characteristic polynomial x4 − 34x3 − 40x2 + 1552x − 6528, which factorizes as (x − 34)(x + 8)

(x2 − 8x + 24). Note that factoring out (x + 8) after (x − 34) leaves the full form of a quadratic which

may have complex roots, and not just the real or imaginary roots from the simpler quadratics which

are missing the linear term, because the complementary characteristic roots add to zero.

The magic square with Frénicle index 268 in Dudeney Group VII provides another interesting case:

F268 =

⎡
⎢⎢⎣
2 5 16 11

8 12 1 13

9 7 14 4

15 10 3 6

⎤
⎥⎥⎦ , (40)

with characteristic polynomial: x4 − 34x3 − 110x2 + 3964x − 7616, which factorizes as (x − 34)(x3 −
110x + 224). Note again the ‘reduced’ form of a cubic equation.

Maple� solutions for both cases are not simple and are best rendered numerically. They are given

in the Table 7 for each matrix and its rotation by π/2.

These squares exhibit the first complex eigenvalues in this study, and by contrast with order 3, have

no sign change on rotation for the determinant. The complementary eigenvalues (λ2, λ3, λ4) do sum to

zero as expected. Note the change of magnitude of c2, c3 and the eigenvalues on rotation in both cases.

These are associated with quite different characteristic polynomials.
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Table 8

Number of distinct SVD sets by Dudeney Group.

Groups Type Population Common SVD sets

I,II,III See Table 3 48 each 3

IV,V,VI-P Semi-pandiagonal 96 each 10

VI-S Simple 208 26

VII,VIII,IX,X Simple 56 each 22

XI,XII Simple 8 each 2

Again, though not singular, singular value analysis is helpful here because it is invariant under

rotation or flipping, simplifying the non-singular results just presented. The singular values for F181

are 34, 17.44170811, 5.656854249, 1.945974860, which are the square roots of the Gramian eigen-

values 1156, 32, 154± 2
√
5641,while for F268 the singular values are 3415, 15.64649515, 9.642766781,

1.484667786, with no simple surd form.

A further observation from Table 7 is that the determinant, c4, divided by the product of the line

sum and the order (n = 4) is an integer. Trigg [69] posed this as a question, first for n = 3, then for

other orders [71], and finally Trigg [70] proved this for all fourth order natural magic squares.

6.10. SVD summary for the 880 fourth order magic squares

Nothing particularly notable is found for the eigenvalues in other Groups except for the distinct

SVD sets associated with each Group summarized as shown in Table 8.

It is worth noting the similarities in Table 8 for two singular Groupings I, II, III, and IV, V, VI-P, as

well as themerit of the distinction (see e.g. [30]) between VI-P and VI-S which differ markedly in their

singular values. There are also two Groupings for the non-singular Groups VII to XII.

6.11. Other even orders

6.11.1. Sixth order natural regular magic squares

There are no natural regular or pandiagonal magic squares of order six [73], and since Trump

[73] (see also Pickover [57]) estimates the number of natural eighth order regular magic squares at

2.5228(14)× 1027 outof a total populationof5.2210(70)× 1054, a complete study isoutof thequestion.

We note that Mattingly [48] showed a natural, but not regular, sixth order square with eigenvalues

111, 0,±27,±4√6.

6.11.2. Eighth order – regular natural magic squares and Franklin squares

Some examples of regular magic squares are available from the archive of a useful web site by

Suzuki [63], from which we have chosen one by Woodruff in 1916:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 32 34 63 37 60 6 27

48 49 15 18 12 21 43 54

19 14 52 45 55 42 24 9

62 35 29 4 26 7 57 40

25 8 58 39 61 36 30 3

56 41 23 10 20 13 51 46

11 22 44 53 47 50 16 17

38 59 5 28 2 31 33 64

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

The eigenvalues are 0(five), 260,±4√546, with characteristic polynomial: x8 − 260x7 − 8736x6 +
2271360x5 = x5(x − 260)(x2 − 8736), again in agreement with Section 3 [2]. The Jordan form is diag-

onal, so we see here a fivefold degenerate zero eigenvalue case which is diagonable. These five

eigenvectors are
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
11
0

− 12
11

0

1

0

0

0

,

− 5
33−1

5
33
0

0

0

0

1

,

− 28
33

0

− 5
33

0

0

0

1

0

,

28
33−1
− 28

33
0

0

1

0

0

,

31
33−1
− 31

33
1

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

↔ 0.

Onrotation theeigenvaluesalternatewith0, 260,±4i√546. Singularvalues:260, 4√1041, 72, 0, 0, 0, 0, 0
(rank 3).

Another regular eighth order square worth noting here is generated by MATLAB�’s magic(8) func-

tion:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

64 9 17 40 32 41 49 8

2 55 47 26 34 23 15 58

3 54 46 27 35 22 14 59

61 12 20 37 29 44 52 5

60 13 21 36 28 45 53 4

6 51 43 30 38 19 11 62

7 50 42 31 39 18 10 63

57 16 24 33 25 48 56 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

with eigenvalues: 0, 0, 0, 0, 0, 260,±8√42, and characteristic polynomial: x8 − 260x7 − 2688x6 +
698880x5 = x5(x − 260)(x2 − 2688).

The Jordan form is also diagonal, so we see here another fivefold degenerate zero eigenvalue situ-

ation which is diagonable. On rotation the last pair of eigenvalues become −8i√42, 8i√42. Non-zero
SVD values: 260, 32

√
21, 4
√
21.

At eighth order there are two important complete subsets of magic squares, albeit not regular ones,

which should be mentioned.

• Most-perfect pandiagonal natural magic squares, originally called complete magic squares

by McClintock [50] (see also [56]) exist for all doubly even orders and have two additional

properties, (a) that all 2× 2 subsquares have the same sum, including those that run over the

edges when tiled or when wrapped over a torus (see [26]), and (b) that each integer is com-

plementary to the one distant from it n/2 places along the same pandiagonal, which precludes

them from being regular. Ollerenshaw and Brée [56] were able to give a combinatorial formula

formost-perfect pandiagonal magic squares for doubly even orders (at fourth order they are the

pandiagonal set of Dudeney’s Group I).

However they only have three non-zero eigenvalues (s8,±η)whichmakes that subset of 368,640

order eight squares rather interesting.

• Franklin squares have all bent diagonals with the magic sum, all half rows and columns with

half that sum, and in addition all the 2-by-2 subsquare sums are the same. Schindel et al. [61]

modified the backtracking approach for their count of eighth order natural Franklin squares. Also

all 368,640 eighth order natural pandiagonal Franklin squares which they found have exactly

three non-zero eigenvalues, i.e., again the same pattern of eigenvalues as found by Kirkland and

Neumann [38] mentioned earlier.

7. Odd order regular natural magic squares

Mattingly [48] also left as an open question whether odd order regular magic squares could be

singular, proving that the multiplicity of a zero eigenvalue must be even, m = 0, 2, . . . , (n− 1), but

giving no examples. The unique order three natural magic square is regular but not singular, so it has

no zero eigenvalues.Moler’sMATLAB� magic squares [53] for odd n havem = 0, are also non-singular.
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7.1. Examples of 5-by-5 regular natural magic squares with even multiplicity of zero eigenvalues

Schindel tailored a backtracking program, based on ideas outlined by Trump [73], from which we

found 48,544 order five regular magic squares, of which there are 656 singular cases, with 4 squares

having four zero eigenvalues. We exhibit one of the 652 squares with m = 2⎡
⎢⎢⎢⎢⎣

15 12 21 10 7

2 6 17 18 22

25 23 13 3 1

4 8 9 20 24

19 16 5 14 11

⎤
⎥⎥⎥⎥⎦

. (43)

This has the factorized characteristic equation: x2(x − 65)(x2 − 340) = 0, where S5 = 65. The eigen-

values are 0, 0, 65,±2√85, and on matrix rotation the last pair become ±2i√85. The rank is 4 but the

Jordan form is not diagonal, having a 2-by-2 nondiagonal block. The squares of the singular values

are 4225(= 652), 550± 2
√
71705, 200, 0. These results are reminiscent of the effect of rotation for the

third order magic square, but with the added pair of zero eigenvalues.

In addition there are four extraordinary caseswithm = 4, i.e.,with just a single non-zero eigenvalue

corresponding to the magic constant. One of these is
⎡
⎢⎢⎢⎢⎣

2 11 21 23 8

16 14 7 6 22

25 17 13 9 1

4 20 19 12 10

18 3 5 15 24

⎤
⎥⎥⎥⎥⎦

(44)

with the characteristic equation: x4(x − 65) = 0, four degenerate zero eigenvalues, and again rank 4.

These eigenvalues are invariant under matrix rotation. Again the Jordan form is not diagonal, now

having a 4-by-4 nondiagonal block. The squares of the singular values are 4225, 700, 300± 60
√
5, 0.

Thompson [64] has shown that general fifth order pandiagonal magic squares have eigenvalues

S,±η1,±η2, and so may be singular or not. In any case they provide support for Mattingly’s theorem

in a wider context than just the regular squares for which it was derived.

7.2. Natural ultramagic squares in fifth order

Suzuki [63] listed the 16 fifth order ultramagic squares, none of which are singular, e.g.,
⎡
⎢⎢⎢⎢⎣

1 15 22 18 9

23 19 6 5 12

10 2 13 24 16

14 21 20 7 3

17 8 4 11 25

⎤
⎥⎥⎥⎥⎦

. (45)

Characteristic polynomial: x5 − 65x4 − 250x3 + 16250x2 + 12245x − 795925, which factorizes to (x −
65)(x4 − 250x2 + 12245). This is an invertible magic square and a good example of Thompson’s [64]

pandiagonal criterion. Using a =
√
125− 26

√
5, b =

√
26
√
5+ 125, the changes on rotation are easily

compared in compact tabular form given in Table 9.

Note again the signed pairs. As expected from Section 2.1, the determinant (s5 = −c5) has not

changed, but it is perhaps worth noting the lack of change in c4 = s4, which involves the sum of all

possible quadruple products of the eigenvalues. The squares of the singular values are 4225, 325±
142
√
5, 325± 122

√
5. Finally, multiplying all the eigenvalues in this example shows that its determi-

nant is divisible by both n = 5 and then by the linesum, λ1 = 65.

Table 9 Characteristic polynomial coefficients for the fifth order ultramagic square in (45), where columns c0 (always 1) and c1
(always −65) are omitted.

Coefficient c2 c3 c4 c5 Eigenvalues

Original (45) −250 +16250 +12245 −795925 65,±a,±b
π/2 rotation +250 −16250 +12245 −795925 65,±ia,±ib
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7.3. Natural ultramagic squares in seventh order

One of us, Trump [72], has used an exhaustive backtracking method to show that there are

1.125151(51)× 1018 seventh order regular squares out of a total population of 3.79809(50)× 1034.

We have now been able to find many singular regular magic squares in order seven from the exact

census of the seventh order ultramagic squares, numbering exactly 20,190,684. Trump [72], made

extensive use of transformations to reduce computation time, and Francis Gaspalou [27] has recently

found a further transformation reduction. One example is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

35 48 3 1 6 40 42

19 34 28 21 20 46 7

11 26 38 13 45 33 9

18 36 27 25 23 14 32

41 17 5 37 12 24 39

43 4 30 29 22 16 31

8 10 44 49 47 2 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

The characteristic polynomial factorizes to x2(x − 175)(x2 − 9)(x2 + 231), showing the S7 = 175 line

sum eigenvalue. The full set of eigenvalues contains two signed pairs: 175,±3,±i√231, 0, 0, and is

invariant on rotation. With two zero eigenvalues this demonstrates that regular magic squares, when

also pandiagonal, can be singular, although that is not the casewith any of the 16 ultramagic squares in

fifth order [72], none of which are singular. This magic square has singular values: 175, 74.36923250,

53.96991351, 28.03076252, 20.79580951, 11.75909658, 0, for rank 6. In this case the eigenvalues of

the Gramian matrices are themselves very complicated expressions. The Jordan form is not diagonal,

having one 2-by-2 nondiagonal block.

We find that 20,604 of these seventh order ultramagic squares are singular, all with a pair of zero

eigenvalues. Moreover, Trump finds less than 0.06% singular regular magic squares in random sets in

seventh order where the estimated population is so large that it is unlikely that the complete set can

be studied.

8. Conclusion

The present study made use of the availability of the only complete sets of natural magic squares

which occur for orders four and five, together with the seventh order ultramagics, to illustrate Mat-

tingly’s recent theorems [48]. It is clear from the present work that odd order regular magic squares

can be singular, while the MATLAB� algorithm only gives a non-singular case. Also, for eighth order

we have shown that there are many highly singular magic squares.

The more constraints, e.g., regular, pandiagonal, ultramagic, complete, or Franklin, possessed by a

magic square, then the smaller the number of independent parameters needed to describe a general

magic square (the dimension of its vector space). The occurrence of singular natural magic squares

appears to grow with increasing order, except when some constraints cannot be satisfied, e.g., the

non-existence of regular and pandiagonal cases for singly even orders. It is not clear at present if the

percentage of singular magic squares also grows.

A number of issues are left for future investigations:

• The graphs for characteristic equations are anotherway of looking at the eigenvalue structure of

magic squares andmake a good project for low orders. De Alba [1] has recently studied the roots

of cubic polynomials in terms of the Perron–Frobenius theorem, including a detailed graphical

analysis.

• Trenkler [65,67] has advanced studies of the Moore–Penrose inverse of singular magic squares

and some of the singular squares studied here may be worthy examples for such studies.

• Beyond the scope of the present paper Chan and Loly [12] have been able to compound [12] regu-

larmagic squares, andwith the help of Rempel et al. [59] to produce larger regularmagic squares

of composite orders 3× 3 = 9, 3× 4 = 12 = 4× 3, 4× 4 = 16, etc. The preservation of the regu-

lar property on compounding is readily understood (see [59]). Furthermore compounding reg-
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ular magic squares always produces singular magic squares, even if the constituent squares are

not themselves singular, e.g., the non-singular regular 3-by-3 magic square when compounded

to a 9-by-9 has five non-zero eigenvalues. This will be examined in a future report with Rogers

and Styan [60]. Moreover, if one or both of the initial squares are non-diagonable, so too are the

compounded squares.

• Another look at the non-magic pandiagonal squares of Loly and Steeds [44] in the light of some

aspects of the present study is probably worthwhile, especially since those squares only have

two non-zero eigenvalues of the form Sn/2± dn,n = 2p, p = 1, 2, 3, . . ., whose sum is the magic

constant, and where dn is a complicated function of n.

• A reasonable conjecture suggested by this work is that the rank of natural magic squares be

greater than or equal to three. A proof has since been provided by Drury [19].

• Finally, itwould seemtobeuseful toput together a completedatabaseof all of the characteristics,

includingSVDs,Gramiansand Jordan form, thatwehavediscussed for thewhole setof 880 fourth

order magic squares. This would be useful preparation for a complete study of the fifth order

squares.
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