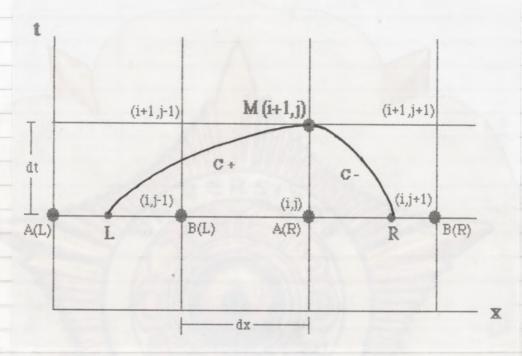


SOLUTION OF UNSTEADY FLOW IN OPEN CHANNELS BY METHOD OF CHARACTERISTICS

Djoko Luknanto and M.B. Sharifi Term Project, 14 December 1988 THE HARTREE FIXED-GRID METHOD

Djoko Luknanto Term Project, 14 December 1988

	iaracteristics in Open Charmer Homework at GEE, IIHK Oniversity	of lowa, lowa City, USA
		1/22
I.	OBJECTIVES	
	To solve unsteady flow in a single charmel using method of tics. Two kinds of method of characteristic are used, the fittee" method (a fixed grid method) and the second is vo	irst one is Har.
	thod.	
I	INTRODUCTION	
	Theoretically method of characteristic is the most promising mesterdy flow in open channels. Using this method the partial governing equations are reduced into a system of ordinary of Asystem of ode's is much more easier to handle than a furthermore one can find the "exact" solution of a system long as the integration evaluation is solve exactly.	diff equs of the differential equs system of pae's,
To To	THE CONTRACTATE FARTANTOMIC	
add.	THE GOVERNING EQUATIONS Continuity: $\frac{\partial A}{\partial t} \neq \frac{\partial Q}{\partial x} \approx 0$	(1)
	Dynamic: $\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q^2}{A}\right) + gA \frac{\partial f}{\partial x} + gASf = 0.$	(2)
0	Need to work with unknowns : u(x,t) and h(x,t).	
	Recoll: $Q = \mathcal{U}(x,t) * A(h)$.	
	$\frac{\partial Q}{\partial x} = u \frac{\partial A}{\partial x} + A \frac{\partial u}{\partial x} = u \left[\frac{\partial A}{\partial h} \frac{\partial h}{\partial x} + \left(\frac{\partial A}{\partial x} \right)_{h=\text{const}} \right] + A \frac{\partial u}{\partial x}$	
	$= u \left[\frac{\partial h}{\partial x} + E \right] + A \frac{\partial u}{\partial x}.$	
	$\frac{\partial A}{\partial t} = \frac{\partial A}{\partial h} \cdot \frac{\partial h}{\partial t} = b \cdot \frac{\partial h}{\partial t}.$	
4.	$\frac{\partial Q}{\partial t} = u \frac{\partial A}{\partial t} + A \frac{\partial u}{\partial t} \approx -u \frac{\partial Q}{\partial x} + A \frac{\partial u}{\partial t}.$	
	$\frac{\partial (Q^2/A^{-})}{\partial x} = \frac{2Q}{A} \frac{\partial Q}{\partial x} - \frac{Q^2}{A^2} \frac{\partial A}{\partial x} = 2u \frac{\partial Q}{\partial x} - u \left[\frac{\partial Q}{\partial x} - A \frac{\partial u}{\partial x} \right] \approx u \frac{\partial Q}{\partial x} + uA \frac{\partial Q}{\partial x}$	<u>∂u</u> ∂æ
0,	Subst. into (1) & (2). Continuity: $\frac{\partial h}{\partial t} + \frac{A}{b} \frac{\partial u}{\partial x} + u \frac{\partial h}{\partial x} + \frac{uE}{b} = 0$	(3)
	Dynamic: $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial (z+h)}{\partial x} + g S_f = 0$.	


Metriod of Cit	aracteristics in Open Charmer Tromework at GEE, in its	wa, Iowa Oity, OSA
		2/22
	$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} + g (S_f - S_o) = 0$	(d).
	Let the celerity of the flow $c = \sqrt{gA}$ or $c^2 \approx \frac{gA}{b}$.	
	$2c\frac{\partial c}{\partial t} \approx g\frac{\partial h}{\partial t} \partial nd 2c\frac{\partial c}{\partial e} \approx g\left[\begin{array}{cc} b\frac{\partial A}{\partial h}\frac{\partial h}{\partial e} - A\frac{\partial b}{\partial h}\frac{\partial h}{\partial e} \end{array}\right] \approx g\left(\begin{array}{cc} 1 - \frac{A}{b^2}\frac{\partial b}{\partial h} \end{array}\right)$) <u>3h</u> 3æ
	Subst. unto (3) & (4)	
	$\frac{2c}{g} \frac{\partial c}{\partial t} + \frac{A}{b} \frac{\partial u}{\partial x} + \frac{2uc}{gF} \frac{\partial c}{\partial x} + \frac{uE}{b} = 0$	
	$2\frac{\partial c}{\partial t} + c\frac{\partial u}{\partial x} + \frac{2u}{F}\frac{\partial c}{\partial x} + \frac{guE}{bc} = 0$	(5)
	$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{2c}{F} \frac{\partial c}{\partial x} + g(S_f - S_o) = 0$	(6).
	$(6) + \lambda(5) = \frac{\partial}{\partial t} (u + \lambda 2c) + (u + \lambda c) \frac{\partial u}{\partial x} + (\frac{u}{F} + \frac{c}{\lambda F}) \frac{\partial 2\lambda c}{\partial x} + \frac{\lambda g U F}{b c} + g (S f)$	-50)=0
	Meed to transfor the above egn. into ode's	
-	Let $u + \lambda c = \frac{u}{E} + \frac{c}{\lambda F}$, the rewrite the egn:	
	$\frac{\partial}{\partial t} (u + \lambda 2c) + (u + \lambda c) \frac{\partial}{\partial x} (u + \lambda 2c) + \frac{\lambda gUE}{bc} + g(S_f - S_o) = 0$	
	Then we can write: $\frac{D}{Dt}(u+\lambda zc) + \frac{\lambda guE}{bc} + g(S_f-S_o) = o$.	(69)
	$\frac{dx}{dt} = u + \lambda c.$	(6.8)
	Now what is the value of λ ?	
	$u + \lambda c = \frac{u}{F} + \frac{c}{\lambda F} + \frac{c}{\lambda F} + \lambda F u + \lambda^2 F e - \lambda u - c = \Phi$	-
	$F \lambda F \qquad (FC) \lambda^2 + (FU-U)\lambda - C = \emptyset$	
	$\lambda_{1,2} = \frac{u - fu \pm \sqrt{(u - fu)^2 + 4fc^2}}{2fc}$	(6.0)
	Recall that $F = 1 - \frac{A}{b^2} \frac{\partial b}{\partial h}$	
	NOTE: If $\frac{\partial b}{\partial h} = \phi$ where $b = water surface width.$	
	h = woterdepth.	
	then $F = 1$ and $\lambda = \pm 1$	

Method of	Characteristics in Open Channel	Homework at CEE, IIHR	Univers	ity of Iowa, Iowa City, USA
				3/22
	From now on assumed	26 = 0, then the	governing egns	become:
	2	2	auF	
	Positive characteristic:		00.	7
		along de = u+	@	
	Megative characteristic:	D (u - 2c) ≈ g(So	-Sf) + guE be	
		olong de u-c		(8)
		• • • • • • • • • • • • • • • • • • • •		
	where : u = velocity of flo	20 .		
	c = wave celerity	» /9A		
	g = gravity.	. 6		
	A = wetted area			
	b = woter-surface	e width.		
	5 = bed slope =	$\sim dZ$ $Z = bed e$	levation	
	$S_f = friction slop$ $= \frac{n^2 u^2}{R^4 / 3} \text{ in me}$	dæ e	£	
	n2U2 in me	tric system.		
	R4/3			M
	n = Morning coeffi	icient ty	·c/	alfa
	R = hydroulic to	odius = A/P	N.	4/15
	P= wetted perin	neter	89/2/	6
	$E = \left(\frac{\partial A}{\partial x}\right)_{h=const}$	t _R		R
	ar h= const	t _Z	Ĺ	4.1
	h = waterdepth.	The A.A. A. A		
	II " "UVCG CIEPIEI.		$\approx_{_{I}}$	RM R
	77.	1 1- 0	~	
	With reference to the figure	, solution of egn	13 (7) & (8) 25 00 9	ollows:
	- tot			
	$\alpha_{M} - \alpha_{L} = \int (u+c) dt$			(9)
	t_r	1		
	₩	TM 7157		
	$(u+2c)_{M}-(u+2c)_{L}=g$	So-St- be	dt	(10)
	t _M t	L		
	2 = (u-c)dt			(11)
	1 £			
	-	tar		
		(IVI		
	(U-2C), - (U-2C), = 9	(So-St + UE]	dt ·	(72)
	$(u-2c)_{M}-(u-2c)_{R}=g$	$\int \left[S_0 - S_f + \frac{uE}{bc} \right]$	dt ·	(12)

IV. FIXED-GRID METHOD

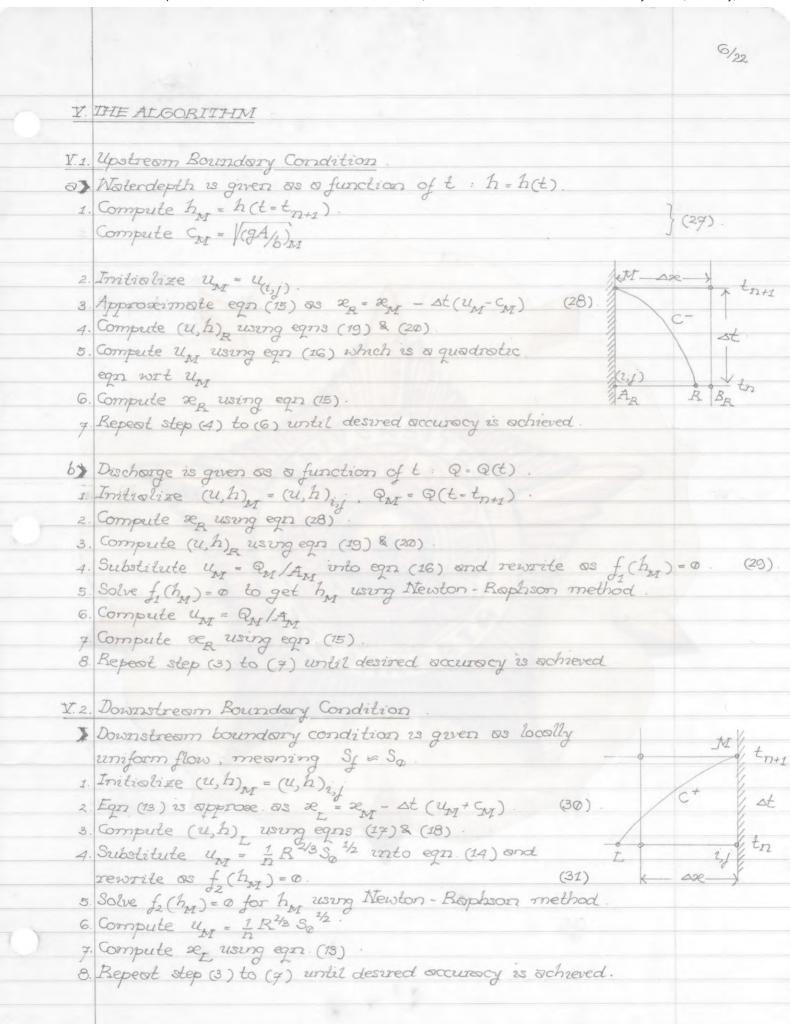
As mention, in the objective of this paper. The so colled "Hortree" method uses a fixed - grid x-t domain as described below.

The Hartree Fixed-Grid Method

By using the above grid, the governing ode's; eqns (9) - (12) can be approximated as:

$$\mathcal{R}_{M} = \mathcal{R}_{L} + \frac{1}{2}\Delta t \left(\mathcal{U}_{L} + \mathcal{C}_{L} + \mathcal{U}_{M} + \mathcal{C}_{M} \right). \tag{73}$$

$$u_{M} + 2c_{M} = u_{L} + 2c_{L} + \frac{1}{2}g\Delta t \left[(S_{o} - S_{f} - \frac{uE}{bc})_{L} + (S_{o} - S_{f} - \frac{uE}{bc})_{M} \right]$$
 (14).


$$x_{M} = x_{R} + \frac{1}{2}\Delta t \left(u_{R} - c_{R} + u_{M} - c_{M}\right)$$

$$u_{M} - 2c_{M} = u_{R} - 2c_{R} + \frac{1}{2}g \Delta E \left[(S_{0} - S_{f} + \frac{uE}{bc})_{R} + (S_{0} - S_{f} + \frac{uE}{bc})_{M} \right]$$
 (16)

The unknowns are $(u,h)_{p,}$, $(u,h)_{p,}$, $(u,h)_{p,}$, $x_{p,}$, $x_{p,}$ $x_{p,}$ 8 unknowns. So one need 4 more equal in order to solve equal (13) - (16). The equal are the interpolation formulas for $(u,h)_{p,}$ and $(u,h)_{p}$. In this paper linear interpolations are used to compute $(u,h)_{p,}$ and $(u,h)_{p,}$.

The values of point L are interpolated using points A(L) and B(L), the values at point R are interpolated using points A(R) and B(R).

Method of Characteristics in Open Channel	Homework at CEE, IIHR	Univers	University of Iowa, Iowa City, USA	
			5/22	
The interpolation for	mulos :			
$U_L \approx U_{A_L} + \frac{\alpha_L - \alpha_A}{\Delta \alpha}$	L (UBL - UAL)		(27).	
h_ + h_A_ + &_L-&A	L(hBL-hAL)		(18).	
UR = UAR + R-RAY	BR (UBR-UAR)	*	(49)	
h _R = h _{AR} + R _R - R _A	R (hBR-hAR)		(20).	
use another type of it is assumed the ro	of characteristics exceed funterpolation. In all slues of (u,h) at the notion the boundary cond	the interpolation dol values con	is given below,	
Along the trajectory of	of c+ de = u+c		Bus M t,	
$x_{M}-x_{L}=\frac{1}{2}(t_{M}-t_{L})$)(4+ Cz + 4m + CM).		/c+	
$t_L \approx t_M - \frac{22}{U_L + C_L}$	Se. * UM + CM	(21)	τ_{us} (z_{uf}) t_2	
$u_t = u_{Bus} - \frac{t_{n+1}}{\Delta t}$	-tz (UBUS - UAUS)	(22).		
	to (hBrus - hArus)	(23)		
Along the trajectory	of c-: de = u-c.	£22+1 A	I BDS	
$\mathcal{Z}_{M} - \mathcal{Z}_{R} = \frac{1}{2} (t_{M} - t_{R})$			R	
$t_R = t_M + \frac{2\Delta p}{U_R - C_R + 1}$	e UM - CM	(24) £n (2	the state of the s	
$u_R = u_{BDS} - \frac{t_{n+1} - t_{n+1}}{\Delta t}$		(25)		
$h_R = h_{SDS} - \frac{t_{n+1} - t_n}{\Delta t}$	R (hBDS - hADS)	(26)		

MELITOR OF CITE	aracteristics in Open Chainler Homework at GEE, fink	Offiversity of lowa, lowa City, OSA
		7/22
	Interior Bints.	
1.	Initialize $(u,h)_{M} = (u,h)_{ij}$	
2.	Approximate & and & using equs (30) (28).	
3.	Compute (u,h), and (u,h), using eqns (17) - (20).	
4.	Solve (u,h) by solving both egns. (14) & (16). Rewrite	e egns. (14) and (16)
	Eqn (14): \(\int_3 \left(h_M, \mu_M \right) = 0	(32)
	$(76): \qquad f_4(h_M, u_M) = 0$	(33)
	64 (12 12	
	Solve using Newton-Rophson technique to get (u,h),	
5	. Compute & and & using egns (13) & (15).	
6.	Repeat step (3) to (5) until desired accuracy is ochieve	ed.
VI	NEWTON-RAPHSON TECHNIQUE	
	Since the algorithms on section I above are heavily bo	ssed on Newton-Roj
	son technique, so the technique and the egns which are	
	ed in detail in this section.	
VI.1	Upstream Boundary Condition	
	h = h(t) as an u/s b.c:	
	See Section V.1.0, Step 5:	
	Eq. (16): $u_R - 2c_R + \frac{1}{2}gst(S_0 - S_f + \frac{uE}{bc})_R + \frac{1}{2}gst(S_0 - S_f + \frac{uE}{bc})_R$	$\left(\frac{1}{2}\right)_{M} - \mathcal{U}_{M} + 2C_{M} = 0.$
	GM.	
	Recall: $S_f = \frac{n^2 u^2}{R^{4/3}}$ subst. unto the eqn.	
	-	7
	$2C_{M} + 6M_{R} + \frac{1}{2}g\Delta t S_{0} - \frac{1}{2}g\Delta t n^{2} R_{M} u^{2} + \left(\frac{1}{2}g\Delta t \frac{E}{bc}\right)_{M}$	$\begin{bmatrix} -1 \end{bmatrix} \mathcal{U}_{M} = \mathcal{Q}$
	\mathcal{Z}_{i} \mathcal{Z}_{i}	
	$u_{M} = \frac{z_{3}}{-z_{2}} - 4z_{1}z_{3}$	
	$u_{**} = \frac{-z_2 - 1z_2 - 4z_1z_3}{2}$	(34)
	ZZ_1	
6	Q=Q(t) as an u/s b.e.	
-	See Section VIh step 5.	
	Eqn (16): $GM_R + \frac{1}{2}g\Delta t S_0 - \frac{1}{2}g\Delta t n^2 Q_M^2 R_M A_M^2 + \left[\frac{1}{2}g\Delta t \right]$	E) - 1 Q A + 2 CM
	\mathcal{Z}_3 \mathcal{Z}_1	Z ₂
	Eqn (29) becomes: $f_1(h_M) \approx Z_1 R_M A_M + Z_2 A_M + 2C_M + Z_3$	= 0 (35)

Method of Cha	aracteristics in Open Channel	Homework at CEE, IIHR	University of Id	ersity of Iowa, Iowa City, USA		
	> 1.			8/22		
	$\frac{\mathcal{H}_1}{\partial h_M} = -\mathcal{Z}_1 \left[\frac{4}{3} A^{-2} \right]$ $f_1' \approx -\mathcal{Z}_1 A^{-2} R^{-4} $	$R^{-\left(\frac{4}{3}+1\right)} \frac{\partial R}{\partial h} + 2A^{-3}R^{-\frac{4}{3}} \frac{\partial A}{\partial h}$ $\left[\frac{4}{3}R^{-1} \frac{\partial R}{\partial h} + 2A^{-1} \frac{\partial A}{\partial h}\right] - z_2 A$	$ \begin{array}{c c} -Z_2A_M^{-2} + A_M & \frac{\partial Z_2}{\partial h_M} \\ M & \frac{\partial Z_2}{\partial h_M} \end{array} $ $ \begin{array}{c c} M & \frac{\partial Z_2}{\partial h_M} \\ M & \frac{\partial Z_2}{\partial h_M} \end{array} $	$\frac{2}{2h_{M}}$ $\frac{\partial C}{\partial h} = \frac{\partial C}{\partial h} + 2\frac{\partial C}{\partial h}$ bc^{2}		
	$80 f_1' = \frac{-1}{A^2} \left(\frac{Z_1 Z_2}{2} \right)$	$\left(\frac{Z_5}{3} + Z_2\right) + Z_4 + 2\left(\frac{\partial e}{\partial h}\right)_M$	Z ₄	(36)		
	$h_{M} = h_{M} - \frac{f_{1}}{f_{1}}$			(37)-		
₩.2.	Downstream Bound See Section V.2, s Eqn (31): $U_L + 2C_L + \frac{1}{2}gst(S_0 - S_0)$ GM_L Recall that $U = U$	tep 4: $S_f - \frac{uE}{bc} = 2C_{IM} - \frac{1}{2}g\Delta t \left(\frac{E}{b}\right)$				
	80 f2(hM) = GM			(38)		
	INT	$Z_1 \left(\frac{\partial u}{\partial h}\right)_M - u_M \frac{1}{2}g^{\Delta t} \left[\frac{\partial E}{\partial h}\right]_{Z_4}$	bc ² M	(39) · (40) ·		
	Interior Points. See Section V.3, S Add (14) to (16)		$(S_0 - S_f)_M$. $t S_0 - \frac{1}{2}g st \pi i^2 R^{-4/8} U_f$	2 · · · · · · · · · · · · · · · · · · ·		
	Substract (16) from	(14): 4 = 6M6M_R ~ 9	$at(\frac{uE}{bc})_{M}$			
		$C_{M} = \frac{1}{4} (6M_{L} - 6M_{R})$) - 1 gat 1 (E) MUM			
	$ \circ f_{\mathcal{A}}(h_{M}, u_{M}) = z $	3 ~ Z4 (E)MUM - CM		(42)		

Method of Cha	racteristics in Open Channel Homework at CEE, IIHR	University of Iowa, Iowa City, USA
		9/22
	$\frac{2}{3} \approx -\frac{4}{3} Z_1 R_M - (\frac{4}{3} + 1) / u_M / u_M (\frac{\partial R}{\partial h})_M \rightarrow \frac{1}{3} \partial II$	(43)
	$\frac{2}{3} = 2 \frac{2}{3} \frac{R_M}{M} \left \frac{u_M}{u_M} \right - 1. \qquad \Rightarrow 0.12$	(44).
	$\frac{\partial f_4}{\partial h_M} = -\frac{Z_4}{4} \mathcal{U}_M \left[\frac{\partial E}{\partial h} c - \frac{\partial C}{\partial h} E \right] - \left(\frac{\partial C}{\partial h} \right)_M \rightarrow \partial ZI.$	(45)
	$\frac{\partial f_4}{\partial u_M} = -Z_4 \left(\frac{E}{c}\right)_M \qquad \Rightarrow 22$	(46).
	Using Newton-Rophson Technique.	
	$\begin{bmatrix} \pm' \end{bmatrix} \begin{bmatrix} h \\ u \end{bmatrix}_{M_{\text{old}}} - \begin{bmatrix} h \\ u \end{bmatrix}_{M_{\text{new}}} = \begin{bmatrix} \pm \\ \end{bmatrix}_{M_{\text{old}}}$	
	or rewrite $\begin{bmatrix} F' \end{bmatrix}_{Mold} \begin{bmatrix} \Delta h \\ \Delta u \end{bmatrix} = \begin{bmatrix} F \end{bmatrix}_{Mold}$	
	& h = h + sh and U = U + Mnew Mold	ALL (47).
	where sh & su are solved as follows.	
	$\begin{bmatrix} \vec{a}_{11} & \vec{a}_{12} \\ \vec{a}_{21} & \vec{a}_{22} \end{bmatrix} \begin{bmatrix} xh \\ xu \end{bmatrix} = \begin{cases} f_3(h_M, u_M) \\ f_4(h_M, u_M) \end{cases}$	
	Let det = 0,10,2 - 0,20,21	(48)
	then $\Delta h = \frac{\partial_{22} f_3 - \partial_{12} f_4}{\det}$ and $\Delta u = \frac{\partial_{11} f_4 - \partial_{12} f_4}{\det}$	$a_{21}f_3$ (43).
T/T	TEST CASE	
111-	The algorithms described above are coded in to a hypothetical channel described below.	For the purpose of evoluti
	the channel is chosen to be prectongular the working egns are derived with the assumpt of totlom of the channel varies along the channel	
_	Although the channel seems to be a very sump	ole one, but as a test case
dia.	it is a useful one. By making the bottom	width of the channel varie
	the term $(\frac{\partial A}{\partial x})_{h=\text{const}}$ cannot be neglected.	8

· Discharge hydrograph: > 135 Time (min). (30 45 60 105 120 90 Q (m3/s) 100 350 250 200 150 · Waterdepth hydrograph: Since the record of this hydrograph is very long, so the record is not written here, but can be found in the result "section III. 4. Downstream Boundary Condition. not always: To resemble what is done in practice, the d/s boundary condition is taken as locally uniform flows ie Sf is assume to be equal & METHOD OF EVALUATION Several runs of the simulation are performed using different Courant number which is defined as Cr = U ± /gA st The results of the simulation are compared to the solution using freissmonn scheme of the same problem. From the comparison, the conclusions are then drawn. IX. BESULTS AND CONCLUSION . Five runs with different Cr numbers were performed, but for clarity, only three of them were compored to Pressmann scheme. · One of five runs that reflected the correct conservation of mass is plotted more detoiled (see Fig 1, 2, 3) · All the results are given on pp. 12-16 Before making conclusions the meaning of Cr with respect to the Hartree. fixed grid method needs to be addressed in order to obtain a better understanding how Cr offected the solution. Physical meaning of Cr on the Hartree scheme is a measure of how for. the trajectories of the characteristic from the computational points of the previous time step. If the Cr numbers are some what intersect "x-axis" somewhere near computational points, then the results are better compared to the case that the trajectories fall for from computational points. All the conclusions drawn in the next paragraph refer to Fig. 4 on page 13

Discharge (cms)

12/22

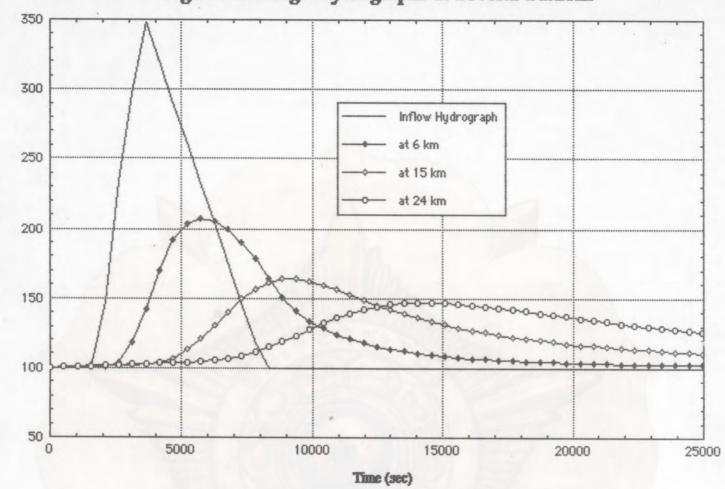
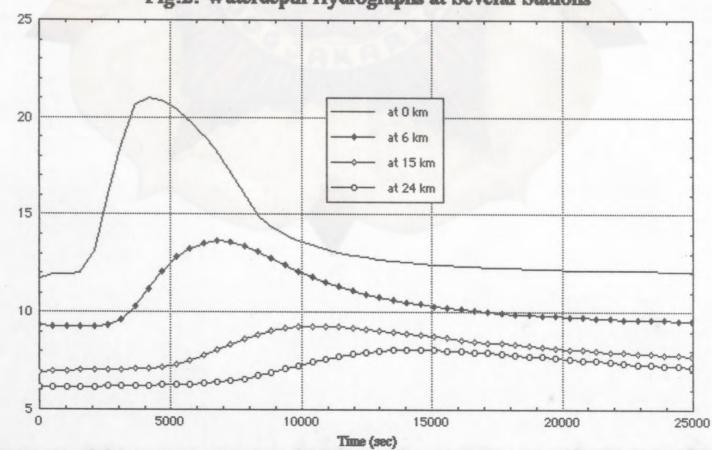
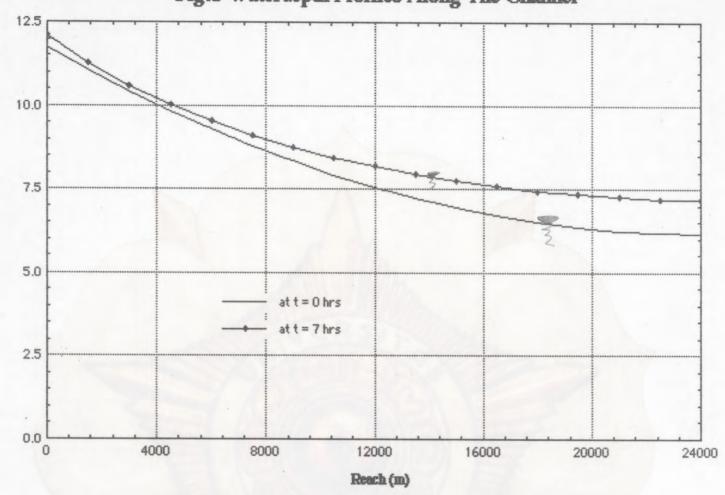
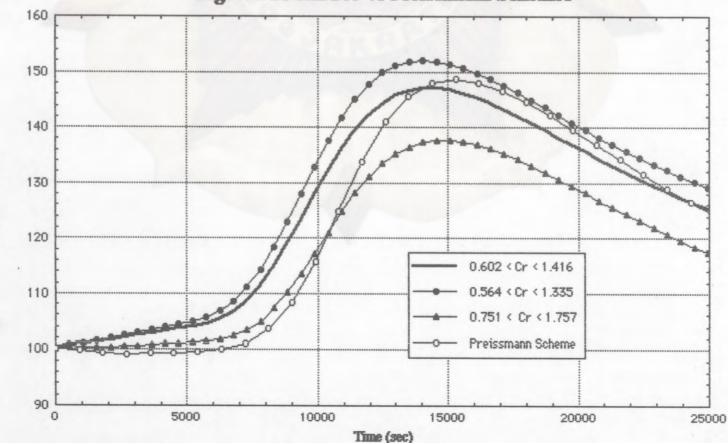



Fig.2. Waterdepth Hydrographs at Several Stations



Waterdepth (m)


Watendepth (m)

13/22

Fig.4. The Hartree vs Preissmann Schemes

Discharge (cms)

Out BCUS=Q

Tue, Dec 13, 1988 3:26 PM

Page 1

SIMULATION OF 1-D UNSTEADY FLOW IN A SINGLE CHANNEL

>>> GENERAL DATA AND PARAMETERS <<<

	===	
Channel Length	=	24000.00
dx	=	1500.00
Simulation Time	=	25200.00
dt	=	130.00
Manning Coefficient	=	0.66667E-01
Bed Slope	=	0.50000E-03
U/S Bottom Elevation	=	12.00
U/S Bottom Width	=	8.00
D/S Bottom Width	=	20.00
Gravity	=	9.81
Type of U/S Boundary	=	2
# of data on U/S B.C	=	16
Output Frequency	=	4
Relative Accuracy	=	0.10000E-02

>>> WATERDEPTHS AND DISCHARGES DURING SIMULATION <<<

Time	H(1)	Q(1)	H(5)	Q(5)	H(11)	Q(11)	H(17)	Q(17)
. 0	11.741	100.000	9.298	100.000	6.944	100.000	6.161	100.000
520.0	11.937	100.000	9.266	100.542	6.979	100.420	6.159	100.817
1040.0	11.970	100.000	9.252	100.456	7.009	101.033	6.166	100.965
1560.0	11.983	100.000	9.252	100.625	7.034	101.416	6.177	101.239
2080.0	13.097	146.667	9.256	100.757	7.053	101.652	6.193	101.593
2600.0	15.993	233.333	9.308	103.531	7.069	101.830	6.210	101.993
3120.0	18.549	296.667	9.635	117.887	7.083	101.990	6.228	102.408
3640.0	20.665	347.778	10.302	141.827	7.099	102.339	6.246	102.820
4160.0	21.013	318.889	11.211	170.207	7.130	103.672	6.263	103.218
4680.0	20.887	290.000	12.102	191.922	7.200	106.952	6.279	103.603
5200.0	20.477	261.111	12.801	203.668	7.332	112.804	6.297	104.014
5720.0	19.866	232.222	13.276	207.448	7.533	121.061	6.320	104.548
6240.0	19.093	203.333	13.548	205.394	7.791	130.738	6.355	105.370
6760.0	18.193	174.444	13.644	199.100	8.080	140.558	6.411	106.673
7280.0	17.164	145.556	13.593	189.775	8.371	149.387	6.494	108.627
7800.0	16.020	116.667	13.413	178.047	8.640	156.439	6.609	111.323
8320.0	14.978	100.000	13.121	164.435	8.870	161.305	6.753	114.740
8840.0	14.399	100.000	12.753	151.002	9.049	163.854	6.921	118.752
9360.0	13.988	100.000	12.395	141.103	9.174	164.151	7.104	123.142
9880.0	13.676	100.000	12.073	133.840	9.244	162.552	7.291	127.651
10400.0	13.430	100.000	11.787	128.332	9.270	159.715	7.470	132.007
10920.0	13:232	100.000	11.534	124.037	9.261	156.237	7.632	135.972
11440.0	13.069	100.000	11.311	120.609	9.227	152.522	7.770	139.376
11960.0	12.933	100.000	11.114	117.827	9.177	148.816	7.882	142.133
12480.0	12.820	100.000	10.939	115.540	9.116	145.256	7.966	144.227
13000.0	12.723	100.000	10.784	113.636	9.047	141.915	8.025	145.695
13520.0	12.641	100.000	10.646	112.042	8.975	138.826	8.062	146.602
14040.0	12.570	100.000	10.523	110.695	8.901	135.994	8.079	147.023
14560.0	12.509	100.000	10.413	109.548	8.826	133.412	8.079	147.035
15080.0	12.457	100.000	10.315	108.566	8.752	131,065	8.066	146.711
15600.0	12.411	100.000	10.228	107.722	8.678	128.935	8.042	146.117
16120.0	12.371	100.000	10.149	106.993	8.606	127.002	8.010	145.310

out BCUS=	Q		Tue, Dec	13, 1988 3	:26 PM			Page :
6640.0	12.336	100.000	10.079	106.363	8.536	125.245	7.971	144.338
7160.0	12.305	100.000	10.015	105.818	8.469	123.647	7.926	143.243
7680.0	12.278	100.000	9.958	105.343	8.403	122.190	7.879	142.058
8200.0	12.254	100.000	9.907	104.928	8.340	120.861	7.828	140.813
8720.0	12.233	100.000	9.860	104.565	8.280	119.646	7.776	139.530
9240.0	12.214	100.000	9.818	104.246	8.223	118.533	7.723	138.228
9760.0	12.197	100.000	9.780	103.965	8.168	117.512	7.670	136.923
20280.0	12.182	100.000	9.745	103.716	8.115	116.574	7.618	135.626
0.00800	12.169	100.000	9.713	103.495	8.065	115.710	7.566	134.349
21320.0	12.157	100.000	9.684	103.299	8.018	114.914	7.514	133.097
21840.0	12.146	100.000	9.658	103.124	7.974	114.179	7.465	131.878
2360.0	12.136	100.000	9.634	102.968	7.931	113.500	7.416	130.696
22880.0	12.127	100.000	9.612	102.828	7.891	112.872	7.369	129.553
3400.0	12.119	100.000	9.592	102.702	7.853	112.290	7.324	128.452
3920.0	12.112	100.000	9.573	102.589	7.818	111.750	7.280	127.396
24440.0	12.105	100.000	9.556	102.487	7.784	111.250	7.239	126.383
4960.0	12.099	100.000	9.540	102.394	7.752	110.786	7.199	125.415

WATER PROFILE AND DISCHARGES ALONG THE CHANNEL

Channel	t = 1	0.0 sec	t = 252	200.0 sec
Reach	Depth	Disch	Depth	Disch
.0	11.741	100.000	12.097	100.000
1500.0	11.065	100.000	11.275	99.976
3000.0	10.432	100.000	10.598	100.640
4500.0	9.844	100.000	10.025	101.445
6000.0	9.298	100.000	9.537	102.372
7500.0	8.797	100.000	9.117	103.419
9000.0	8.339	100.000	8.755	104.588
10500.0	7.925	100.000	8.443	105.888
12000.0	7.554	100.000	8.174	107.328
13500.0	7.227	100.000	7.942	108.920
15000.0	6.944	100.000	7.745	110.675
16500.0	6.704	100.000	7.578	112.602
18000.0	6.508	100.000	7.442	114.714
19500.0	6.356	100.000	7.334	117.019
21000.0	6.247	100.000	7.254	119.528
22500.0	6.182	100.000	7.205	122.247
24000.0	6.161	100.000	7.189	125.180

STATISTICS OF THE SIMULATION

====:			
Min.	Velocity	=	.812
Max.	Yelocity	=	2.104
Min.	Waterdepth	=	6.159
Max.	Waterdepth	=	21.015
Min.	Celerity	=	7.773
Max.	Celerity	=	14.358
Min.	Courant #	=	.602
Max.	Courant #	=	1.416

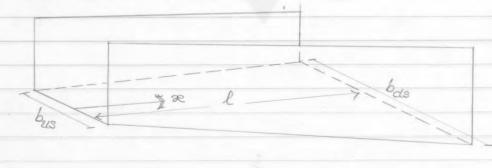
Out BCUS=Q

Tue, Dec 13, 1988 3:26 PM

Page 3

Volume Inflow = 0.3319E+07 Volume Outflow = 0.3156E+07 Percentage = -4.917 %

- 1) Solution using method of characteristic is sensitive to Courant number, user must always be aware of it. The solution might become unreasonable if the Courant number is so bad chosen.
- 2) But the problem on point 1) is very easily be handled by choosing a Co that gives a correct conservation of mass. (0.602 (Cr (1.416).
- 3) For the Cr that gives a correct conservation of mass. the result using method of characteristic has some characteristics as follows:
 - a). It resembles the solution using Preissmann scheme,
 - b). The peak discharge comes earlier than Pressmann does, but the tail of the hydrograph decreases slower than Pressmann does.
- 4) Characteristic approach is much more easier to program, therefore much more appealing compared to Pressmann which need delicate discretization.
- 6) According to point 3) then the characteristic approach is better for flood warning system since it predicts the peak discharge earlier (on the save side!). IBut this may not be generally true)
 - Note: It will be more interesting if the results can be compared to enother method of characteristic using a variable grid. Unfortunately one of our program dealing with this grid is stuck due to some errors.


 From theoretical point of view, a variable grid method must gives a better results than a fixed-grid does, since the only approximation used in a variable-grid is evaluation of integration of the governing equ

X. REMARKS

It is worthy to mention, that in order to be able to expand the present program for future, all the codes that handle geometries of the channel are written as a seperate subroutines / files. So one can modified the subroutines to suit to his / her needs.

In the next section all the formulas which are used in this subroutines are derived.

X.1. Geometry-correlated formulas

	b _W (≈) =	B213 +	& (bds-	bus).
--	----------------------	--------	---------	-------

•
$$A(b_M, h) = b_M(x) \times h$$

•
$$(\frac{\partial A}{\partial x})_{h=\text{const}} = \frac{h}{\ell} (b_{ds} - b_{us})$$

•
$$\frac{\partial}{\partial h} \left(\frac{\partial A}{\partial x} \right)_{h=\text{const}} = \frac{b ds - b us}{\ell}$$

$$\frac{\partial P}{\partial h} = 2$$

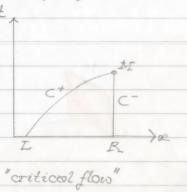
$$\frac{\partial R}{\partial h} = \frac{\partial A}{\partial h} P - \frac{\partial P}{\partial h} A$$

$$\frac{\partial Sf}{\partial h} \approx -\frac{4}{3}n^2u^2R^{-\frac{7}{3}}\frac{\partial R}{\partial h}$$

$$\frac{\partial c}{\partial h} = \frac{9}{2c}$$

$$\frac{\partial u}{\partial h} = \frac{2}{3} \frac{1}{h} R^{-\frac{1}{3}} S^{\frac{1}{2}} \frac{\partial R}{\partial h}$$

X.2. IMPROVEMENT


Some suggestions to improve the present program are discussed in this section for future use.

a. General Cross-Section

If the term ob can not be neglected then one has to use "full-blown" working egns (6. a, b,c). By including this term into the working egns makes

the present program copoble to handle orbitrary cross-sections, but the integration evaluation needs delicate programming.

b. The present program is able to handle the following situations, but has not been fully tested!

c. Integration formulas.

In the present program, integration is approximated using trapezoidal rule ie

$$\int f^n(x) dx = \frac{1}{2}(b-a) \left[f^n(a) + f^n(b) \right]$$

Letoconsider a simple example:

$$E(xxd) = \int x^{n-1} dx = \frac{1}{n}x^n = \frac{1}{n}a^n$$
, let $n \ge 2$

Let use tropezoidal rule to evaluate E:

$$T = \int x^{n-1} dx = \frac{1}{2} a \left[a^{n-1} \right] = \frac{1}{2} a^n$$

Let use rectongulor rule to evolute E:

$$R = \int_{0}^{\sqrt{2}} e^{n-1} de \leq \sqrt{2} \left(\frac{\sqrt{2}}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^{n-1} \sqrt{2}$$

From the figure it is obvious that I never has a change to be equal to E, but this is not the case for R.

Now let colculate the differences between two rules from the exect solution:

$$|T-E| = \left|\frac{1}{2} - \frac{1}{n}\right| \left|\sigma^{n}\right|$$
 and $\left|R-E\right| = \left|\frac{1}{2^{n-1}} - \frac{1}{n}\right| \left|\sigma^{n}\right|$

 $as n \to large |T-E| = \frac{1}{2} |a^n|$ $|R-E| = \frac{1}{2^{n-1}} |a^n|$ $|B \to R \text{ is better } |$

	indicates in Spot Statistics	ma, iona ony, oo, t
		20/22
		- dada
	For $n=3$ then $ T-E =\frac{1}{6} a ^n$ or R is better!	
	$ R-E = \frac{1}{12} a ^n$ } of R is detter.	
	1	
	Consider the case $I = \int_{t}^{t_2} dt = n^2 \int \left(\frac{u}{R^{2/3}}\right)^2 dt$.	
	$\int R^{2}3$	
	T ty	
	In the present program, the evaluation of I is	
	and the present programme, who end discount of a so	
	$I = 2^2 \frac{1}{2} \left(t_2 - t_1 \right) \left[\left(\frac{\mathcal{U}}{R^2 t_3} \right)^2 + \left(\frac{\mathcal{U}}{R^2 t_3} \right)^2 \right]$	
	$\begin{bmatrix} 1 & 1 & 2 & 2 & 1 \\ 2 & 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} R^{2/3} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} R^{2/3} \\ 2 & 1 \end{bmatrix}$	
	The occuracy will be improved if I is evaluated as follows:	
	[(U/B ² /3) + (U/D2/) 7 ²	
	$I = n^2(t_2 - t_1)$	(64).
	$I = n^2(t_2 - t_1) \left[\frac{(U/R^{2/3})_2 + (U/R^{2/3})_2}{2} \right]^2$ Sood	analysis.
d	. The proposed formulation of the working equations .	9
-		
	$Recoll: Vs_f = \frac{nu}{R^2/3}$	
	$R^{2/3}$	
- d -	11-1 - D 1 - C- 1:1:	
	Upstream Boundary Conditions.	
3	h=h(t) given as an u/s b.c:	
	See Section V.1.0, step 5:	+ 1/5/ 2
	Eqn. (16): $U_R - 2C_R + \frac{1}{2}g\Delta t \left(S_0 + \frac{UE}{bc}\right)_R + \frac{1}{2}g\Delta t \left(S_0 + \frac{UE}{bc}\right)_M - g\Delta t \left(\frac{\sqrt{5}}{R}\right)_R$	2 JM)-
	·	17 17
	UR - 20 + 1 g st (So - 1 Sf + UE) + 1 g st (So - 1 Sf + UE) - 1	gat VS, S,
	OC R CO THE TOTAL THE	
	ω_R	- UM + 2CM = 0
	$GM_{R} + 2C_{M} + \frac{1}{2}g\Delta t \mathcal{S}_{0} + \left[\frac{1}{2}g\Delta t \left\{ \left(\frac{E}{bc}\right)_{M} - \frac{n}{R^{2/3}} \right\} \mathcal{S}_{f} \right\} - 1\right] \mathcal{U}_{M} - \frac{1}{4}g\Delta t \frac{n^{2}}{R_{M}} \mathcal{U}_{f}$	≥ ∅ .
	R M 2 d bc M R 3 & R 1 M 4 d R 4/3 M	t
		(65)
	Z ₃ Z ₂ Z ₁	(05)
	$v_{N} = \frac{-Z_2 - \sqrt{Z_2^2 - 4Z_1Z_3}}{2Z_1}$	-
	& UM = 27	(66)
67	2 Q = Q(t) given as an u/s b.c:	
	Use eqn. (65); and substitute $U_{M} = \frac{Q_{M}}{A_{M}}$ where $Q_{M} = Q(t = t_{M})$.	
	THE	
	$GM_R + \frac{1}{2}g\Delta t S_0 + 2C_M + \left[\frac{1}{2}g\Delta t \left\{ \left(\frac{E}{bc}\right)_M - \frac{n\sqrt{s_{fR}}}{R_M^{2/3}} \right\} - 1 \right] Q_M A_M^{-1} - \frac{1}{4}g\Delta t \pi$	20 2 A B =0
	A 28 C BC M R _M M A8	
	Z ₃ Z ₂ Z	(67)
	$8 f_1(h_M) = Z_1 A_M R_M + Z_2 A_M + 2C_M + Z_3 = 0$	(68)
	60 J1 (IIM) = 21 IM IM + 22 M + 20M + 23 = 0	(00).
*		

		ona, iona ony, oort
		291
		21/22
	$\frac{\partial f_1}{\partial h_M} = -Z_1 \left[2A^{-3}R^{-4/3} \frac{\partial A}{\partial h} + \frac{4}{3}A^{-2}R^{-4/3-1} \frac{\partial R}{\partial h} \right] + 2\left(\frac{\partial c}{\partial h_M} \right) - Z_2A_M^{-2} + A_M^{-1}$	∂Z,
	3h = - Z1 ZII II = + ZII II TO TO TO ME TO ME	2h
		-202
	$= -Z_1 A^{-2} R^{-4/3} \left[2A^{-1} \frac{\partial A}{\partial h} + \frac{4}{3} R^{-1} \frac{\partial R}{\partial h} \right]_M + 2 \left(\frac{\partial c}{\partial h} \right)_M - \frac{Z_2}{A_1^2} + \frac{1}{2} \left(\frac{\partial c}{\partial h} \right)_M + $	
	AL AM	
	25	
	A^{-1} [last G $\{\frac{\partial E}{\partial h}c - \frac{\partial c}{\partial h}E\}$ 2 n/S_{fR} ∂R $\}$	(69)
	$A_{M}^{-1} \left[\frac{1}{2} g \Delta t Q_{M} \left\{ \left(\frac{\partial E}{\partial h} e^{-\frac{\partial C}{\partial h} E} \right) + \frac{2}{3} \frac{n \sqrt{s_{f_{R}}}}{R^{5/3}} \left(\frac{\partial R}{\partial h} \right)_{M} \right\} \right]$	C-5).
	$\mathcal{I}_{\mathcal{A}}$	
	20	
	$\frac{\partial^2 f_1}{\partial h_M} \approx \frac{-1}{A_M^2} \left(\frac{Z_1 Z_5}{R_M^{4/3}} + Z_2 \right) + \frac{Z_4}{A_M} + 2 \left(\frac{\partial c}{\partial h} \right)_M$	(70).
	A_{M} A_{M} A_{M} A_{M} A_{M} A_{M}	
	$ h_{M} = h_{M} - \frac{f_{L}}{f'} $	(71).
	$M = M = f_1'$	4-1.
,	D 1 C 11 C C	
d.2	Downstream Boundary Conditions. (St & So).	
	Modified egn (38):	
	U_+ 2C_ + 1 gat (So - UE) + 1 gat (So - UE) M - gat (VSf + VSf M) - UM - 2	CM = 0.
	L L 20 00 L 20 20 21	*
-	$U_L + 2C_L + \frac{1}{2}g\Delta t \left(S_0 - \frac{1}{2}S_L - \frac{UE}{bc}\right)_L + \frac{1}{2}g\Delta t \left(S_0 - \frac{1}{2}S_0 - \sqrt{S_0}S_L\right) - \frac{1}{2}g\Delta t \frac{E}{bc} + 1$	11 -2C = 0
	L 20 27L be L 20 of L 20 bc	M M
	6M2 2gxt(2so-Vsosy) Z1	
	27 (200 North	(72).
	$ \mathcal{Z}_{2} $	
	-2	
	& f (hm) = Z2 - Z1 UM - 2CM = 0	(73)
	$\frac{\partial f_2}{\partial h_M} = -2\left(\frac{\partial C}{\partial h}\right)_M - \chi_1\left(\frac{\partial U}{\partial h}\right)_M - U_M \frac{1}{2}gst\left(\frac{\partial E}{\partial h}C - \frac{\partial C}{\partial h}E\right)_{M}$ $\frac{\chi_2}{\chi_3} = -2\left(\frac{\partial C}{\partial h}\right)_M - \chi_1\left(\frac{\partial U}{\partial h}\right)_M - U_M \frac{1}{2}gst\left(\frac{\partial E}{\partial h}C - \frac{\partial C}{\partial h}E\right)_{M}$	(74)
	The share of M 21 Sh M M 27 bc2 M	44)
	7. 7.	
	-5 Z ₄	
	$g_0 h_M = h_M - \frac{f_2}{f_2'}$	(75)
	J_2	
di	Interior Points.	
	For 1000 11 100 10 11 11 1/00	
	Egn (92): UM + 2CM = GNI + 1926 (So - 15/ - WE) - 1924 VS/S/M	
	2/2	
	Egn (65): UM-2CM = GMR + 12g st (So-18f + UE) - 1gst VSf SfM	
		±
	2UM = GNI + GNI + 1 gat (2So-SIM) - 1 gat (VSI + VSI) VSI	
		- 4
	11 - 1 CENT 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1)05/1/2
	$U_{M} = \frac{1}{2}(6M_{L} + 6M_{R}) + \frac{1}{2}g\Delta t S_{0} - \frac{1}{4}g\Delta t S_{f} - \frac{1}{4}g\Delta t (V_{S_{f}} + V_{S_{f}})$	R, FM
	\mathcal{Z}_{-} \mathcal{Z}_{1}' \mathcal{Z}_{1}'	
4	-3 2	

Djoko Luknanto

Method of C	Characteristics in Open Channel Homework at CEE, IIHR	University of Iowa, Iowa City, USA
		22/22
	$8 \ U_{M} = Z_{3} + Z_{1}^{'} n^{2} R_{M}^{-4/3} U_{M}^{2} + Z_{2}^{'} n R_{M}^{-2/3} U_{M}$	
		-1) U _M (76).
	4CM = GM GM gat (UE) M - 1gat (VSf	
	$C_{M} = \frac{1}{4} (GM_{E} - GM_{R}) - \frac{1}{4} gat (\frac{E}{bc})_{M} U_{M} - \frac{1}{8} gat n$	(VSJ-VSJR) UM BM
	$\mathcal{Z}_{4} \qquad \mathcal{Z}_{5} \\ & \mathcal{Z}_{7} \\ & \mathcal{Z}_$	(77)
	So $ \frac{1}{2\pi} = \frac{\partial f_{I}}{\partial h_{M}} = -\frac{4}{3} \mathcal{Z}_{I} R_{M} \frac{\partial f_{I}}{\partial h} u_{M} \frac{\partial g_{I}}{\partial h} u_{M} \partial$	$(\frac{2}{3}+1)\frac{2R}{2h}$
	$=-\frac{2}{3}U_{M}R_{M} - \left(\frac{4}{3}+1\right)\left(\frac{\partial R}{\partial h}\right)_{M} \left[2Z_{1} U_{M} +Z_{2}R_{M}\right]$	(78)
	$a_{12} = \frac{\partial f_1}{\partial u_M} \approx 2Z_1 R_M \frac{-4/3}{ u_M + Z_2 R_M} -1.0$	(79).
	$\partial_{21} = \frac{\partial f_2}{\partial h_M} = Z_5 \mathcal{U}_M \left(\frac{\partial E}{\partial h} c - \frac{\partial c}{\partial h} E \right)_M \frac{2}{3} Z_6 M^{R_M} $	$\frac{\partial R}{\partial h}$) $\frac{\partial c}{\partial h}$ $\frac{\partial c}{\partial h}$ $\frac{\partial c}{\partial h}$ (80)
	$\partial_{22} = \frac{\partial f_2}{\partial u_M} = \mathcal{Z}_5 \left(\frac{E}{bc}\right)_M + \mathcal{Z}_6 R_M$	(81)
	Then use egns. (47), (48), and (49) to solve for.	$\Delta h_{\rm M}$ and $\Delta U_{\rm M}$.
	The implementation of this integration formula is straight forward and needs only minor ch	s into the present program.
	Good in-dep	th effort.
	Note: The previous integration formula is wri	tten in file : 4Boundaries. tten in file : 4ImproveBC

INPUT DATA

and

PROGRAM LISTING

for

THE HARTREE FIXED-GRID METHOD

Djoko Luknanto http://luk.tsipil.ugm.ac.id/hidkom

In BCUS=Q

Tue, Dec 13, 1988 3:56 PM

Page 1

```
SIMULATION OF 1-D UNSTEADY FLOW IN A SINGLE CHANNEL
24000.0 0.0666666666667 0.0005 8.0 20.0 12.0
 130.0 25200.0 1500.0 100.0 9.81 4 1.0E-3
   2
           16
 1800.0
           100.0
 2700.0
         250.0
 3600.0
           350.0
 4500.0
           300.0
 5400.0
           250.0
 6300.0
           200.0
        150.0
 7200.0
8100.0
        100.0
```

Djoko Luknanto

```
1Main
                        Tue, Dec 13, 1988 3:48 PM
C0***6***1********2*******3******4*****5*******6*******77
     PROGRAM UNSTEADYFLOW
     PARAMETER (MMPTS = 100, MMTAB = 200)
     COMMON/GEOMET/BUS_XLENGTH_BDS
     COMMON/DIMS/MPTS, MTAB
     CHARACTER FILENAME*20, OUTNAME*30, SUFFIX*10, HEADING*120.
             TAB(MMPTS)*1
    INTEGER*4 the STATUS
     INTEGER INF. OUTF. INODE (MMPTS)
    REAL MANNING, H(MMPTS), HP(MMPTS), U(MMPTS), UP(MMPTS), TABUS(MMTAB),
    1
               HI(MMPTS), Q(MMPTS)
     MPTS = MMPTS
     MTAB = MMTAB
     DATA INF/10/, OUTF/11/
     DO 10 I = 1 MMPTS
10
   TAB(I) = 9
I. REQUEST FOR AN INPUT AND OUTPUT FILES
SUFFIX = "
     CALL CHECKFILE(1,FILENAME,I,SUFFIX)
     IF(I.EQ.1) STOP 'I am sorry !'
     OPEN (INF, FILE=FILENAME, IOSTAT=TheSTATUS)
     IF (The STATUS. NE. 0) THEN
       WRITE(*,*) '*** I/O ERROR : ', The STATUS
       STOP
    ENDIF
     SUFFIX = ''
     CALL CHECKFILE(2, FILENAME, I, SUFFIX)
     IF(I.EQ.1) STOP 'I am sorry !'
     OUTNAME = TRIM(FILENAME) //SUFFIX
     OPEN (OUTF FILE=OUTNAME LOSTAT=TheSTATUS)
     IF (TheSTATUS.NE.0) THEN
       WRITE(*,*) '*** I/O ERROR : ', TheSTATUS
       STOP
     ENDIF
C II. READ DATA AND CONSTANTS
C-----
    READ(INF,9005) HEADING
9005 FORMAT (A120)
     READ(INF, +) XLENGTH, MANNING, SO, BUS, BDS, BOTUS
     READ(INF,*) DT, TMAX, DX, Q0, GRAV, IPR, EPS
  II.1. Read U/S boundary conditions
```

```
1Main
                   Tue, Dec 13, 1988 3:48 PM
   READ(INF, *) IBCUS, MBDUS
   IF (MBDUS.GT.0) READ(INF,*) (TABUS(I), I=1, MBDUS)
   CLOSE(INF)
C III. COMPUTE NUMBER OF REACHES AND POINTS
M
        = XLENGTH/DX
   MS = N+1
   XLENGTH = N*DX
C IV. COMPUTE DEFAULT INITIAL CONDITION
C-----
   DO 20 I = 1,NS
     X = (I-1)*DX
     BOT = BOTUS - SO*X
     H(I) = Y(X) - BOT
     HI(I) = H(I)
     WDTH = WIDTH(X)
     U(I) = Q0/AREA(WDTH,H(I))
     Q(I) = Q0
20
   CONTINUE
C Y. REQUEST FOR MODES FOR THE RESULTS OF H & Q
WRITE(*,*)
   WRITE(*,*) 'Total nodes : ', NS
  15 WRITE(*,*) 'How many nodes do you want to get its Q & H ?'
   READ (*,*) IPLOT
   IF ( (IPLOT.LT.0) .OR. (IPLOT.GT.NS) ) GO TO 15
   IF (IPLOT.NE.0) THEN
     DO 30 J=1, IPLOT
 17
       WRITE(*,9040) NS
       FORMAT('Which nodes ? : between 1 and', I3)
9040
       READ (*,*) INODE(J)
       IF (INODE(J).LE.0) 60 TO 17
       IF (INODE(J).GT.NS) GO TO 17
 30
     CONTINUE
   ENDIF
   WRITE(*,*)
C VI. UNSTEADY INITIALIZATION & STATISTICS
T = 0.0
   K = 0
   YOLIN = 0.0
   VOLOUT = 0.0
   QIN = Q(1)
   QOUT = Q(NS)
```

DTDX = DT/DX

= 1

= (I-1)*DX

I

```
1Main
                            Tue, Dec 13, 1988 3:48 PM
     UMIN = U(I)
      UMAX = UMIN
     HMIN = H(I)
     HMAX = HMIN
          = WAVESPEED(X,H(I),GRAV)
     CRMIN = ABS(U(I)-C)*DTDX
     CRMAX = ABS(U(I)+C)*DTDX
     CALL HEADER(OUTF HEADING XLENGTH TMAX MANNING SO GRAY BCUS NBDUS.
                 BUS, BDS, BOTUS, DX, DT, IPR, IPLOT, INODE, TAB, NS, EPS)
4000 CALL LISTER(OUTF, T, H, Q, NS, IPLOT, INODE, TAB)
     WRITE(*,9100) T,H(1),Q(1),NS,H(NS),U(NS),Q(NS)
9100 FORMAT ('Time: ',F8.1,' H,Q( 1) = ',F7.2,F9.2,

% H,U,Q(',I2,') = ',2F7.2,F9.2)
C VII. BEGINNING OF UNSTEADY COMPUTATION
5000 T = T + DT
     IF(T.GT.TMAX) GO TO 9999
     K = K + 1
C VII.1. Upstream Boundary Condition
     CALL BCUS(T, IBCUS, TABUS, NBDUS, H(NS), U(NS), H(NS), U(NS), H, U, NS,
     1
               GRAV ,DT ,DX ,Manning ,S0 ,UP(1) ,CM ,HP(1) ,EPS)
          = 0.0
     Q(1) = DISCH(UP(1), X, HP(1))
     VOLIN = VOLIN + 0.5*DT*(QIN+Q(1))
     QIN = Q(1)
C-
C
  VII.2. Downstream Boundary Condition
     CALL BCDS(T, H(1), U(1), HP(1), UP(1), H, U, MS,
     1
               GRAY ,DT ,DX ,Manning ,SO ,UP(NS) ,CM ,HP(NS) ,EPS)
          = (NS-1)*DX
     Q(NS) = DISCH(UP(NS), X, HP(NS))
      VOLOUT = VOLOUT + 0.5*DT*(QOUT+Q(NS))
     QOUT = Q(NS)
C-
C
   VII.3. Interior Points
     DO 40 I=2,N
        CALL CALCM(H(1),U(1),HP(1),UP(1),H(NS),U(NS),HP(NS),UP(NS),
                   T, H, U, NS, I, GRAY, DT, DX, Manning, SO, UP(I), CM, HP(I), EPS)
     1
              = (I-1)*DX
        Q(I) = DISCH(UP(I),X,HP(I))
  40 CONTINUE
```

Homework at CEE, IIHR

Page 4

1Main

```
Tue, Dec 13, 1988 3:48 PM
C
   VII.4. Reset values for the next time step
C
         Record the statistics of the simulation
C-
     DO 50 I=1 NS
        X = (I-1)*DX
        C = WAYESPEED(X,H(I),GRAY)
        CR1 = ABS(U(I)+C)*DTDX
        CR2 = ABS(U(I)-C)*DTDX
        IF (CRMAX.LT.CR1) CRMAX = CR1
        IF (CRMIN. 6T. CR2) CRMIN = CR2
        IF (UMIN.GT.U(I)) UMIN = U(I)
        IF (UMAX.LT.U(I)) UMAX = U(I)
        IF (HMIN.GT.H(I)) THEN
           HMIN = H(I)
           IMIN = I
        IF (HMAX.LT.H(I)) THEN
           HMAX = H(I)
           IMAX = I
        ENDIF
        H(I) = HP(I)
        U(I) = UP(I)
 50 CONTINUE
C VII.5. Control the frequencies of output
     IF(K/IPR+IPR-K) 5000,4000,5000
VIII. END OF UNSTEADY COMPUTATION
9999 CALL TAILER(OUTF, NS, DX, HI, QO, H, Q, TMAX, GRAY, VOLIN, VOLOUT,
    1
                 UMIN, UMAX, IMIN, HMIN, IMAX, HMAX, CRMIN, CRMAX, TAB)
     PRINT *
     WRITE(*,*) 'Finished Sir, Bye !'
     PRINT *
     PAUSE 'CR to exit'
     END
```

```
20tilities
                           Tue, Dec 13, 1988 3:44 PM
C0******1********2******3*****4****4*****5******6******77
     FUNCTION TABINT(T, TAB, LENGTH)
C LINEAR INTERPOLATION OF DATA-PAIRS IN THE TAB(LENGTH)
     DIMENSION TAB(LENGTH)
     IF (T.LE.TAB(1)) THEN
       TABINT = TAB(2)
       GO TO 999
     ELSE
       IF (T.GT.TAB(LENGTH-1)) GO TO 100
     ENDIF
     DO 50 I=1, LENGTH, 2
     IF (TAB(I).GT.T) THEN
      J = I - 2
      TABINT=TAB(J+1)+(TAB(J+3)-TAB(J+1))*(T-TAB(J))/(TAB(J+2)-TAB(J))
      60 TO 999
     ENDIF
 50 CONTINUE
 100 TABINT = TAB(LENGTH)
 999 RETURN
     END
SUBROUTINE CHECKFILE (NOPT, FILENAME, IERR, SUFFIX)
     CHARACTER FILENAME*20, BLANK*20, CHAR*1, Beep*1, SUFFIX*10
     LOGICAL ISEXIST
                                    '/, CHAR/' '/
     DATA BLANK/
     Beep = 7
     60 TO (10, 11) NOPT
C
C
     REQUEST FOR INPUT FILE
   10 WRITE(*,*) 'Input data filename = ?'
     READ(*,9000) FILENAME
     IF(FILENAME.EQ.BLANK) THEN
       IERR = 1
       60 TO 99
     ENDIF
     INQUIRE(FILE=TRIM(FILENAME) // SUFFIX , EXIST=IsEXIST)
     IF(ISEXIST) THEN
       IERR = 0
       GO TO 99
     WRITE(*,*) 'Your input file does not EXIST, try again please',
                 Beep
```

Tue, Dec 13, 1988 3:44 PM

```
GO TO 10
C
      REQUEST FOR OUTPUT FILE
C
   11 WRITE(*,*) 'Output data filename = ?'
      READ(*,9000) FILENAME
      IF(FILENAME.EQ.BLANK) THEN
        IERR = 1
        GO TO 99
      ENDIF
      INQUIRE(FILE=TRIM(FILENAME)//SUFFIX,EXIST=IsEXIST)
      IF(ISEXIST) THEN
        WRITE(*,*) 'Your output file already EXIST'
        WRITE(*,*) 'Overwrite (Y/N) ?', Beep
        READ (*,9010) CHAR
        IF ( (CHAR.EQ.'N') .OR. (CHAR.EQ.'n') ) GO TO 11
        IF ( (CHAR. NE. 'Y') . AND. (CHAR. NE. 'y') ) GO TO 12
        IERR = 0
      ENDIF
 9000 FORMAT(A20)
 9010 FORMAT(A1)
  99 RETURN
C0***6***1********2***********4******5*******6********77
      SUBROUTINE HEADER(NUMF, NOTE, XL, TMAX, MANNING, BEDSLOPE, GRAY, IBCUS,
                        NBDUS, USWIDTH, DSWIDTH, USBOTTOM, DX, DT, IPR.
     2
                        NPLOT, INODE, TAB, NS, EPS)
      CHARACTER TAB(NS)*1, NOTE*120
      INTEGER INODE(NPLOT)
      WRITE(NUMF, 9070) NOTE, XL, DX, TMAX, DT, MANNING, BEDSLOPE, USBOTTOM,
                       USWIDTH, DSWIDTH, GRAY, IBCUS, NBDUS, IPR, EPS
 9070 FORMAT (A120, //,
     1 '>>> GENERAL DATA AND PARAMETERS <<<' , /,
     2 '======,,/,
     3 'Channel Length
                           =', F13.2, /,
     5 'dx =', F13.2, /, 6 'Simulation Time =', F13.2, /, 7 'dt =', F13.2, /,
     5 'dx
     8 'Manning Coefficient =', E13.5, /,
     9 'Bed Slope =', E13.5, /,
     % 'U/S Bottom Elevation =', F13.2, /,
     1 'U/S Bottom Width =', F13.2, /,
2 'D/S Bottom Width =', F13.2, /,
3 'Gravity =', F13.2, /,
     4 'Type of U/S Boundary =' , I10, /,
     5 '# of data on U/S B.C =', I10, /,
     6 'Output Frequency =', I10, /,
     7 'Relative Accuracy =', E13.5, /,
     8 '======:,//)
```

Tue, Dec 13, 1988 3:44 PM

```
WRITE(NUMF, 9080) (TAB(J), INODE(J), TAB(J), INODE(J), J=1, NPLOT)
 9080 FORMAT(
    % '>>> WATERDEPTHS AND DISCHARGES DURING SIMULATION <<< ', /,
    X '=======,,
    % '======', /,' Time ',
    % 10(A1,' H(',I2,')',A1,' Q(',I2,')'))
     WRITE(NUMF, 9090)
 9090 FORMAT(
    * '----
    % '--
 999 RETURN
C0***6***1********2*******3*****4*******5******6******77
     SUBROUTINE LISTER(NUMF, T, DEPTH, DISCH, NS, NPLOT, INODE, TAB)
     INTEGER INODE(NPLOT)
     REAL DEPTH(NS) ,DISCH(NS)
     CHARACTER TAB(NS)*1
     WRITE(NUMF.9000) T.
    1 ( TAB(J),DEPTH(INODE(J)),TAB(J),DISCH(INODE(J)), J=1,MPLOT )
 9000 FORMAT(F7.1,10(A1,F9.3))
 999 RETURN
     END
C0***6***1*********2*******3******4*****5*******6********77
     SUBROUTINE TAILER(NUMF, NS, DX, HO, QO, DEPTH, DISCH, TMAX, GRAY, V1, V2,
    1
                      UMIN, UMAX, IMIN, HMIN, IMAX, HMAX, CRMIN, CRMAX, TAB)
     REAL HO(NS), DEPTH(NS), DISCH(NS)
     CHARACTER TAB(NS)*1
     WRITE(NUMF, 9080) TMAX
 9080 FORMAT(
    X '======:,
    X '=======', ///,
    % ' WATER PROFILE AND DISCHARGES ALONG THE CHANNEL',/,
    X '========,,/,
    % 'Channel t = 0.0 sec t = ', F8.1,' sec'/,
% 'Reach Depth Disch Depth Disch',/,
    % '---
     DO 10 I=1 NS
 10
    WRITE(NUMF, 9090) (I-1)*DX, TAB(1), H0(I), TAB(1),Q0,
                     TAB(1), DEPTH(I), TAB(1), DISCH(I)
 9090 FORMAT(F7.1,4(A1,F9.3))
     XMIN = (IMIN-1)*DX
     XMAX = (IMAX-1)*DX
     CMIN = WAVESPEED(XMIN, HMIN, GRAV)
     CMAX = WAYESPEED(XMAX, HMAX, GRAY)
     \Psi P = (\Psi 2 - \Psi 1)/\Psi 1 * 100.0
```

2Vtilities

Tue, Dec 13, 1988 3:44 PM

```
WRITE(NOMF, *) '=============
     WRITE(*,9100) UMIN, UMAX, HMIN, HMAX, CMIN, CMAX, CRMIN, CRMAX, V1, V2, VP
    WRITE(NUMF, 9100) UMIN, UMAX, HMIN, HMAX,
   1
                      CMIN, CMAX, CRMIN, CRMAX, V1, V2, VP
9100 FORMAT(//,
   % 'STATISTICS OF THE SIMULATION',/,
   % '======',/,
   % 'Min. Velocity = ',F11.3,/,
% 'Max. Velocity = ',F11.3,/,
% 'Min. Waterdepth = ',F11.3,/,
   % 'Max. Waterdepth = ',F11.3,/,
   % 'Min. Celerity =',F11.3,/,
   % 'Max. Celerity = ',F11.3,/,
   % 'Min. Courant # =',F11.3,/,
   % 'Max. Courant # =' ,F11.3,/,
   % 'Volume Inflow = ',E11.4,/,
   % 'Volume Outflow =',E11.4,/,
   % 'Percentage = ',F9.3,' %',/,
   % '========"i" ')
999 RETURN
     END
```

```
FUNCTION WIDTH(X)
   COMMON/GEOMET/BUS , ILEMOTH , BDS
C +++ Eqn. (50)
   WIDTH = BUS + X+(BDS-BUS)/XLENGTH
   RETURN
   END
FUNCTION AREA(B,H)
C *** Eqn. (51)
   AREA = B*H
   RETURN
FUNCTION WETPER(B,H)
C +++ Eqn. (52)
   WETPER = B+2.0*H
   RETURN
FUNCTION SURFWID(I)
   COMMON/GEOMET/BUS_XLENOTH_BBS
C +++ Eqn. (53)
   SURFWID = WIDTH(X)
   RETURN
FUNCTION DADI(H)
   COMMON /GROMET / BUS , ILENGTH , BDS
C +++ EQN. (54)
   DADX = R*(BDS-BUS)/XLENGTH
```

3Functions Tue, Dec 13, 1988 3:40 PM END C0***6***1*********2*******3******4*****5*******6********77 FUNCTION DADH(X) C *** Eqn. (55) DADH = SURFWID(X) RETURN C0***6***1*********2*************4********5******6******77 FUNCTION DADXDH(H) COMMON/GEOMET/BUS, XLENGTH, BDS C *** EQN. (56) DADXDH = (BDS-BUS)/XLENGTH RETURN END C0***6***1********2*******3******4*****5*******6********77 FUNCTION DPDH(X) C *** Eqn. (57) DPDH = 2RETURN END C0***6***1************3*******4*****5*******6********77 FUNCTION DRDH(X,H) C *** Eqn. (58) B = WIDTH(X)A = AREA(B, H)P = WETPER(B, H)DRDH = (P*DADH(X)-A*DPDH(X))/(P*P)RETURN C0***6***1********2*******3******4*****5******6********77 FUNCTION SF(n,U,P,A) REAL N,U,P,A,SF C *** Eqn. (59)

3Functions

Tue, Dec 13, 1988 3:40 PM

```
SF = n*n*U*U*(P/A)**(4.0/3.0)
     RETURN
     END
C0***6***1********2*******3******4*****5*******6********77
     FUNCTION DSFDH(X,H,N,U)
     REAL N
C *** Eqn. (60)
     B
          = WIDTH(X)
          = AREA(B,H)
     A
     P
          = WETPER(B,H)
     R
     PWR = 4.0/3.0
     DSFDH = -PWR*N*N*U*U/R**(PWR+1)*(P*DADH(X)-A*DPDH(X))/(P*P)
999 RETURN
     EMD
C0***6***1********2*******3*******4*****5*******6********77
     FUNCTION WAVESPEED(X,H,GRAY)
C *** Eqn. (61)
     B = WIDTH(X)
     A = AREA(B, H)
     WAVESPEED = SQRT(GRAV+A/B)
999 RETURN
     END
C0***6***1********2*******3******4*****5*******6********77
     FUNCTION DCDH(X,H,GRAV)
C *** Eqn. (62)
     DCDH = 0.5*GRAY/WAYESPEED(X,H,GRAY)
999 RETURN
     END
C0***6***1*********2*******3******4*****5*******6********77
     FUNCTION VELOC(X,H,N,S)
     REAL N
C *** Eqn. (63)
     B = WIDTH(X)
     A = AREA(B, H)
     P = WETPER(B, H)
```

```
3Functions
                     Tue, Dec 13, 1988 3:40 PM
                                                              Page 4
    R = A/P
    VELOC = R**(2.0/3.0)*SQRT(S)/N
    RETURN
    END
FUNCTION DVELDH(X.H.N.S)
    REAL H
C +++ Eqn. (63)
   B = WIDTH(X)
   A = AREA(B,H)
    P = WETPER(B,H)
    R = A/P
    DRD = (P*DADH(X)-A*DPDH(X))/(P*P)
    R3 = R^{4+}(1.0/3.0)
    DTELDH = 2.0+SQRT(S)+DRD/(3.0+N+R3)
    RETURN
    EMD
FUNCTION DEPTH(C, GRAY)
    DEPTH = C+C/SPAT
    RETURN
    END
FUNCTION Y(X)
C *** Initial Condition
    Z = X + 0.001
    Y = 23.741-0.9653*Z+0.0097*2*Z
    RETURN
C0+4+6+++1++++++2+++++++3++++++4+++++++5+++++++6+++++++77
    FUNCTION DISCH(U.I.H)
    B = WIDTH(X)
    DISCH = U + AREA(B,H)
    RETURN
```

Tue, Dec 13, 1988 3:30 PM

```
C0***6***1********2*******3******4*****5*******6********77
      FUNCTION GM(X, V, H, GRAY, DT, Manning, SO, CONTROL, C)
      CHARACTER CONTROL+1
      REAL Manning
      B = WIDTH(X)
      P = WETPER(B,H)
      A = AREA(B, H)
      SfX = SF(Manning, U, P, A)
      C = SQRT(GRAV*A/B)
      E = DADX(H)
      IF (CONTROL.EQ. 'R') THEN
C
        Compute Eqn. (16), Section VI.1
        GM = U - 2.0 + 0.5 + DT + GRAV + (S0 - SfX + U + E/(B + C))
C
        Compute Eqn. (31), Section VI.2
        GM = U + 2.0 * C + 0.5 * DT * GRAV * ( S0 - SfX - U * E / (B * C) )
 999 RETURN
      END
C0***6***1*********2*******3***********5********6********77
      SUBROUTINE LEFTINT(H,U,NS,DT,DX,
     1
                         HAUS, UAUS, HBUS, UBUS, TIME, TL.
     2
                         XL, UL, HL)
      REAL H(NS), U(NS), DT, DX, XL, UL, HL, GML
      IF (XL.GE. 0.0) THEN
C
         Eqn. (17) & (18)
             = XL/DX + 1
         IB = IA + 1
C
         Eqn. (16) & (17)
         XAL = (IA-1)*DX
         FRAC = (XL-XAL)/DX
         UL = U(IA) + FRAC*(U(IB)-U(IA))
         HL = H(IA) + FRAC*(H(IB)-H(IA))
C
         Eqn. (22) & (23)
         XL = 0.0
         FRAC = (TIME-TL)/DT
         UL = UBUS - FRAC*(UBUS-UAUS)
             = HBUS - FRAC*(HBUS-HAUS)
      EMDIF
 999
    RETURN
C0***6****1*********2*******3******4******5*******6********77
      SUBROUTINE RIGHTINT(H,U,NS,DT,DX,
     1
                          HADS, UADS, HBDS, UBDS, TIME, TR.
     2
                          XR, UR, HR)
```

```
REAL H(NS), U(NS), DT, DX, XR, UR, HR, GMR
     XLENGTH = (NS-1)*DX
     IF (XR.LE.XLENGTH) THEN
C
        Eqn. (19) & (20)
            = XR/DX + 1
        IB = IA + 1
C
        Eqn. (18) & (19)
        XAR = (IA-1)*DX
        FRAC = (XR-XAR)/DX
        UR = U(IA) + FRAC*(U(IB)-U(IA))
        HR = H(IA) + FRAC*(H(IB)-H(IA))
     ELSE
C
        Eqn. (25) & (26)
            = XLENGTH
        XR
        FRAC = (TIME-TR)/DT
        UR = UBDS - FRAC*(UBDS-UADS)
            = HBDS - FRAC*(HBDS-HADS)
     ENDIF
 999 RETURN
     END
SUBROUTINE BCUS(TIME, IBCUS, TABUS, NBDUS, HADS, UADS, HBDS, UBDS, H, U, NS,
    1
                    GRAY , DT , DX , Manning , SO , UM , CM , HM , EPS)
     REAL H(NS), U(NS), TABUS(NBDUS), GRAV, DT, DX, Manning, S0
     LOGICAL FIRSTTIME
     FIRSTTIME = .TRUE.
     IF ( (IBCUS.LT.1) .OR. (IBCUS.GT.2) ) 60 TO 9999
     GO TO (1000,2000) IBCUS
C********************
     GIVEN WATERDEPTH ON UPSTREAM BOUNDARY
C************************************
1000 \text{ XM} = 0.0
     BM = WIDTH(XM)
C Eqn. (27)
     HM = TABINT(TIME, TABUS, NBDUS)
     CM = WAVESPEED(XM, HM, GRAV)
C-
C
     INITIALIZE UM
     IND = 1
     UM = U(IND)
C
     INITIALIZE XR & TR
     UCR = UM - CM
C
     Eqn. (28)
     XR = XM - UCR*DT
```

```
4Boundaries
                           Tue, Dec 13, 1988 3:30 PM
     Eqn. (24)
     TR = TIME + DX/UCR
C Eqn. (19) & (20)
1100 CALL RIGHTINT(H,U,NS,DT,DX,
    1
                  HADS , UADS , HBDS , UBDS , TIME , TR .
    2
                  XR, UR, HR)
C Eqn. (16), Ssection VI.1
     GMR = GM(XR, UR, HR, GRAY, DT, Manning, SO, 'R', CR)
     PM = WETPER(BM,HM)
     AM = AREA(BM.HM)
     EM = DADX(HM)
     GDT = 0.5*GRAV*DT
     PWR = 4.0/3.0
C Eqn. (49)
     Z1 = -GDT+Manning+Manning+(PM/AM)++PWR
     Z2 = GDT+EM/(BM+CM) - 1.0
     Z3 = GMR + 2.0 + GDT + GDT + SO
     UMOLD = UM
     UM = (-Z2 - SQRT(Z2*Z2 - 4.0*Z1*Z3)) / (2.0*Z1)
C Eqn. (15 & (24)
     UCR = UR-CR + UM-CM
     XR = XM - 0.5*UCR*DT
     TR = TIME + 2.0*DX/UCR
C.
C
     CONVERGENCE TEST
C--
     IF (FIRSTTIME) THEN
        FIRSTTIME = . FALSE.
        GO TO 1100
        TEST = EPS*UM
        IF ( ABS(UMOLD-UM).GE.ABS(TEST) ) GO TO 1100
     ENDIF
     GO TO 9999
GIVEN DISCHARGE ON UPSTREAM BOUNDARY
2000 \text{ XM} = 0.0
     BM = WIDTH(XM)
     QM = TABINT(TIME, TABUS, NBDUS)
C
     INITIALIZE UM, HM & CM
     IND = 1
     UM = U(IND)
     HM = H(IND)
     CM = WAYESPEED(XM, HM, GRAY)
```

```
4Boundaries
                              Tue, Dec 13, 1988 3:30 PM
      INITIALIZE XR & TR
C
C.
      UCR = UM - CM
C
      Eqn. (28)
      XR = XM - UCR*DT
C
      Eqn. (24)
      TR = TIME + DX/UCR
C Eqn. (19) & (20)
2100 CALL RIGHTINT(H,U,NS,DT,DX,
     1
                    HADS, UADS, HBDS, UBDS, TIME, TR,
     2
                    XR, UR, HR)
C Eqn. (16), Ssection VI.1
      GMR = GM(XR, UR, HR, GRAY, DT, Manning, SO, 'R', CR)
      PM = WETPER(BM,HM)
      AM = AREA(BM, HM)
      EM = DADX(HM)
      GDT = 0.5*GRAV*DT
      PWR = 4.0/3.0
C Eqn. (35) - (36)
      Z1 = -GDT*Manning*Manning*QM*QM
      Z2 = (GDT*EM/(BM*CM) - 1.0) * QM
      Z3 = GMR + GDT * S0
      DCH = DCDH(XM, HM, GRAY)
      Z4 = GDT*QM/(AM*BM*CM*CM)*(CM*DADXDH(HM)-EM*DCH)
      RM1 = PM/AM
      Z5 = PWR*RM1*DRDH(XM,HM) + 2.0*DADH(XM)/AM
C Eqn. (35) & (36)
      AM2 = AM*AM
      F1 = Z1*RM1**PWR/AM2 + Z2/AM + 2.0*CM + Z3
      F1P = - (Z1*Z5*RM1**PWR + Z2)/AM2 + Z4 + 2.0*DCH
C Eqn. (37)
      UMOLD = UM
      CMOLD = CM
      HM = HM - F1/F1P
      UM = QM/AREA(BM, HM)
      CM = WAYESPEED(XM, HM, GRAY)
C Eqn. (15) & (24)
      UCR = UR-CR + UM-CM
      XR = XM - 0.5*UCR*DT
      TR = TIME + 2.0*DX/UCR
C-
C
      CONVERGENCE TEST
C-
      IF (FIRSTTIME) THEN
         FIRSTTIME = .FALSE.
         GO TO 2100
      ELSE
         UCOLD = UMOLD + CMOLD
         UCNEW = UM + CM
```

TEST = EPS*UCNEW

```
4Boundaries
                              Tue, Dec 13, 1988 3:30 PM
         IF ( ABS(UCOLD-UCNEW).GE.ABS(TEST) ) GO TO 2100
      ENDIF
      GO TO 9999
9999 RETURN
      END
C0***6****1*********2*******3*****4*******5*******6********77
      SUBROUTINE BCDS(TIME, HAUS, UAUS, HBUS, UBUS, H, U, MS,
                       GRAY, DT, DX, Manning, SO, UM, CM, HM, EPS)
      REAL H(NS), U(NS), GRAY, DT, DX, Manning, SO
      LOGICAL FIRSTTIME
      FIRSTTIME = .TRUE.
      XM = (NS-1)*DX
      BM = WIDTH(XM)
C
      INITIALIZE HM & UM
C.
      HM = H(NS)
      UM = U(NS)
      CM = WAYESPEED(XM, HM, GRAY)
C
      INITIALIZE XL & TL
C.
      UCL = UM + CM
C
      Eqn. (30)
      XL = XM - UCL*DT
C
      Eqn. (21)
      TL = TIME - DX/UCL
C Eqn. (17) & (18)
 100 CALL LEFTINT(H,U,NS,DT,DX,
     1
                   HAUS, UAUS, HBUS, UBUS, TIME, TL.
     2
                   XL, UL, HL)
      GML = GM(XL, VL, HL, GRAY, DT, Manning, SO, 'L', CL)
      PM = WETPER(BM,HM)
      AM = AREA(BM, HM)
      EM = DADX(HM)
      GDT = 0.5*GRAV*DT
C Eqns. (38)-(39)
      Z1 = GDT*EM/(BM*CM) + 1.0
      Z2 = DCDH(XM,HM,GRAV)
      Z3 = DVELDH(XM, HM, Manning, S0)
      Z4 = GDT*(CM*DADXDH(HM)-EM*Z2)/(BM*CM*CM)
C Eqns. (38) & (39)
      F2 = GML - 2.0*CM - Z1*UM
      F2P = -2.0*Z2 - Z1*Z3 - UM*Z4
```

```
4Boundaries
                              Tue, Dec 13, 1988 3:30 PM
C Eqns. (40)
      CMOLD = CM
      UMOLD = UM
      HM = HM - F2/F2P
      UM = VELOC(XM, HM, Manning, S0)
      CM = WAVESPEED(XM, HM, GRAV)
C Eqn. (13) & (21)
      UCL = UL+CL+UM+CM
      XL = XM - 0.5*UCL*DT
      TL = TIME - 2.0*DX/UCL
      CONVERGENCE TEST
      IF (FIRSTTIME) THEN
         FIRSTTIME = .FALSE.
         GO TO 100
      ELSE
         UCOLD = UMOLD+CMOLD
         UCNEW = UM+CM
         TEST = EPS*UCNEW
         IF ( ABS(UCOLD-UCNEW) GE. ABS(TEST) ) GO TO 100
 999 RETURN
      END
C0***6***1*********2*******3******4*****5*******6********77
      SUBROUTINE CALCM(HAUS, UAUS, HBUS, UBUS, HADS, UADS, HBDS, UBDS, TIME,
     1
                       H, U, NS, INDEX, GRAY, DT, DX, Manning, SO, UM, CM, HM, EPS)
      REAL H(NS), U(NS), Manning
      LOGICAL FIRSTTIME
      FIRSTTIME = .TRUE.
      XM = (INDEX-1)*DX
      BM = WIDTH(XM)
C-
      INITIALIZE HM & UM
      HM = H(INDEX)
      UM = U(INDEX)
      CM = WAVESPEED(XM,HM,GRAV)
C-
C
      INITIALIZE XL & TL
      UCL = UM + CM
      Eqn. (30)
      XL = XM - UCL*DT
C
      Eqn. (21)
      TL = TIME - DX/UCL
```

Tue, Dec 13, 1988 3:30 PM

```
C
      INITIALIZE XR & TR
C
      UCR = UM - CM
C
      Eqn. (28)
      XR = XM - UCR+DT
C
      Eqn. (24)
      TR = TIME + DX/UCR
C Eqn. (17) & (18)
 100 CALL LEFTINT(H,U,NS,DT,DX,
                    HAUS, UAUS, HBUS, UBUS, TIME, TL,
     1
     2
                    XL, UL, HL)
      GML = GM(XL, UL, HL, GRAY, DT, Manning, SO, 'L', CL)
C Eqn. (19) & (20)
      CALL RIGHTINT(H,U,NS,DT,DX,
     1
                     HADS, UADS, HBDS, UBDS, TIME, TR.
     2
                     XR, UR, HR)
            = GM(XR,UR,HR,GRAY,DT,Manning,S0,'R',CR)
      PM = WETPER(BM,HM)
      AM = AREA(BM, HM)
      EM = DADX(HM)
      GDT = 0.5*GRAV*DT
      PWR = 4.0/3.0
C Eqns. (41)-(42)
      Z1 = -GDT*Manning*Manning
      Z2 = 0.5*(GML+GMR+GRAV*DT*S0)
      Z3 = 0.25*(GML-GMR)
      Z4 = 0.5*GDT/BM
C Eqn. (41) & (42)
      F1 = Z1*(PM/AM)**PWR*UM*ABS(UM) - UM + Z2
      F2 = Z3 - Z4 \pm M/CM \pm UM - CM
C Eqns. (43)-(46)
      A11 = -PWR*Z1*(PM/AM)**(PWR+1.0)*DRDH(XM,HM)*UM*ABS(UM)
      A12 = 2.0*Z1*(PM/AM)**PWR*ABS(UM) - 1.0
      DCH = DCDH(XM, HM, GRAV)
      A21 = -Z4 \pm UM \pm (CM \pm DADXDH(HM) - EM \pm DCH)/(CM \pm CM) - DCH
      A22 = -Z4 \times EM/CM
C Eqns. (48) & (49)
      DET
           = A11*A22-A12*A21
      DELTHM = (A22*F1-A12*F2)/DET
      DELTUM = (A11*F2-A21*F1)/DET
C Eqn. (47)
      UMOLD = UM
      CMOLD = CM
          = UM - DELTUM
      HM
            = HM - DELTHM
      CM
            = WAVESPEED(XM,HM,GRAV)
```

999 RETURN END

http://luk.tsipil.ugm.ac.id/hidkom

Page 8

```
4Boundaries
                             Tue, Dec 13, 1988 3:30 PM
C Eqns. (13), (15), (21), (24)
     UCL = UL+CL + UM+CM
     UCR = UR-CR + UM-CM
     XL = XM - 0.5*UCL*DT
     XR = XM - 0.5*UCR*DT
     TL = TIME - 2.0*DX/UCL
     TR = TIME + 2.0*DX/UCR
C-
C
     CONVERGENCE TEST
     IF (FIRSTTIME) THEN
        FIRSTTIME = .FALSE.
         60 TO 100
     ELSE
         UCOLD = UMOLD + CMOLD
         UCNEW = UM + CM
         TEST = EPS*UCNEW
         IF ( ABS(UCOLD-UCNEW) GE. ABS(TEST) ) GO TO 100
      ENDIF
```

Djoko Luknanto