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INTRODUCTION

If one nay jiirl{;e from the nun>)er artiolos whinh havo

latelj'' appeared on the subject of water harmer, there is a growing

interest in this branch of hydraalics . The develcpment of v/ater

pov/or and the necessity for close £;overnin^ of hydraulic notcrs

for rapidly changint^' loads have been the principal reasons for

this increased interest.

Many accidents have been caused by tho too rapid novenent

of valves on lon^ P-pe lines. When it is reiiienbered that the water

in raan^r penstoclrs weighs several times as nuch as the heaviest

freiglit trains, the magnitude of the forces ?'equired to change

the momentum of the water in the pipe is easily understood. The

water in the pipe may be likened to a freight train v/ith an engi'ne

at the r ^ar continually pushing, and with an engine at the front

end with the steam shut off, controlling the speed of the train

with the engine brakes alone. It v/ill readily be seen that amir

change of the braking force ''corresponding to a change in the

position of the turbine gates on a penstock) v.'ill cause acceleratioi

or deceleration of the train, and that considerable time must bo

consumed in making r.ny change in the velocity,

'Then the brakes are suddenly applied on the engine, the

whole train does not begin to slov; down at once, but it is stopped

car by car, the last car of the train continuing to m.ove with the

original velocity until all of the cars are slowed down. Similarly

in the pipe line, the water is stopped layer by layer, the water

farthest from the valve flowing for some time after the valve pos-

ition ir; changed, before any retardation is felt.
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When the gateo of a water wheel are suddenly opened, on

account of a demand for more power, the quantity of water flowing

is not much increased until the water in the penstock has had time

to accelerate. The pressure is of course decreased, and since the

quantity is increased by only a small amount, the power is dimin-

ished and the effect of the gate movement is for a time the opposite

of that desired.

When the gates are suddenly partially closed, the quantity

of water flowing will not be much decreased until there has been

time to change the velocity of all of the water in the penstock.

The pressure will however be increased, and therefore the power

will be increased. Again the effect of the gate movement is the

opposite of what is desired.

The illustrations given show the effect of the kinetic

energy of the moving water in the pipe in opposing any change of

the velocity of flow, and in this way seriously interfering with

speed regulation of water wheels having long penstocks. There is

also energy stored in the compressed water and in the distended

pipe which has an opposite effect upon speed regulation. Analogous

phenomena in high tension electric circuits are known as "transient

electric phenomena". It will be the purpose of this thesis to

present experimental and theoretical work on transient hydraulic

phenomena.





HlfTORIOAL

E. B. Weston rfiported aone eyperiments on water ?ianner in the

TransactionF of the American Sooiety of Civil EngineerB of June,

Ke made three sets of experiments. T^he length and size o:^ pipft uf^ocl

was: first series, 111.3 of 6 in., 58.4 ft. of 2 in., 99.7 ft. of

1 1/2 in. and 4 ft. of 1 in.; second series, 111.5 ft. of 6 in., 7 ft

of 7 in., 58.4 ft. of 2 in., 96.7 ft. of 1 1/2 in., and 4 ft. of 1 in

third series, 181.6 ft. of 6 in., 65.5 ft. of 4 in., 7.5 ft. o:^* P. 1'2

in., 1.1 ft. of 2 in. .6.6 ft. of 1 1 in. and 5.3 ft. of 1 in. The

water A^as supplied from two PA in, mains. Average static pressure

was 75 ih. per sq. in. Orifices of di'-f^erent diameters were screwed

on the diEchar£;e to secure different discharges. The pressi^res we^^e

measured at anunher of places along the pipe, by means of a "Uchar:^.s

steam indicator. The diagrams taken consisted simply of a vertical

straight line, from which the maximum pressure conld be mrasured.

On account of the short lengths of pipe used, and the number

of different diameters, it is difficult to make comparisons with

later and more exact experiments. The values se^-m reasonable, more

so than some of the later experiments. The experiments sYiov-- clearly

that as great pressures may be expected at some distance from the

valve as at the valve. This fact had to be rediscovered 17 years

later before it was given credence. Mr. Teston made no attempt at

a mathematical anal^rsis.

?rofessor I. '\ Church in 18"^- published an account: o:^ his

theoretical studies on water hammer, in the Journal of the Eranklin

Institute. Ke showed that the maximum pressure caused by closing

a valve at t?ie end of a pipe depends upon the manner of closing as
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well as upon tho tine of nlosinr: the valve. It has F.inco "been

shown that the tine of closinc the valve has no effect if it ip.

less than a certain mininun. His results are applicable hov/e^er

if the time of closing- the valve is sufficiently lon^.

JOSEPH 3. HIDSH cives an account of his e::perinents in the

~*roceedini;^s of the American Tater '"orks Association of April 1891.

His experiments vere principally with 18 feet of pipe, using an

ordinary gauge to measure the pressure. Considering water in the

pipe as as an inelastic column whose total kinetic energy is given

up during the time of closing the valve, ho derived a formula for

the ma:::imum pressure due to v/ater hammer. He then applies his

formula to determine the amount of preesiire generated in a 12 inch

pipe line 220C0 feet long, in which the w^ater has a velocity of

0.424 feet- per second, the water heing shut o^f in S seconds.

He obtains as the value of the pressure, .""^94. 65 pounds per square

inch. More recent e:j^periments have sh6w^. that the pressure in this

case would not exceed 25 pounds per square inch, and that the time

of closing would he im.-aterial if made in less tlian 12 seconds.

To produce the pressure obtained by Mr. P.ider's formula would require

a velocity of '^'6 feet per second to be extinguished in less than

12 seconds,

PROFHSSOH GARPKITTEH'S experiments are reported in the trans-

actions of the Am. Soc. of Hech. Eng. 1894 ^Vol 15, page 510), The

experiments were made on a pipe line consisting of 30 ft, of 2 in.,

53 ft. of 2 1/2 in., 150 ft. of 3 in., and :'7C> . of G in. pipe.

^0 satisfactory data could be expected frc: a pipe line containing

so many -short lengt>is of different diameter.

^ig. 1 ic; taken from the peper referred to, and gives the

result of ""rofessor Caroentor's exnerimonts. 7"^otted 1-nes h.qyp
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been added showinp; what the maximum pressure may actually be in

long lines of 2 in., 2 l/s in, and 7 in. r)ipe. The velocitie s shown

as the abscissas of the diagram are the velocities in trie 2in. pipe;

the corresponding velocities in the 2 l/2 in. and 2 in. r>ipos will

be in inverse proportion to their areas. It will be noticed that

at the higher velocities the pressures increase rapidly. This is

because with high velocities the time of the effective closure is

less than with low velocities, hence the short 2 in* and 2 l/2 in.

pipes have a relatively greater effect.

The experiments of Carpenter, although the best at the time

they v/ere made, were very crude and the results inconclusive. The

experiments with the air chambers are interesting as indicating

the effect they have, but o.s the quantity of air in the a.ir cht.mberB

ir rot given, the results have no quantitative value.

PROFESSOR N. J0UK07SKY made experiments in 189 7 at Moscow.

He used pipes 2 in., 4 in. and 6 in. in diameter with lengths of

2492 ft., 1050 ft. and 19 66 ft. respectively. He made numerous

experiments, and deduced formulae which were in accord with his

experiments. The exhaustive monograph which he presented to the

St, Petersburg Academy of Sciences has been translated to German

(Stoss in Vvasserleitungsrohren, St. Petersburg 1900). An English

translation by Miss 0. Simin, somewhat modified, is to be found in

the Proceedings of the American V»ater V;or:<s Association of 1904.

Joukov sky 'makes the following conclusions from his experi-

ments :-

1. The shock pressure is transmitted through the pipe with a

constant velocity which seems to be independent of the intensity

of the shock. This velocity depends upon the elasticity of
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the pipe material and upon the ratio of the thickness of the

walls to the diameter.

2. The shock pressure is transmitted along the pipe with a

constant intensity, and is proportional to the destroyed velocity

of flow, and to the speed of propagation of the pressure wave.

3. The periodical vitration of the shock pressure is completely

explained by the reflection of the pressure wave from the ends

of the pipe.

4. If the column of water continues flevying, such flow has no

noticeable effect upon the shock pressure. In this case, the

pressure wave is reflected from the open end of the pipe in the

same manner as from a reservoir with constant pressure,

5. A dangerous increase in pressure occurs when the pressure

wave passes from a pipe into another of smaller diameter with

a dead end.

6. The simplest method of protecting pipes from water hammer

is found in the use of slow closing valves. The duration of

the closure should be proportional to the length of the pipe.

Air chambers of adequate size placed near the valve eliminate

the shock almost entirely, and do not allow the wave to pass

through them, but they must be very large and it is difficult

to keep air in them. Safety valves allow only such pressure

waves to pass throiAgh them as corresponds to the elasticity of

the spring used,

7. The diagran of shock pressure enables one to determine the

location and extent of air pockets, and the location of leaks,

and to study the conditions of the pipe line.





A. H. Gibson, senior dftnonRtrator and asFlstant lecturer

in enri'ineering; in the 'anohester University, puhliFhed n hook ov.

vater hanner in Hydraulic '^ipe Lines, in 1908. He made experi-

ments on t?ie effect of the Blow closing, of the valve at the end

of the pipe line. A globe valve seating against the pressure was

used, and the closure was raade hir turning the valve spindle by

hand at as uniform a rate as possible, 'f^he tine o:^ closing was

obtained by neans of a tuning fork tracing on snokeri paper.

Fig. 2 shows L'r. Gibson's theoretical curves and experi-

mental values plotted on trie same sheet. It will be noticed that

the pressure caused by the gradual closure of a valve does not

varjf inversely as the time as v.as stated by Church, Joukovsky

and others.

LIr Gibson also raade experiments with the valve at the end

suddenljr opened, and showed that it was possible to cause water

hammer by suddenly opening the valve a small amount.

The historical reviev of the experiments on water hammer

which has been given here is by no means complete, but gives merely

those v;hich have been most quoted. Experiments have been carried

on at the University of Illinois as thesis work by seven men,

beginning ith lir. Smith in 19??.
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PART ONE

THEORETICAL WORK

FORMULA FOR MAXIMUM PRESSURE DUE TO V/ATER HAMMER. The following

derivation of the

ezpreesion for the maximum pressure due to water hammer is made by

Professor Talbot,

Suddenly arresting the flow of water in a pipe cause e the

water near the valve to be compressed a certain amovint, while

the water at the free end has no compression. Neglecting the

distention at present, let dx be the length of a column of

water whose cross-section is one square foot. Let P equal the

pressure at the valve on one sqmre inch, generated by the

sudden stoppage of the water^ then the pressure on one square

foot is 144P. The weight of a column of water of one square

foot cross-section and dx long, is wdx, w being the weight of

a cubic unit of water. Flowing with a velocity v, the energy

in this water is equal to l/2mv^. This becomes

Energy= l/S-^v

Let r equal the amount this dx length is compressed at the valve.

Since r is proportional to the unit stress

r
E

Where S = P, 1 = length of column = dx, and E = the modulus of

elasticity of water = 300000 pounds per square inch. If dx is

expressed in feet, the product, energy, will be in foot pounds.

The work done is equal to the average pressure multiplied

by the distance moved through. Since the pressure increases

144Pfrom to 144P, the average pressure equals —g— • The work

done is equal to
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144P 144P Pdx_
2 ^ " 2 " E

The v/ork done is also equal to the energy in the water, so

eqmting, we get

^ J-^^P Pd>' _ wdx 2
2 E - 2g

^

from which

( 1 )

Biibstituting numerical values for w, E and g, we have

P = 63.6V ( 2 )

This is the value for the pressure at the valve, generated

by sudden stoppage of the water, when the elasticity of the

water is not taken into account.

CONSIDERING THE ELASTICITY OF THE METAL IN THE PIPE, the

deformation r^ of the pipe is

dS
E'

but Pd = 2tS or S =

where P = pressure per unit area, d = diameter of the pipe, t =

the thickness of the pipe, and S = tensile stress of the metal

in the pipe in pounds per square inch, E' = the modulus of

elasticity of the metal = 30 000 000 pounds per square inch.

Then

^^2
=. d^P

2tE

The total lateral pressure in the pipe for a length dx

Po = l^dx
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The work done in expanding the pipe is

1^ l.Pd^'ud^P

which becomes

8 tE

The work done in compressing the water is

which becomes

1 ^P^d^
8 E

-dx

The energy of the water is

-dx» V
1 wlTd^, 2
2 i
—^--"^

Equating energy to work done, we have

reducing

ViTd^ 2 1 iTp^d^ , 1 ITd^

,

2
p2 _ 1 wEv

1-^Ed • g

or

v;E .
^

Y" ^
( 3 )

E't

giving the pressure per unit area expressed in homogeneous

units.
Expressing P in pounds per square inch and v in feet per

second, the above equation reduces to

P = = .V
( O

The form of this formula is the same as the one v«fhere the

elasticity of the -werter was neglected, the constant





depending on the size of the pipe and its thickness, being, the

only difference.

Chiirch, Joiikovsky and others by different methods have

derived formulas which can be thrown into the same form as formula

( 4 ).

FORl'IULA FOR MAXIMUlvl PRESSURE DUE TO WATER HAMMER IN TEBIAS OF THE

VELOCITY OF TRANSMISSION OF THE PRESSURE WAVE IN THE WATER IN THE

PIPE. The problem of determining the maximum pressure which can

be caused by the sudden stopping of the flov/ can be solved

by another method, somewhat easier to comprehend than the proof

given in the preceding pages. The follwing notation will be used:

A = velocity of the pressure wave in the water in the pipe, in ft

per sec.

P = maximum additional water hammer pressure, in lb. per sq. in,

A = area of cross-section of the pipe, in sq. ft.

V = original velocity in the pipe, in ft. per sec.

v^= velocity of water in the pipe after the valve position has

been changed, in ft. per sec.

w = weight of a cubic unit of water ( 62.5 lb. per cu. ft. ).

g = acceleration of gravity ( 32.2 ft. per sec. ).

One second after an instantaneous change of the valve

position has been made, it is evident that X feet of water in the

pipe will have had its velocity changed (assuming the pipe long

enough). The mass of water retarded is

WAX
—r— gee-pounds.
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The water as was explained before, is stopped layer by layer. The

pressure at the valve therefore remains constant durinr; the time

the water in the pipe is getting its compression. From the prin-

ciples of impulse and momentum,

X_Aw

g

and

144AP = ^^(v-v^)

or if the valve is instantly closed,

-Aw f c \P = 144g^ ^ ^ ^

Equation (5) shows that the pressure due to water hammer

varies directly as the extinguished velocity (v— v^) and v/ith the

velocity of transmission of the shock through the water in the pipe.

The equation may be rewritten in the convenient form

P = h(v-v^) ( 7 )

The value of the coefficient h can be taken from Table 1 as will

be explained in a later paragraph,

FORl^ULA FOR THE VELOCITY OF TRANSMISSION OF THE PRESSURE WAVE IN

THE WATER IN THE PIPE, From equations (4) and (6) we may write

1
]
/ wE _ Aw

^1
p44g 144g

E't '

Substituting g = 32.2 ft. per sec, E = W.S'OO. OOOlb. per sq. in.

and w = 62.5 lb., the expression becomes

X '
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This expresBion shows that the velocity of transmission of

the pressure wave diminishes somewhat as the ratio of diminishes.

The ratio of - for riveted steel pipe usually diminishes as the
d

diameter increases. For large sizes of riveted pipe the pressure

wave travels at a comparatively slow rate. The numerator, 4710,

of equation (^) is the velocity of sound in free water, the denom-

inator gives the reduction necessary to take account the effect

of the yielding of the pipe,

TABLE OP COEFFICIENTS FOR USE IK THE FORMULA FOR MAXIMULI PRESSURE

DUE TO ?/ATER HAMMER. Equation (4) for the maximum pressure gener-

ated by suddenly stopping the flow in a pipe, may be written in the

form

P = hv

Equation (7) is

P = h(v-v^)

The last equation being the more general. The value of h as deter-

mined from equation is

The values of h for all ordinary sizes of cast-iron and

wrought iron pipe have been calculated from equation (CO) and are

given in Table 1. As an illustration of the use of Table 1 the

following example is given.

Example . liVhat maximum pressure can be developed by sud-

denly closing a valve at the end of a 36- in. cast-iron pipe 1-in.

thick, if the velocity in the pipe is 4 feet per second? From

Table 1 for a cast-iron pipe 1-in. thick and 36- in. in diameter
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h = 48, 4. The preasure will then be

P = 48.4X4 = 193.6 lb. per sq . in.

TABLE GIVING VELOCITY OF TRANSMISSION OF THE PRESSURE IN THE PIPE

FOR VARIOUS VALUES OF h. V/riting equations (R) and (10)

A = —L^y^^ (8)

V ' E't

h =

E't

/ wE
(10)

and combining

A = MMl = 74.2h (11)
w

Table 2 has been prepared from equation (11) for various

values of h.

To use this table the value of h must first be determined.

This is most easily done by use of Table 1. If, for example, it

is desired to determine the velocity of the transmission of the

pressure in a 30- in. pipe 1 3/8- in. thick, the value of h determined

from Table 1 is 53.0. From Table 2 the value of A is found to be

39 30ft. per sec.
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TABLE 2.

THE VELOCITY OF TRANSMISSION OP TliJi PRESSURE

WA/E

\If\l IIP'V J. O

of
" h"

.0 .2 . 4 . 6

45 3339 3354 5369 3385 3 399

46 3413 5428 3443 7458 3472

47 3487 3502 3517 3532 3547

4S 3562 2577 559 2 3607 3 2S

49 3636 5651 "5681\^ v.- Ju 3 69 6

'^740 ^770

51 J- "ti
:^R?Q M T

3RfiP w Vy W '^Q 1 R

'^Q 4R ----
"^Q 7P "^0

40 PP 40 "^7 4/^ ^7

55 J vy O -L 40Q ^ 4111" -L X JL 41 2" 41 41

56 4156 4171 41 Ri?" 4201 421 6* A^X w

57 4230 4245 4:^30 1275 4290

58 4304 4319 4334 •i349 4264

59 4378 439 3 440S 4423 4438

60 4452 4 467 4482 449 7 4512

61 4526 4541 4556 1571 4586

62 4601 4818 4 531 4 64n 4 681

63 4675 4 690 4705
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RECURRENCE OF PRESSURE PULSATIONS.

MAGNITUDE OP THE PRESSURE. After the valve has been suddenly

closed the pressure will hs^ve its

maximum value at the valve for a time seconds, 1 being the length
A

of the pipe line in feet, and X the velocity of transmission of the

pressure wave in feet per second. ViThen all of the water in the

pipe has been brought to rest it will all be compressed to hv lb.

per sq. in. above static pressure. The column of water will now

begin to expand causing a flow in the opposite direction to the

original flow. The pressure tends to become as much below static

pressure as the maximum pressure was above. Two cases will be

considered.

First, when the pressure due to water hammer is less than

the sum of the static and atmospheric pressures. In this case the

PIpressure will be Pg^+ p-t-P lb. per sq. in. for -~ sec. after closing

the valve, or the time it takes the pressure wave to run to the

open end plus the time it takes the wave of re-expansion, or release

^ of pressure, to run from the open end to the valve. \fh.ein. the wave

of re-expansion gets to the valve the pressure will drop to Pg^-t-p—

P

21and this value of the pressure will continue until sec. have
A

elapsed, when another press\ire wave comes to the valve. The mag-

nitude of this pressure would be the same as that of the first wave

if it were not for friction. The waves in this case come at reg-

ular intervals; the' time between the waves will be seconds.
A

The waves will continue until the energy is dissipated in friction.

Second, when the pressure due to water hammer is greater

than the absolute static pressure, the first pressure wave will

press against the valve for a time ~ as explained for the first
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case, and then when the column of water lias all been comproseed, it

will begin to expand and flow back into the source. As the water

expands the pressure drops from Pgj;»-p-*-P to static pressure Pg+P*

This wave travels to the valve with the velocity X feet per sec-

ond. When the wave of static pressure gets to the valve it is

reflected as a pressure Po"^p-~P> or if as wo have assumed, P is

greater than p+p, the pressure will be reduced to zero, or a value
- a

as near to zero as is consistent with the vapor pressure and the

pressure of the air in the water. The column of water in the pipe

will therefore separate in a number of places, particiiLarly at all

air pockets, and the column will expand until all of the water in

the pipe has a pressure of nearly zero. The velocity at this

instant would have the same value as the original velocity in the

opposite direction, if it were not for friction and imperfect rest-

itution. The velocity ui of the rebounding column of water is

e being the coefficient of restitution.

The water continues to flow with this velocity for the

time it takes the wave to make a round trip from the source to the

thevalve. As soon as/^wave of re-expansion reaches the valve, the

column commences to slow down under the influence of the atmospheric

pressure, the pressure at the source, and friction. Denoting these

forces

p„, p and cw^ lb. per sq. in.a

respectively, the retardation may be written (from F = ma),

ai = Pa^ P (12)^ 62.51
w is the velocity in the pipe at any instant, varying from u^to 0,

and 1 is the length of the pipe in feet. The average acceleration

will then be



/
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a-, = (1^'^)
'1 " (62.^1

O
Assuming that the average value of cw'" as w varies from to can

be expressed by
3

The column moves

s = _hL = {14)
2a-L 2a^

in coming to rest. Then it is forced back with an average accel-

eration, o

Pa^P-T^
^2 " (62..^1~~ ^^^^

Ug being the average velocity of the water in the pipe when the

column of water again strikes the valve. This velocity may be

written

Ug =

Substituting the value of s from equation (14)

^2 - Ua-ev (16)^1

Substituting in equation (15)

c age^v^

Solving

Pa+ P-
3a^

2"
(62.5)1

a = Pa + P , ,^2 -i2-sr (17)
(62.5)1+

Substituting in equation (16) and simplifying,

3(P + p)





ailti;)!;" both sides by h and subst itut inr,- ?^ = hv^, an:l ^p= luip^

1 , fl9)

a

For the n—th ^vave the pressure is

This is the general expression for the n—th wave It will be noted

that the only variable urjder the radical is

- n—

1

?>

—

h*-

and that r^uite large changes in thi^ tern produce relatively sriall

changes in the value of the radical. V'e m^r therefore write equation

(20) approximtely,

m being a constant, Experiments made by the writer, to be described

under "xperinental "^ork, confirm equation (21). i^he valine of m

determined experimentally with 750 feet of ?. inch pipe was 0.83.

This indicates that the value of the coefficient of restitution

for this pipe line was about 0.95.
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TIME BETVi/EEN PRESSURE PULSATIONS. Two casoa will be considered.

First , whon tho maximum water

hammer presatire is less than the sijm of the static and atmospheric

pressures. VVhen the valve Is suddenly closed the pressure hy v/ill

2 1act on the valve for a time of —r— seconds. Then a pressure wave
A

of Pgfp-f-P lb. per sq. in. acts on the valve for another period of

2 1
—^ seconds, at which time the second pulsation of pressure begins.

4 1
The whole cycle lasts —y^ seconds. In this case the v;ater in the

pipe has a regular period of vibration. This is the case reported

by JoTJlcovsky, Gibson and other experimenters.

Second , when the maximum water hammer pressure i& more than

the sum of the static and atmospheric pressures. The time between

the first and second pressure waves will be the time necessary for

the column of water in the pipe to be compressed, plus the time the

water in the pipe is expanding and flowing at a uniform rate toward

the source, plus the time required by the forces (static pressure,

atmospheric pressure and pipe friction) to bring the moving water to

rest, plus the time required to force the water back to the valve to

cause the second pulsation of pressure. The total time is,

+ -l4.21_^ev.Up
i A A a-j^ ag

Sustituting for Ug the value given in equation (16)

+ _ 3 1 _^ev/

^3_1 ePi/
- A ^^('14) (22)

in which a-j^ and ag are given by equations (13) and (15),

^ A ^^^(^-i to/ ^^'^
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is the time between the (^n-l)bh and the (n — l)th pressure wave,

is the pressure of the n-th wave, ^^-f) is ^.he acceleration of the

column of water rebounding after the (n— l)th pressure wave, and

a" V is the acceleration of the column of water flowing back to
Tn-l)

produce the n-th pressure wave.

In most cases the quantities Q-^^i and a^^^ have a nearly

( 23

)

constant ratio. Equation^may therefore be written in the simpler

form,

= m'^l^-h^ (24)
^ Pa+ P A

m* being a constant for any given pipe line. This equation as

well as equation (23) aa^e to be used only when Pj^.^ is greater than

the sum of the atmospheric and static pressures. In the experiment

made by the author the formula,

t^ = 0.17 -V- 0-517
Pa+P

seemed to fit very well. These experiments will be fully described

in another part of this thesis.

So far as known to the writer, no mention is made in any of

the literature on the subject of water haminer, of the second case

just considered. Joiikovsky makes the statement that the time

4 1between the successive pressure waves is
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LEAKS

LOCATING A LEAK IN A PIPE LINE BY MEANS OF THE WATER HAMMER DIAGRAM.

A leak in a pipe line is indicated by a sudden drop of

pressure on the water hammer diagram, Fif^. 3 represents a v/ater

hammer diagram taken at the end of a pipe line. The drop at B

is due to the reduction of pressure at the leak. The distance Ab'

represents the time it takes the

pressure wave to travel to the

leak and back to the indicator.

The distance to the leak can there

fore be determined by measuring

AB and substituting in

s X (25)

Pig.
s being the distance to the leak

in feet, r is the velocity of the paper in inches per second, Ab' is

measured in inches, and A is the velocity of the pressure wave in

the water in the pipe. The value of X can be determined from Table

2, as explained previously.

If the distance from the valve to the reservoir or large

supply main is known, the distance to the leak may be most easily

found by the formula.

AB
AC

D (26)

D being the known distance to the reservoir or supply main. This

is the most satisfactory and accurate method of locating the leak.

It is unnecessary when using this method to determine the value of

the velocity of transmission of the pressure wave A , the value of

which may be affected by the air content of the water.
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DETERMINATION OP THl': QUANTITY FLOWING FROW A LEAK BY MEANS OF THE

WATER HAMI.1ER DIAGRAM. Fig. 4 represents the conditions in the

pipe a short time after the pressure wave has passed the leak.

Let V be the velocity of the flow in the pipe between the leak: and

the valve, before the valve is closed. Let v + w be the velocity

of the flow in the pipe between the source and the leak. Then if

A is the area of the cross-section of the pipe in square feet, and

if q is the quantity flowing from the leak,

q = Av

If the valve is closed very quickly, a diagram similar to

the one shown in Fig. 1 can be obtained. Let P be the v/ater hammer

pressure at the valve caused by extinguishing a velocity of v ft.

per sec, and let P-j^ be the pressure shown on the diagram after the

drop in the pressure diagram is passed. Represent the actual

pressure in the pipe at the leak just after the pressure wave passes

the leak, by P' . When the valve is closed a pressure v/ave

P = hv

travels from the valve towards the leak. The pressure P = hv is

added to the original pressure in the pipe, and therefore when the

leak is almost reached by the pressure wave, the pressure will be

P + P> P being the original pressure at this point. "iVhen this wave

of pressure gets to the leak, the discharge is increased, causing

a drop of pressure, because the extinguished velocity is less than

V. Represent the pressure at the leak just after the wave gets to

it as P*4- p. Since the pressure between the leak and the supply

is increased P' lb. per sq. in. the velcity extinguished to cause

this pressure must be

pi~ ft. per sec.
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There is still a velocity of

V+W-— ft. per sec.
h

from the supply to the leak. There is a re-expaneion of the water

between the leak and the valve, which causes a velocity toward the

leak of

P-P*
h ft. per sec.

v-*-w - ^

Pig. 4.

At the instant the pressure wave P' gets to the valve, all

of the water in the pipe between the valve and the leak will have

a

now take place, causing a wave of reduced pressure to run toward the

leak. The amount of the reduction will be the same as the reduc-

tion P — P'. The pressure at the valve at this time is,

p__p, re-expcnsion
pressure P' and a velocity of

^
ft. per sec. A further ^will

or, solving for P'

P^ = P - 2(P'- P' )

P'

The pressure P^ is the one shown on the water hammer diagram. The

conditions just after the wave of re-expansion gets to the valve are

shown on Fig. 5

.

Pig. 5
R
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The total quantity flowinp: from the leak just after the

pressure wave gets to it , is

P_P'

P-
= q-h2A

P

ĥ

= q-v-—|— 2A

(P-PJ

But

Q = qf A\

h

Q : q : :\/h" :Vh

\ P+Pl+p

q I P

JP-f-P. + Sp p_p
Q = q\

1 = a^Ai £.1

2p ' h

Solving for q p—

P

h (27)

which is the general formula for the quantity of flow from a leak in

a pipe line as determined from measurements of the water hammer

diagram.
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DIAGRAl.': FOR DETERMINING THE QUANTITY OF WATER FLOWING FRO?.' A LEAK

BY MEANS OF MEASUREMENTS TAKEN FROIv. THE vVATER HAMf^ER DIAGRAM.

Fig, (6) has been prepared from eq. (27) for a 12-in. pipe,

with a value of h = 55, showing the value of the discharge from the

leak for given values of —. 1 and P - . For example, if the
2p

pressure at the leak before the valve is closed is p = 20 lb. per sq

in., the maximum water hammer pressure is P = 500 lb. per sq. in,,

and the pressure P^ = 200 lb, per sq. in., then ^"^^ i = 12.5 and
J- (ip

P— P^ = 100. Using these values as ordinate and abscissa, the

discharge is found to be about 0.52 cu. ft. per sec.

If a pipe has a different diameter than 12 inches, or has

a different value of h than 55, the result obtained from the diagram

D^should be multiplied by ^S^* D is the diameter of the pipe in

feet and h is the value of the constant for the pipe under co^nsider-

ation. If the pipe in the preceding problem had been had been a

24- in. pipe instead of a 12-in. pipe, the quantity flowing from, the

leak would be ^x4x0.53 = 2.12 cu. ft. per sec. This was on the
55

assumption that the value of h is 55.
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AIR CHAMBERS

JOUKOVSKY'S DISCUSSION. The followincr diacusaion is taken from

the translation of Joukovsky's monograph

in the Proceedings American Water V^orks Association, 1904.

Fig, 7 and Fig. 8 show curves obtained with a small air

chamber (about 60 cu. in.), the velocity in the pipe being 4.4

feet per second. The curve in Fig. 7 was obtained between the

valve and the air chamber, while that in Pig. 8 was obtained

between the air chamber and the source. V<'e see, from the curves,

that an air chamber of that small size caused no lowering of the

first stage of the curve obtained between the gate and the air

chamber, which showed a pressure of 17.3 atmospheres, which is

very nearly equal to the theoretical pressure of 17.8 atmospheres.

As to the second stage of this curve, the air chamber even in-

creased the pressure to almost 1.3 times the pressure in the first

stage. The pressures in the third and following stages are not-

ably diminished. The curve in Fig. 8, obtained between the air

chamber and the origin, shows a slightly reduced pressure (14,6

atmospheres); and the stages of the curve become rounded and

rapidly lower.

Quite different results were obtained when the size of air

chamber was materially increased. Fig. 9 shows a curve obtained

between the air chamber and the valve, with the use of an air

chamber of 548 cubic inches, or 9 times that used in the experi-

ments just described. The velocity of flov/ v/as 1.8 feet per sec-

ond. This curve is very much like those usually obtained without

the use of air chambers; the pressure wave is reflected from the

air chamber as from the origin. The pressure here is 7.1 atmos-
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Diagram taken between the valve and the air chamber. (Small
air chamber).

Fig. 8.

Diagram taken between the air chamber and the origin. (Small
air chamber)

.

Fig. 9.

Diagram taken between the valve and a large air chamber.





pheres, which corresponds closely with the theoretical pressure,

P = 7.^3 atmospheres. The diafrram recorded in this case between

the origin and the air chamber is a straight line, coinciding

with the line of the original hydrodynamic pressure, shov/ing that

an air chamber of this size does not allow water hammer of the

given intensity to pass through it.

EXPLANATION OF PRINCIPLES. Suppose a water pipe AB, on which an

air chamber is placed (see Fig. 10). Upon sudden closure of the

valve B, the water near the valve is compressed to the pressure

P = hv, and after some moments, the pressure wave moving with a

velocity X , will arrive at the air chamber, C. At that moment

the pressure at C, as well as in the pipe between the air chamber

and the origin, is still the hydrodynamic pressure, p^ . Therefor

the compressed water finds an outlet into the air chamber, which

enters with the original velocity v (which is now in the inverse

direction)

.

Fig. 10.

Hence the presence of the air chamber causes the pressure

wave to be reflected not from the main, A, but from the air cham-

ber, C.

We see also that the air chamber causes no reduction of the

shock pressure in the section, BC, of the pipe between the valve

and the air chamber. The experiments with air chambers have even
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shown an increase of pressure in this section at the berinnlnr

of the second cycle, this increase (which in one case reached

50/o) being due to the compression of the air in the chamber and

its subsequent reaction, which throv/s the water to the gate,

where a subnormal pressure already exists.

Let us now pass to the effect of the air chamber upon the

section of the pipe, CA, betTOsn the air chamber and the origin.

The water here continues to flow in the. original direction, A.C,

and with the original velocity, v, until the pressure wave arrives

at the air chamber, C. Prom this moment the pressure in the cham-

ber increases because of the water coming into it from both sides

(from BC and from AC). But the increase of pressure in the cham-

ber and the compression of the air there, gradually stop the ent-

rance of water into it, and affect the part , AC ( and that part

only ) in the same way as if the flow from the pipe AC , were

stopped by a slow closure of a valve placed on the pipe at C.

Conclusion ; It has already been explained that the slow

closure of a valve, lasting longer than the double run of the

pressure wave through the length of the pipe, prevents the exert-

ion of the maximum shock pressure.

It is evident that the flowing of water into the air cham-

ber will last longer with a large than with a small volume of air;

consequently, the stoppage of the column of water, AC, will be

slower, and the shock pressure less, in the first case. Therefore

the air chamber must be of large dimensions. As already stated

small air chambers do not accomplish their purpose, beinfr even

harmful, increasing the pressure in tiie section, BC, between the

valve and the air chamber.
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V/e see then, that the air chamber reflects the pressure

wave, allowing to pass throup;h it only that part of the shock

pressure which corresponds to the size of the air chamber; in

other words, only that pressure is exerted in the pipe , AC

(between the air chamber and the orip;in ) , to which the air in the

chamber has been raised.

FOR-MULA FOR THE REQUIRED /OLUME 0? AIR CHAMBER. The formula for

the determination of the size of air chamber which v/ill allow to

pass through it only a shock pressure of given intensity, is

deduced as follows:

Let u = variable volume of air in the air chamber.

V = original velocity of flov/ in the pipe.

d = diameter of the pipe.

P = hv = maximum additional shock pressure due to the

checkin;; of the velocity, v.

P = maximum additional pressure which will appear in the
a

air chamber and v/ill be carried along the pipe beyond

the air chamber.

P = variable additional pressure in the air chamber,
u

corresponding to the variable volume, u.

k = a constant numerical value, characterizing the thermo-

dynamic properties of the gas contained in the air

chamber. (in the case of air, k = 1.4).

t = duration of the round trip of the pressure wave (vfith

velocity from the air chamber to the nearest end

of the pipe (whether valve or oririn) and back.



i

1



= the original hydrostatic preooure in the air chamber.

u = volume of air in the air chamber correspondinr to
o

to the original hydrostatic pressure, Pq .

Pl - original hydrodynamic pressure in the air chamber.

u = volume of air in the air chamber corresponding to the
1

original hydrodynamic pressure, p^.

At the moment when the pressure wave reaches the air chamber

(which still has the original hydrodynamic pressure, p^^ ) , the

water will enter the chamber from both sides with the orig-ina l

velocity , v. It is evident that the volume of water, flowing

into the chamber, must be equal to the reduction of the volume of

air due to its compression. This com.pression and the resulting

increase of pressure in the chamber gradually reduce the velocity

of the water flowing into it. V.'hen the additional pressure in the

chamber becomes = P , that is to say, v/hen the total pressure
a

there is = p., P , the flov/ of water into the chamber will cease.
J- a

From the theory of water hammer, we know that P stands in

direct proportion to the reduction of velocity of flow in the

pipe(P = hv). Consequently, if some additional pressure, P^, has

appeared in the air chamber, we knovf that the velocity of flow in

th.e pipe has been reduced by ^ and is equal to (v — This

is the velocity with which water will flow from both sides into

the air chamber when the additional pressure there is P, ,u

7ife may thus obtain the equation: The reduction of air

volume in the chamber (-du) during each small interval of time

(dt) is equal to the volume of the ?/ater, which during this

interval of time (dt) has entered the air cham.ber from both

sides

.





The velocity of the enterlnr, water is, as hao been ohovm.

The area of the cross- section of the pipe is

Hence, in a unit time, each of the pipes will bring into

the air chamber —^(v u cubic units of water.
4 V h

During the interval dt, each pipe will bring in

of water. Two pipes will let in twice this amount of water, and

this amount will be equal to the reduction of volume of air in

the air chamber. Consequently,

This is the differential equation of air compression in the

chamber by the water entering it.

The flowing of water into the air chamber and the compress-

ion of air therein will continue until the state of compression

of water in the air chamber (in the form of a wave, moving with

velocity A ) arrives at the end of the pipe nearest to the

chamber, and will return thence to the air chamber with reduced

pressure. In other words, it will continue until the v/ater

begins to flow from the air chamber, which will result in a low-

ering of pressure. In order to find the amount of additional

pressure, which will originate in the air chamber and will be

transmitted along the pipe beyond the air chamber, we m^ust inte-

grate the above equation for the time, t.

The process of the com.presoion of air in the chamber being

rapid, we take it to be adio,batic , which is expressed by the

physical law

u p = constant.
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Beginning with the equation on preoedinrr pap;e

_du - ^)dt (29)

and, substituting; v = (accordinr to the equation P = hv) we
n

have

-du ='^^^^^jdt (2R')

From the equation of the adiabatic compression we have:

"C^l = u^(P] P^) = constant. . . (29)

u = (29')
Pi ^u

Differentiating this,

kku du = 7 yp
(p 4- P )-

u

consequently

du = - l^£liEu ^ (30)

From equation (29')

u(p. + P )

'

-L U

and that

consequently

P,+ P
1 u

k.k-1 u^^p
u

oubstituting for u , in equation (30), the expression

becomes 1

, 1 UTP^dP

^1 u

Substituting for du, in equation (2S), the expression (21),

we obtain;

K/ U

T) + P 1 U
U
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or
, lTd^ dt _ dP^—

• PIT - ^p^+ Pj^ (P 4 Pj

For convenienco, let

2 _ Pi » Pu _ pressure in air chamber
^ ^ (32)

Then

Pi + P total max. pres. in pres. wave

P., = z(p^ + P) _ ; dP^ = (p^ f P)dz.

p
Substituting h by ~ and using the adopted designations,

we write

Icftd'^ vdt _ (p, f P)d2

P?P ' (p, ^ PJ^[P - z(p. + P) + p]
k-M
K

klTd p.(p, P) _ „ dz~ - "/p. + Pu"^*^(p. + P)(l - ^)

k-t-jkii

^Md"
'

8

Let us now integrate this equation for the time, t, during

which the air in the air chamber is compressed and the additional

pressure, P , increased from to P . From our designation for
u a

2, it follows that the corresponding limits of integration will

be

2 - — and = IlL±_|a
o p, +• P t P, + P

The integration gives us;

Bvt = ukf>d7p, .+ p)

2 V P. y
zs^(l - z)

/
P

For brevity, let

d^z (35)
zT(l - z)
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For convenience, we will express u-i in tormo of the volume

of air in the air chamber, u^, corresponding to the static pres-

sure, Pq.

According to the law of Mariotte,

1 Pi

Substituting the expressions given, we obtain from (34)

= |§dL^/£iJt_p) Ji^t (36)
"o - 2^1, p. J Pp^

This is the exact analytical expression shov^ing the relat-

ion between the volume of the air chamber, u^, and the intensity

of the additional shock pressure, P , which the air chamber will
a

allow to pass through it, and which is transmitted through the

pipe beyond the chamber.

This formula owing to the complexity of the function f (z),

is inconvenient for practical use. But for the special case

mentioned below it is possible to obtain, from, this general and

exact formula, a convenient and sufficiently approximate one.

When the additional shock pressure, P , which is allowed to pass

through the air chamber, is small, the difference between the

limits of integration

z = J— and z±. = 1 a
° Pl+ P ^ p^+ P

is also small, and we may write, approximately:

z , - z
_t O-

^(1 - ^
'

^o

or

p. + ga P'

xlrcz) = P.I- p
r ^ ' / Zi \i<+i7 N
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Simplifying, wc have |^

Substituting this approximate value of "Xj/iz) in the form-

ula (36), we obtain:

_ klid . p,
^o = — rr (3R)

o a

Here u is the minimum volume which the air chamber m.ust
o

have, in order that the shock pressure, P , in that portion of
a

the pipe lying between it and the origin, shall not exceed the

allowed intensity.

But the formula (38) is sufficiently approximate only when

the allowed P^^ is small; that is to say, when the volume of the

air chamber is great. With small air chambers, great shock pres-

sures pass through them, and the exact formula must be used.

For direct use of formula (38), tables of the function 'Xj/'

should be calculated; but the formula may be used to calculate

two limits, between which the true value of ^ is included.

According to formula (32), z < 1.

Therefore, by formula (35), where as a matter of fact

k = 1.4;

if k = 1, f,

if k = 2 fX '

The corresponding actual value of Xj/" lies between ^ and

, or between -

(39)
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Here lof, ~ Naperian lop;arithjn, ri.ni y = z. Thus

The volumes given by the formula should be divided by two

if the air chamber is near the valve. This follov/s from v/hat

has been said before, the water in this case entering the air

chamber from one side only.

Joiikovsky's analysis has been given in full because it is

often quoted as a correct solution of the air chamber problem. Jou-

kovsky made a few experiments which checked his formula. A little

study of the general formula (36) and of the approximate formula (3<^)

will show that there are some inconsistencies. For example, v;hen

the air chamber is placed at the valve, the value of t being zero,

the formulas will give zero volume as required to keep the pressure

below any assumed value of maximum allowable pressure. It is stated

in the last paragraph of the quotation, that the volume in this

case should be divided by two. No reason is given, and no possible

interpretation of the formula will g-ive any such result, Accordinr

to the formula if an air chamber is located, say 1000 feet from the

valve, it makes no difference whether the pipe line is 2000 feet

or 200000 feet long. This is evidently wrong.

Joukovsky's analysis rests on the equation

^2 p
-du = ^(v - -^)dt

^ h

which is true only for the time t = seconds after the valve
h

closed, in case the air chamber is located at the valve. The length

of the pipe line is 1, After that time has elapsed the expression

p
(v - ^) no longer expresses the change of the velocity in the pipe.

The formulas derived on this assumption can therefore apply only to
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air chambers of very small size. No such restriction is made by

Joukovsky. The followinp; analysis is thought to be free from the

the
objections offered to analysis of Joukovsky.

FORMULA FOR THE REQUIRED /GLUME OF AIR CHAMBER.

whifili ."ill be
STATEMENT OF PRINCIPLES. The energy^stored in the air chamber when

the valve at the end of the pipe is sud-

denly closed is equal to:

(1) the kinetic energy of the water flowinf^ in the pipe,

minuf (2) the energy stored by the compressed water and by the

distended pipe,

plus (3), the work done by the flow head after the valve closes,

minus (4), the work done by pipe friction,

minus (5), the work done in lifting the v;ater into the air

chamber agairet gravity.

There is no difficulty of expressing any of these except

(4). This term, however, is very difficult to express, V/hen the air

chamber is large enough to have practical value in reducing the pres-

sure, (2) will ordinarily be small. The terra (5) depends upon the

size and shape of the air chamber, and will usually be small compared

with the energy of the moving water.

In the following discussion the terms (4) and (5) will be

omitted. The effect of omitting these terms will be to make the

energy which must be stored by the air chamber greater than the true

value. The volume of air required to keep the pressure below a given

value will therefore be on the safe side. There will be two cases

to consider; isothermal compression of the air in the air chamber,

and adiabatic compression. In a large air chamber the isothermal

law would perhaps be the nearest correct, while with a small air
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chamber the compreaaion takes place bo rapidly that there Is not

time for heat to be transferred to the walls of the air chamber,

SIZE OF AIR CHAMBER REQUIRED. (ISOTHERMAL COMPRESSION) The

following

notation will be used:

= original dynamic pressure in the air chamber (lb per sq in

Uj, = the volume of air in the air chamber corresponding to the

pressure p^ (cu. ft.)

Pg = the maximum pressure in the air chamber (lb. per sq. in.)

Uo = the volume in the air chamber when the -cressure is po

( cu. ft . )

p = static pressure (lb. per sq . in.)

d = diameter of pipe (ft.)

1 = length of the pipe line (ft.)

h = the constant in the formula P = hv (See Table 1.)

When the valve is closed, the pressure in the air chamber

increases from p^ '^"^om the water hammer

formxila, the velocity necessary to raise the pressure pg - p^ lb. per

sq. in., if there is no air chamber in the pipe line, is

y = VZ" P i ft. per sec.
e h

In this case all of the energy of the moving water is stored in the

compressed water and in the distended pipe. We may therefore say

that when the water has its pressure increased pg - P-i Ih. per sq.

the
in., the energy is equivalent tOy^kinetic energy of the v/ater in the

pipe moving with a velocity v^, as given by the equation above.

The energy stored in the air chamber, in foot pounds, is

given by. the well known formula

144p^u^log^PS





The kinetic energy of the water in the nipe, in L'oot pounda, Is

wtTd 1 2

The energy stored in the compressed water and distended pipe, is

wild 1 (Vp- Pi]

8g Ah 7

since all of the kinetic energy of the water in the pipe moving

with a velocity of feet per second is required to produce

the increase in pressure from p, to p^. The work done by the presB-

ure head, in excess of the work done by friction, is

144m (p -p-i ) (u. -u.-^)
S -L 1

m being a factor depending upon the relation of the work done by the

pressure head to the w^ork done by the friction after the valve is

closed. Equating,

o
^1

Solving for u^^,

.005S8d^l[v'-(P3;Plf'

Ut = (41)

^ 2.3p;^log-Lo|^ - ^(Ps- Pl^^l - 1^)

The value of m will be between and 1. For rough estimate

it ra"ay be assumed to be 0.5, If a closer approximation is needed, it

will be necessary to consider the energy relations for small incre-

ments of the velocity during the time the water is coming to rest.
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SIZE OF AIR CHAlvIBHR REQ.UIRliD. (ADIABATIC COMPRESSION) The same not-

ation will be

used that was used in the last derivation. The only change that

needs to be made is to substitute the expresoion for the energy-

stored in the air chamber during an adiabatic compression for the

expression used in the previous proof. The expression then becomes.

144p^U;^

1 - k

Solving for uj_,

w<id'"l
V - - .144m(p^- p ) (u]_- u^)

.OOSSSd'^l

- m(p - p,)(l - |1)

(42)

This equation is the same as eqation 41 except for one

terra in the denominator. It must be remembered that no account has

been taken of the work required to raise the water into the air

chamber.

For air the value of k is 1.4. Substituting, the express^

ion becomes, o

.00528d 1

2.5p.

(43)
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THE VELOCITY OF FLOW AND THE PRESSURE AT THE VALVE DURING

. THE TIME THE VALVE 13 CLOSING

GRADUAL CLOSURE. By a gradual closure is meant a closure taking

place 30 slowly that no dynamic pressures are

generated. The conditions of flow at any time is the same as for

steady flow.

Assume a pipe line 1 feet long, and d feet in diameter. Let

v2 1the flov; head be represented by H, and let ^-^f ^"-3 ®^
represent the losses due to entrance, pipe friction, elbov/s, and

velocity head, respectively. Let q represent the coefficient of

valve loss at any valve opening. Then under steady flow conditions,
, 2

H = ( m+e-tf-i+l)^
d

For simplicity write

m+e4f|+l = a

Then
2

H = (a + q)^ ^-(44)

The pressure at the valve (assuming that the valve is at

the end of the pipe line), is
2

From (44) and (45)

^ = -115

H^ : H : : q : a+q

H = —3—H , (43)
V a + q

Solving aquation (44) for v.

-=lfe¥^ <47)
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From equations (46) and (47) it will be seen that the

effect of a partial clocure of the valve at the ond of a pipe line,

depends upon the value of a ( the resistance of the pipe line), as

well as upon the value of the valve coefficient q. As an illustra-

tion, of this consider the case of a 24-in. gate valve at the end

of pipe lines having different lengths (or different resistances),

Kuichling found that the coefficient of resistance of a 24-in. gate

valve 82 per cent closed, was q = 41.2. Using equation (47) it is

found that when

a = 137, the velocity in pipe = l/4 of the velocity with valve operj

a = 687 " " ti w = x/2 " tf « n n n

a = 2650 " » « « _ 3/4 11 n ti f» If ft

a = 8780 " " n I. _ q /iq ff ft It tt It

The effect upon the pressure at the valve can be obtained

from equation (46). It is fouJid that when

a = 137 the pressure at the valve = 23^ of static pressure on valve,

a = 687 " " " " " = 5.6^" " " n n

a =2650 " " n tf " = 1.5^ » " " " "

a = 8780 " " "ft " = 0.5^ " " " n n

From this it is easily seen that in the last case (a = 8780

it makes no difference how slowly the first 82 per cent of the clos-

ure is made, there is still a velocity of 9/10 of the original vel-

ocity to be extinguished before the valve is fully closed. In order

to avoid water hammer it would be necessary to make the last 18 per

cent of the closure' in a very long time.

Figure 11 shows how the velocity of the water in the pipe

changes during a very gradual closure. Several vnlues of a are given

Figure 12 shows hov^ the pressure at the valve increases

during a very slow closure of a gate valve at the end of pipes of
different lengths.
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thl; pressure developed in a pipe line during the time tiie valve is
CLOSING

SUDDEN CLOSURE. If the cloGure t8,kes place very rapidly, the value

of q changes rapidly, causing the pressure at the valvo to increase,

which causes more water to flow through the partially closed valve

than would be the case with a very slow closure. If a partial clos-

ure of the valve is made in less time than is required "by the pres-

sure v/ave to run to the open end and back, it may be considered a

sudden closure. An expression for the velocity in the pipe after

such a sudden closure has been made v/ill now be obtained.

When the flow has had time to become steady, the pressure will be,

ditions are knovm.

If the original velocity in the pipe v*ras v^, the dynamic

pressure generated during the sudden partial closure, is

The value of q will have changed from q^ to qg, and the

head on the valve, (at the end of the pipe line) is now.

(48)

(49)

P = h(v^ - v)

Prom equations (48) and (49)

(50)

Substituting for P its value from equation (50)

V
2 LV^

^(v -
P ^ o
s

v)

Solving for v.

(51)
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When V is known, the value of P can be found by oubBtitutinr in

equation (50)

If the values of q are known for any valve, the velocity

in the pipe and the pressure at the valve for any valve position

during a sudden closure can be easily calculated. Figure 13 shows

the velocity and pressure for any position of the valve during a

sudden closure of a valve at the end of a 2-in, pipe. An examination

of this figure shows how short the effective time of closure is when

the valve is closed rapidly. The effective portion of the closure

is the last 10 per cent of the valve travel. For example, if a

valve is closed at a uniform rate in l/lO of a second, the effective

portion of the closure will be made in about l/lOO of a second.



i
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THE MAXIMUL^ PRESSURE DJ-IVELOPED BY THE SLOW l3NIF0R^^ CLOSURE OF A CYL-

INDER VALVE AT THl-: END OF A PIPE LINE

In a preceding article, equations v/ere developed for the

velocities and the presoures in the pipe durinp the time the valve

is closing, when the closing takes place so slov/ly that no dynamic

pressures are generated. The same thing was also worked out for

sudden closures of a valve. In this article will be discussed the

maximum pressure developed by the uniform closure of a gate valve.

Nomenclature

T = total time required in closing the valve (sec.)*

t = time required to close the valve from any valve position.

c^^= the coefficient of discharge of the valve opening.

1 = length of the pipe line (ft.),

v^= The velocity of the water in the pipe before the valve is

closed (ft. per sec).

V = the velocity of the water in the pipe at any time t seconds

before the valve is fully closed (ft. per sq . in.).

P = the pressure at the valve any time _t seconds before the

valve is closed, (lb. per sq. in.),

a = area of the valve opening before the closure is made, (sq.

ft. ).

A = the area of the cross-section of the pipe, (so. ft.).

In order to make possible an analytical solution of this

problem, the effect of friction will be neglected. This assumption

will not be much in error in the case of penstocks for water pov/er

plants, since the total friction loss is not great in proportion to

the head. The values of the maximum -pressures will be a little too
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large as a resiolt of omitting friction.

The valve opening at any time during ;i uniform clooure of

a cylinder V8.1ve, is

•^a square feet.

The discharge through the valve opening at this time, is

c^-|a ^4. 6gP cubic i'eet per second.

The discharge in the pipe is

Av cubic feet per second.

Equating, and solving for P,

P =
A^T^

4.6gc|a
v^ _ .v2

From the formula for impulse and momentum,

(P - p)Adt = fifgdv

Let
m

144g

Substituting in eq. (53),

(jv^ - pt^)dt = mt^dv

To integrate, let v = xt. Then v^ =

The equation can then be reduced to

:

l\^dt

"it
^

dx
p i- mx - jx

Integrating,

± T T
—log T- = ~ —locm ^et n ^e

ILiL_2jXo. q - g.jx

q - 2jxQ r + ?.jx_

Where
r = ym^ + dpj - m

q = Vm^ + 4pj + m.

n = 4pj

V

(52)

(53)

Substituting x = and solving for P, there is obtained,





n6

T

2j ^f" + T'

The maximum value of P occurs when the valve just reaches

its seat, or, when t = 0. The value of P at this time is,

P =

Substituting the values of q and j, and sin^plifying, there is found,

>2
wP = p +

^c^al^

, AT
(55)

This is the expression for the maxiraum pressure due to a

Blow closure of a valve, A similar expression was derived by A. H.

Gibson in a different manner.

The pressure at any part of the valve travel can be ob-

tained from eq. (54)

Since friction was omitted in the derivation of equation

(55), it is applicable only when the ratio of a :A is very small.

Only the effective portion, or say the last 10 or 15 per cent, of the

valve movement should be considered.
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RELIKP VALVES

Relief valves are much used to prevent dangerous water

hammer pressures from being generated in pipe lines and penstocks.

When they are made of sufficient size, complete protection can be

obtained. However, the selection of relief valves has been left to

the judgment of the designer, with the result that inadequate sizes

have been frequently used. The follov;ing theoretical discussion is

offered as a help in the selection of relief valves.

Nomenclature

.

a = the area of the opening of the relief valve (sq. ft.).

A = " " " " cross-section of the pipe (sq. ft.),

p = static pressure (lb. per sq. in.).

= the pressure for which the relief valve is set (lb. per sq

.

in. )

c, = the coefficient of discharge of the relief valve.

V = the velocity of the water in the pipe before the valve is

closed (ft. per sec.)

h = the water hammer coefficient.

It will be assumed that the relief valve is at the end of

the pipe line. If the relief valve is not at the end of the pipe,

full water hammer pressure will be had between the valve and the

relief valve.

• When the valve is suddenly closed the relief valve

will open as soon as the pressure becomes equal to pounds per

square inch. In order to produce a pressure of Pp- p pounds per

square inch above static pressure, a velocity of

^^Z
^ ft. per sec.
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must be extinguishod. The velocity in the pipe at this time must be

p„ - pV - —
Cj^^

ft. per sec.

The quantity of water flowing past any section of the pipe, is

P — pA(v - _I___L) cu. ft. per sec.
h

The flow in the pipe after the valve is shut must all go

through the relief valve. The flov; through the relief valve can be

written

c,a

Equating the two expressions for the quantity, and solving for a,

we obtain: „
.082{v - P)

d' r

In the above formula, the coefficient c^ is hard to estim-

ate. Not until experiments have been made on the principal tjipes of

relief valves, will it be possible to solve the problem accurately.

Some experiments by the author, to be more fully described under

Experimental Work, indicate that the value of c^ based on the nominal

area of the opening, is in the neighborhood of 0.25.

When the relief valve is placed in the pipe line^ at some

distance from the valve, the water will come from both directions,

with the original velocity^ v, to the relief valve. In order to

discharge twice the amount of water, twice the area of relief valve

must be provided. A relief valve in this position will protect

only that portion of the pipe between the relief valve and the

supply.
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THE QUANTITY OF WATER DISCiiARGED BY A RELIEF VAL7E IN ITS OPERATION.

The column of water in the pipe, movinp; with a velocity of

V feet per second, is brought to rest by the pressure generated by

the relief valve. If the pipe is 1 feet long, and if the cross-

sectional area of the pipe is A square feet, from the principles of

impulse and momentum,

A144 (P^ - p)dt = Ml dv.
r J

g

The relief valve will close when the pressure falls a trifle below

Pj, pounds per square inch. At this time the column of v/ater will

have absorbed energy, due to its resilience, to an amount correspond-

ing to the kinetic energy of the water in the pipe, when the velocity

is

Pp- p
feet per second.

The lower limit of velocity in the above integration, will be this

amount. Integrating, we obtain,

A144(P^ - P)t =2|L[v - ^]
Solving for t

t = wtl
14Ag P - p

L r ^
—

I seconds. (57)

The pressure at the relief valve during all this time has

been P^ pounds per square inch. The negative work done by this force

added to the positive work done by the static pressure, will be

equal to the original kinetic energy minus the energy stored in the

compressed v/ater and in the distended pipe, y*^"^ e.r^<i.x^^) c\ vviXtc

144(P^ - p)Q = ||1 h

Solving for Q, we obtain.
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(••=i8)

Q is the quantity flowing from the relief valve in cubic feet. It

is usual to carry away the water discharged from the relief valve

through pipes. In order to proportion such pipes, a knowledge of

the maximum rate of discharge is needed. The maxiaum rate evidently

occurs ;)ust after the relief valve begins to act. At this time the

total flow in the pipe, diminished by the compression of the water,

flows from the relief valve. The rate is therefore,

A(v - cubic feet per second. ("^9)

h

EXAMPLE. A penstock, 6 feet in diameter and 4000 feet lonp>

has a static pressure of 100 pounds per square inch. The coefficient

h, in the water hammer formula, for this pipe is 45, The velocity

in the pipe is 10 feet per second. The turbine gates can be closed

in less than 4 seconds. (a) What total area of relief valve will

be required in order that the pressure may not exceed 190 pounds-

per square inchj (b) For how long a time will the relief valve act?

(c)How much water will be discharged? (d) V.'hat will be the maximum

rate of discharge?

(a) Assuming c^ = 0.25, based on the nominal area of the

relief valve, and substituting in the equation for the size, we

obtain

0.82(10 > 1^)
^ ~

25V180 5-51 sq. ft.

Twenty-eight 6~in. relief valves v/ould be required to give this

area.

(b) The time is.

t = %f^i||-^^OqO _ n . ^seconds.
144xb^. 2 [_90 45J
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(c) The quantity of water discharp;ed vdll be,

(d) The maxiirum rate of discharge will be,

g'M (10 - 2) = 226 cu. ft. per sec.

a quantity only 20 per cent less than the original flow in the pen-

stock. If the water is to be piped av^ay from the relief valves,

pipes of sufficient size must be used in order not to make too much

back pressure againt the valves.

The expression for the time the relief valve will act as

given by eq. (57), is not an exact one. The influence of friction

has not been taken into account. The expression is very simple,

however, and when the friction is only a small proportion of the

head, as in the ease of a penstock, the results obtained by its use

will be sufficiently near to the truth.

The expression for the time the relief valve will act,

when friction is taken into account, is given in the follov/ing

discussion.

TIME RELIEF VALVE DISCHARGES TAKING ACCOUNT OF FRICTION. The press-

ure at the

valve remains a constant value P, during the time the relief valve

is open. The forces acting on the moving column of vmter in the

pipe are: (a) static pressure, (b) friction in the pipe, and (c)

the relief valve pressure. From the principles of impulse and

momentum,

A(P - p + bv^)dt = ^dv (60)
144g

P = the pressure for which the relief valve is set, (lb. per sq

.

in. ).
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p = the static pressure at the valve when there is no riov/ in

the pipe.

p
b = the coefficient which multiplied by v^ gives the total loss

in the pipe line in lb. per sq. in. The losces considered

are: entrance, pipe friction, elbow losses, etc. If the

pressure at the valve during the time the valve is open is.

p^, then

b = —
V

P - Pv

1 = the length of the pipe line in feet.

T = the total time the valve is open in seconds,

(60)
Equatioryv may then be written,

r dv
dt = 0.0135 1 7-T7:^"^v2

10 Jo

Then

\j{P - p)bT = 0.0135 .^===T= tan'-'-v/—^— (61)
'P - P

Example . A water column at the end of a 12 inch supply

line, 2000 feet long, is discharging at the rate of 4000 gal. per

min. The static pressure at the water column is 40 lb. per sq. in.,

and the pressure during the time the column is discharging is 10 lb.

per sq, in. When the water column is suddenly shut off, a large

relief valve keeps the pressure from exceeding 80 lb. per sq. in.

How long will the relief valve discharge when the water colwin is

suddenly closed?

A discharge of 4000 gal. per min. in a 12 inch pipe causes

a velocity of 11.3 ft, per sec. The value of b is^

Substituting in eq. (61)
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^ ^-.^rr 2000 ^ -1,, „ 0.54G
T = 0.0135 tan ^11,

'6 -40

—

40 0.546

= 5,8 tan""'"!. 32 = 5.46 seconds.

Equation (61) does not take account of the compression of

the water in the pipe and the distention of the pipe. The effect of

this correction is ordinarily not great, unless the relief valve is

set for very high pressures.

If it is desired to take account of this factor, it can be

done by integrating the eq. (60) between the limits, v and ^-^t as

was explained in the article on relief valves. The expression then

becomes,

T = 0.0135
,

tan"-'-v\yv^^^^ tan'^ ^-^/p ^ ^
V(F - p)b L V p - p ^ f

(62)

Applying this equation to the exarr.ple, assuming the value

of h = 55, we obtain

T = 5.43 seconds

instead of 5.46 seconds by the less exact formula.
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THE TIME REQUIRED TO MAKE A GIVl'lN CiiANGE IN THE DISCHARGE OF

A Pl!:NSTOCK

When long penstocks are used for water power plants, much

trouble is found v^ith the speed regulation on account of the inertia

of the water in the pipe. When a sudden load is thrown on, the

speed decreases, causing the governor to open the gates. Practically

the same quantity of water flows after the gate is opened as before,

for a short time. The pressure therefore falls, causing a still

further reduction in the power, and hence in the speed. The gover-

nor therefore continues to open the gate, until the speed is back

to normal again. The gates are now too widely opened, and there will

be an excess of power, causing the speed to increase above the nor-

mal. The governor now begins to close the gates, with the result

that the pressure rapidly increases, and causes the speed to continue

to increase. In this way great changes in the speed may be caused,

unless the governor is made so sluggish that it will not over- run.

water in the pipe to have its velocity changed due to a change in

the gate opening. We will take a penstock d feet in diameter, and

1 feet long, connected to a tangential impulse wheel of the Doble

type. In this type of wheel the water flows through a nozzle whose

area can be varied by the movement of a needle valve. Let the loss
2

of head in the penstock due to friction^ etc. be represented by b^p.?

let V be the velocity of the water through the nozzle, let v be the

velocity of the water in the pipe. Let V = xv, x being a coefficient

depending upon the amount the nozzle is open. Then,

We will find an expression for the time required for the

2 2 2
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rt 2
dt= 2x1

Vp
dv

2gH - (x^- 1 ^ b)v''^

This exprossion can be integrated if it ia asBuned that

the change in the valve position is made instantly. That is, the

value of X changes instantaneously from x^ to Xg. Integrating,

*2 - *i = 4 log'" "s'^g)

(in - ngV2)(m+- i^V]^

)

The values of m and n beinp-

(63)

m = 'gH,

n = (x^ - 1 ^ h)'

and H is the static pressure at the valve expressed in feet of head,

and Vg being the initial and final velocities.

When there is no nozzle at the end of the pipe, the equa-

'

tion reduces to.

- t,= -ilog
1 rnb"^^® m ~

f5 V

when the initial velocity is zero, and the velocity after tg ~ t-j^

seconds is v feet per second.

From eq. (63) can be calculated the time required to make

any change in the penstock velocities. Fig. 14 shov;s how the vel-

ocity increases with the tim.e after the valve movement is made. The

curve shows clearly the long time

required for the last increments

of the velocity. A governor must

over-run in order to brinp the

velocity of the v/ater to the normal

in as short a tirr^e as possible.
IT

Fig. 14.
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THE SURGE TAM OR STANDPIPE.

The surge tank, as defined by Raymond D. Johnaon, "is a

term applied to a standpipe or storage reservoir placed at the down-

stream end of a closed aqueduct to prevent undue rise of pressure

in case of a sudden diminution of draft, and to furnish water quickly

when the gates are opened, without having to wait for the velocity

in the long feeder to pick up. Viihen such a device terminates a pipe

used to feed water wheels, the changes in load, producing corres-

ponding variations in gate opening, cause the stored v/ater to rise

and fall in wave-like sv/ells or surges; hence the name."

The paper by Mr. Johnson in the Transactions of the Amer-

ican Society of Mechanical Engineers in 1908, from which the above

quotation was taken, has often been referrjd to as a correct solution

of the surge tank problem. It will be well therefore to point out

the errors in his fundamental equations. The paper was discussed

by a number of prominent hydraulicians, but no one seems to have

looked at the fundamental equations. It is a very good illustration

of the fact that an engineer will not take the time to go through

the mathematics in a paper of this kind, but will spend hours

writing a discussion of the results.

The first portion of the mathematical analysis given by

Mr. Johnson will be quoted:

"The best v/ay to approach these problems is through equaticns

of work and energy, and it may be as well to start out by laying

down a perfectly general principle which will later become

evident

.

" The work done within either the stand pipe or the differ-

ential regulator, in raisng or lov/ering the water, is precisely
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equal to the work of lifting tlie water in the conduit throu|p;h

a distance equal to the head duo to the velocity losL or gained

in the conduit, which change in velocity is in turn due to a

change in load.

''The work done within th stand pipe, neglecting all friction

1.2 A

2

the ratio of conduit area "A" to stand pipe area, ^ = the weight

would be _y^- — OC where y^= the maximum height of surge, R =

of water. The equivalent energy destroyed or gained in the con-

(V - V )2
duit would be 1_— ocLA where L is the length of the conduit

^2" ^1 ultimate change in velocity due to the load change,

"Equating these we have

This formula neglects both friction and the bellows action of

the wheel gates in keeping step with the wave. This later con-

sideration may usually be neglected if the regulator is other-

wise designed correctly, but not unless. The equation given is

not the equation of the wave curve, but simply an expression of

the y maximum. We will now develop the differential equation

of this curve, still for the present neglecting friction and

also work out the time or period of vibration of the water

pendulum.

The work done upon the water in the tank when part load is

rejected is ydy^oc : this may also be written in terras of the
R

velocity change or — (V - V )dv, whence we have

ydy = g (V - V, )dv

ydy =
^2

(V - V^)dv

V
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Solving for y we have

1
."2

V g r'S"1' '1

Similarly for accelerating, when part load is demanded we have

"rl

^a
=

The maximum value of y can be seen to be the same in both cases

or as previously demonstrated:

r

1

The first error made by I'r, Johnson in the above quotation

is in the statement that the "energy destroyed or gained in the

conduit would be iZsI^-l^oC LA, where V^- is the ultimate change

in the velocity due to the load change." The change in the kinetic

energy is actually ^ g" 1 /yT.A , a very different quantity. An idea
2g

of the magnitude of the error involved in the in-

correct assumption may be had by substituting = 10 ft. per sec,

and V = lift, per sec. in the two equations. Johnson's equation
2

gives as the energy gained,ocLA instead of the correct value 21ocLA

.

Making the correction, and solving the first problem, v/e

get as the maximum value of
y^^

(height of surge),

which is quite different from the result given above.

,
Another error is made by stating that the change in kinetic

ALenergy may be represented by —^{V - 7 )dv. The true value is

Since all of Mr. Johnson's work rests on these incorrect

assumptions, his work can not be called a solution of the problem

of the surge tank. The corrections here indicated can be easily

applied to Mr. Johnson's v/ork, and his method can be followed out.
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THE OSCILLATION OF THE WATER IN TliE PENSTOCK.

Valve at End Fully Closed . Fig, 15 shows a penstock ha.ving a res-

ervoir at one end and a stand pipe near the valve. When the valve

is suddenly closed, the water will continue to flow into the stand

pipe until the kinetic energy of the water in the pipe is all expend-

ed. The level of the water in the stand pipe will continue to rise

until it is considerably above the level in the reservoir. A flow

in the opposite direction will then begin. The period of this oscil-

lation will now be found.

Let A = the area of the cross- section of the reservoir, a=

the cross- sectional area of the stand pipe, A = the cross- sectional

area of the penstock and L = the length of the penstock. Neglect

friction. Then if ^ amount the water level in the stand pipe

is above (or below) normal at any instant, then from Fig. 14 the

difference of head at A and B, is

A A V

y^fy

From the principles of impulse and

momentum

^y{l + a)A dt = ^Pi^dv
A p i-^^g

Fig. 15 Simplifying

__g,-. as
dt - T>-*- ^ A

-"y (64)

According to the law of harmonic motion,

2
Acceleration =-^y

The value of the angular velocity in a circle producing like motion,

is
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The period of a complete oscillation will be from the laws of har-

monic motion,

T = To = ^- • (65)

VL A

When the area of the stand pipe and the area of the reservoir aro

equal, a = A, the formula reduces to:

When the reservoir is large as compared to the area of the stand pipe

the value .of ^ ^® taken as zero. The period of vibration is then,

T = 2i\\l^

Which is the time of a complete vibration of a simple pendulum whose

length is equal to the length of the pipe line. This will be the

most common case, since in almost all installations the reservoir

is very large as compared with the penstock or the stand pipe.

The maximum height to which the water will rise can also

be determined from the laws of harmonic motion. If v represents
s

the velocity of the water in the stand pipe at the time when the

water level is y feet from the normal, and y represents the
max

maximum height of surge, the from the principles of harmonic motion,

/ 2 2v2

Substituting the value of

(^p)v
y = J- (6-^)
max

When a = A





72

When the value of A is very great ae compared v/ith the area

a, the expression for y„„^ becomes,max

y =/S.^-V
''max Ve

No account has been taken of friction in this derivation.

The equations resijilting when friction is considered are very diff-

icult to solve and graphical approximate methods must be used.





PART TWO - EXPERIML^INTAL WORK

DESCRIPTION OF APPARATUS. The experiment a v/ere made in the Hyd-

raulic Laboratory of the University of Illinois. The pipe line

consisted of 740 feet of 2 inch steel pipe, laid in rectanj^les, one

above another, of about 75 ft. by 2 l/2 ft. A Lunkenheimer quici.c

closing valve was used for shutting off the flow quickly. Air chamb-

ers made by capping 3 inch pipe with blind flanges were used. Three

sizes were used, 10 ft., 3 ft,, and 2 ft. lengths of 6 inch pipe.

The pressures were measured by means of Crosby indicators,

steam indicators being used for the lower pressures, and hydraulic

indicators for pressures exceeding 100 lb. per sq. in. The indicator

connection was made with a 3/4 inch pipe from tees which were put in

the line at about every 75 feet for this purpose. In this way it

was possible to determine the pressure at any point in the pipe line.

The pressures were recorded on a drum rotated at a uniform

rate by an electric motor. Different speeds could be given the druii

by the arrangement of the belts. The drum was of wood, and was about

12 inches in diameter. The paper on which the records were made,

was about 6 inches wide and long enough to go around the drum, to

which it was attached by means of thumb tacks. The photograph of
Fig. 16

the recording apparatus^^shov/s the construction of the apparatus

clearly.

The velocity of flov/ was obtained by weighing the water

discharged in a given time. In order to save time in this part of

the work, a vertical jet method of measuring water was used. This

was done by making two sizes of orifices in two 2 in. caps. One of

these was then screwed on the pipe, and the water allowed to discharp^

vertically. The height of the jet was a very accurate indicator of
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the quantity of water being discharged, and hence of the velocity of

the water in the pipe. A rod was clamped beside the orifice, and

was graduated to read the velocity of water in the pipe directly.

By means of the two sizes of orifices, accurate measurement could

be made of all of the velocities obtained in the experiments. The
Fig. 17,

photograph of this measuring device, ^shows how it looks v/hen in oper-

ation.

In some of the experiments an electric attachment which

marked half seconds on the diagram, was used. It consisted of an

electro-magnet with a pencil attached to the armature. The puls-

ations were caused by a heavy pendulum dipping into a globule of

mercury at the bottom of the swing, making connection in the battery

circuit. The pendulum was quite heavy, so that it would swing for

half an hour when started going.

The v/ater used, in the experiments came from a standpipe,

4 feet in diameter, and 60 feet high, 3y means of an altitude

governor on the pump used, any height of water in the standpipe

could be maintained.

Some of the experiments to be described, were made by

Mr. M, S. Mc Collister and Mr. v/. A, North, and reported in their

graduating thesis, in 1910. Most of the experiments have been made

by the author, beginning with experimental work in the spring of

1906.





FIG. 16.

THE RECORDING APPARATUS
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FIG. 17.

THE VERTICAL JET MEASURING APPARATUS.
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MAXIMUM PRESSURE DUL^ TO Tim SUDDEN CLOSING OF A VALVE

The formula for the maximum pressure due to the sudden

closing of a valve at the end of a long line of pipe has been veri-

fied by several exoerimenters working on pipes of several diameters

There is no doubt as to the substantial accuracy of the formula

which was derived in another part of this thesis. The results of

the experiments of Joukovsky, Gibson, and Korth and Mc Collister

are tabulated below.

JOUKOVSKY - 24 INCH PIPE.

Velocity of Pressure in Atmospheres,
water in
feet per From diagrams Calculated
second.

0.18 0.45 0.54

0.56 1.81 1.68

0.55 1.66 1.65.

0.54 1.77 1.62

0.55 1.80 1.65

0.41 1.23 1.25

0.40 1.27 1.20

0.16 0.42 0.48

0.16 0.42 0.48

0.09 0.29 0.27





JOUICOVSKY - G INCH PIPE.

Velocity
of water
in feet
per sec.

3.3

1.9

0.6

1.4

3.0

4.0

5.6

7.5

7.5

Pressures in Atmospheres

From Diagrams Calculated

Pipe

15.7 13.2

7.3 7.6

3.0 2.4

6.0 5.6

12.1 12.0

15.6 16.0

25.2 22.4

29.0 30.0

11.7 burst 30.0

JOUKOVSKY - 4 INCH PIPE.

Pressures in atmospheres.

From Diagrams Calculated

Velocity
of water
in feet
per sec.

3.3

1.9

4.1

9.2

2.9

0.5

1.1

13.3

7.B

15.8

35.0

11.3

2.0

4.4

13.2

7.6

16.4

36.8

11.6

2.0

4.4





JOUKOVSKY - 2 INCH PIPE. (CAST IRON)

Velocity
o f wp t er
in feet
per sec.

Pressures in Atmospheres.

From Diagrams Calculated

18.5 IS.l

A. '^n 17.

P

17.2

T- • JL D 17.0 16.6

O • D / 15.1 1'^ .7

o • o / 14.5 14.7

<J . OD 14. 6 14. 6

1 . 79 6.3 "7.2

1.76 7.3
•

7.0

0.64 2.8 2.6

1.52 6.3 6.1

1.52 6.3 6.1

4.23 17.3 16.9

GIBSON - 3.75 INCH PIPE. (CAST IRON)

Velocity Pressures in lb. per sq . in.
of water
in feet From Diagrams Calculated
per sec. (Average of

four exper'ts)
.363 19.5 19.5

.551 29.3 29.7

.720 37.7 38.9

1.09,4 57.5 f59.0

1.444 73.8 77.9





NOKTH AND MC COLLISTER - 2 INCH PIPE. ( STEEL)

Ve]ocity Pressures in lb. per sq . in.
of water
in feet
per sec.

From Diagrams Calculated
P = 59. 7v

0.5 30 29.9

0.6 37 35.8

0.7 42 41.8

0.8 48 47.8

0.9 55 53.7

1.0 61 59.7

1.1 67 65.6

2.6 153 155.2

3.0 175 179 .1

3.4 19 6 203.0

3.5 200 209.0

3.9 239 232.8

4.0 240 238.8

4.4 271 262.7

4.5 270 268.7

4.9 290 29 2.5
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LEAKS

Experiments were made to locate a leak by means of the

water hammer diagram, and to determine its magnitude. Sample dia-

grams are given to illustrate the drop caused on the pressure dia-

gram. The distance from the beginning of the rise of the pressure

to the beginning of the drop in pressure, represents to some scale

the distance to the leak. The most satisfactory way to find the

distance to a leak from the diagram, is to multiply the length of

the pipe by the ratio of the distance (scaled from diagram) from the

first rise in pressure to the drop in pressure caused by the leak,

to the distance from the first rise in pressure to the final drop

in pressure. This is the second method described under the theor-

etical discussion of this subject. By this method it is not neces-

sary to determine the velocity of the pressure wave in the water in

the pipe, and more accurate work can therefore be done. The value

of the velocity of transmission of the pressure wave can be estimated

by means of Table 2, but considerable variation must be expected

from this value.

The following tabulations are from the thesis of North

and Mc Collister, 1910.

LEAK 149 FSET FROM THE 7AL7E

.

Trial

1

Computed
dist, ft.

152

Trial

6

Computed
dist. ft.

151

Trial

11

Computed
dist. ft.

15B

2 154 7 147 12 155

3 143 8 154 13 156

4 148 9 152 14 15R

5 145 10 152 15 143





LEAK 149 FEET FROM THE VALVE.

LEAK 90 FEET FROM THE VALVE.

FIG. 20.
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The expression for the quantity of a leak v/ao checked by

meaaiiring the quantity flowing from the valve in the -nipe, 149 feet

from the valve at the end. In this way the quantity of tlio leak

could be varied. A pressure gauge v;as placed near the loak. for

determining the dynamic pressure at the leak. The results are not

as close as coxxld be wished, but are quite close when the character

of the apparatus is considered.

The experiments of North and i'c Collister made under the

direction of the author, are tabulated on the following pages.

The values of p given by these tables are actually 0.6 lb. per sq

.

in. too high. With this correction the results ?;ould be a little

nearer the true value of the quantity flowing from the leak.
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TIIE QUANTITY OF A Uih^i DETKRMTNED FROf.' TH': WATER HAMMER DIAGRAM.

Pressure in lb per sq in Quantity in cu ft per sec

r P Observed Calculated

45 30 20.0 0.no87 0.0078

46 32 20.0 It 0.0071

76 54 19.5 w 0.0074

140 97 16.3 It 0.00S3

150 100 15.5 It 0.0090

155 110 15.0 tt 0.0077

170 115 14.0 tt 0.0086

200 160 12.5 tt 0.0050

260 170 S.O It 0.0077

280 160 5.0 n 0.0077

280 170 5.0 It 0.00 69

270 160 6.5 It 0.0085

30 19 20.0 0.0109 0.0082

80 4S 18.5 (t 0.0105

86 51 18.5 tt 0.0109

140 90 16.5 It 0.0108

150 115 16.5 ft 0.0063

170 105 15.0 It O.OlOP

170 110 14.0 It 0.0094

270 140 5.0 « 0.0087

270 120 4.Q It 0.0085

2 60 170 6.0 It 0.0068

62 36 19.3 .Olcl 0.0108

220 130 7.3 It 0.0082

460 290 13.0 II 0.0138
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Pressure in lb per sq in fQuantity in cu ft per* r,oc

P ^1 n UDo"I VtJU Gal culated

5 6 20 .0 (1 .Uioi .00^^9

74 It 0.0098

170 125 14 ft 0.0068

125 90 16.0 ft 0.0072

105 62 17.3 tt .0102

250 120 7.5 tt 0.0116

7R 47 IR. 8 It .0105

170 110-L. Jw W 14-0 If 0.009 4

285 120 5.5 ft .0117

97 54 18.0 U . (J 1 O . 012?

180 100 12.5 It 0.0117

60 32 19 .

3

It .0121

240 120 8.5 tf 0.0118

130 80 16.5 It .0107

150 80 It 0.0132

230fcj L>w 100J. vy TOO It 0.0151

26 20 11 0.0116

280 110 5.0 It 0.0115

175 110 13.8 ft .0101

215 120 11.0 II 0,0115

56 28 19 .

5

.0174 0.0131

58 29
~

19 .0 ft 0.0130

68 33 18.5 II .0137

160 75 15.0 It 0.01.^6

185 85 14.3 If 0.0163

200 95 12.3 11 O.Ol-IO
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(Continued)

Pressure in lb per go in 0\3n. nt. it y in cu ft, por 30

c

P
i p kvbaervod Cal culatod

275 90 5.0 0.0174 0.0132

270 9 5 6.5 It 0.0146

130 65 16.5 n 0.0148

185 110 13.2 n 0.0110

290 95 4.5 M 0.0127

54 24 19.0 0.0196 0.0150

67 31 18.5 It 0.0145

85 47 17.5 It 0.0117

50 24 19.0 It 0.0131

102 57 16.7 II 0.0122

280 80 4.8 It 0.0139

127 55 15.7 ft 0.0164

260 90 6.5 n

*

0.0143

280 90 4.8 It 0.0130





EXPERIMENTS ON RELIEF ./AL7ES

In order to check the theoretical formula for the area of

relief valve required for any given service, it wae nececnary to

make the experiments with known areas of opening. Fig. '29 shov/s the

method of experimenting. A 2 in. nipple was capped as shown. The

cap was machined smooth on the inside, and a small hole was drilled.

The hole was lightly plugged, and the valve was opened, and when

the flow had become steady the velocity of the water in the pipe was

measured. The valve was then suddenly closed and a water hammer

diagram taken. The plug being placed in loosely was blown out as

soon as the pressure exceeded static pressure, and the whole opening

was then clear to reduce the maximum pressure. The pressures were

obtained in this manner for a range of velocities. The coefficient

of discharge was then determined. A slightly larger opening was then

bored in the cap and another set of experiments made.

The accompanying plates give the result of the experiments.

The values of the pressures are seen to be too lov/ for the smaller

sizes tested. This is because too great pressure was put upon the

indicator pencil. It was a somewhat difficult matter to close a

valve suddenly with one's right hand and keep a light pressure on the

indicator pencil with the left. The later experiments are much better

in this respect.

In Fig. 7.1 are plotted all of the theoretical curves for

the sizes of orifice tested, and on the same sheet are plotted the

experimental results with the l/2 inch Lunicenheimer relief valve on

which experiments were also run. It will be seen that the l/2 inch

valve is equivalent to an orifice from 5/l6 inch to ?^/s inch in diam-

eter, depending somewhat upon the pressure for which the valve is

set

.



V
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A curve io also given showing the coefficient of dischrj.rr.e

of the 1/2 inch relief valve. On thin plate are also shown the oqui'^

alent circular orifices whose coefficient of discharge are taken as

. 60.

Below is given a table showing the coeTficient of dif3charp:e

of the 1/2 inch relief valve, for various openings, based on the

nominal area of the relief valve and also based on the actual opening

Distance valve Coef. of disch. Coef. of disch.
is raised from based on nominal baae.d on actual
its seat area. opening.

( Inches

)

0.0139 0.075 0. 675

0.0278 0.145 0.652

0.0416 0.173 0.567

0.0555 0.189 . 425

0.111 0.247 0.278

0.167 0.326 0,244

0.222 0.356 0.201

0.3S3 0.458 0.172

0.444 0.505 0.142

The principal difficulty in the use of the formula given,

is in the determination of the correct value of the coefficient of

discharge. Since the size of the relief valve required to keep the

pressure below any given value is a direct function of this coef-
•\V^\5 -factor

ficientj^is important. There will need to be further experiments

on all of the principal types of relief valves before accurate

design can be made.
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To record/n^ dppdr^tU5.

Quick c/o:5/ng V(^/ve

FIG. 23.

Arrgngemenf of Appar<3tu5 for Relief Orifice

Eixpehments

FIG. 3o.

Lunkenheimer i^ei/ef V^/\/e.
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THE TIME OF THE EFFECT I \AE CLOSURE

Under the heading "The Velocity of Flow and the Pressure

at the Valve During the Time the Valve is Closing" it wan shown

theoretically that the tirae of the effective closure is only the

time required to make the last 15 to 20 per cent of the closure.

By effective closure is meant that portion of the closure during

which the valve resistance increases rapidly. Fig. 13 shows the

manner in which the pressure will theoretically rise during the time

the valve is closing, providing the closure is made in less time

than is required for the pressure wave to make the round trip to

the open end.

In order to verify the conclusions given above, an attach-

ment was made to the recording apparatus, by v^hich a pencil connected

to the valve, so as to move as the valve moved, recorded the valve

position on the water hammer diagram. Fig. 31 is traced from one of

the diagrams obtained in this manner. The very short time of the

effective closure will be noted.
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THE ACCELERATION OF THE WATER IN TilE PIPE

Experiments on the time required for the water in the pipe

to gain velocity when the valve is opened, were made by openinp;

the valve suddenly and closing at a later time. The v;ater hammer

diagram shows a drop in pressure when the valve was opened, and a

sudden rise in pressure when the valve '/as closed. The distance on

the diagram between the drop and the rise in pressure represents to

some scale the time the valve was open. The drum rotated at a uni-

form rate, and a time pencil marked half seconds; it was therefore

possible to determine the time accurately. The water ham.mer press-

ure recorded on the diagram, is a measure of the velocity of the

water in the pipe at the instant the valve is closed. A number of

such experiments were made, and the results are platted in Fig. 'U^i .

The line in the figure represents the theoretical values obtained

from the equation derived on page 86.

In the derivation of this equation it was assumed that the

water in the pipe is incompressible. The experimental results are

seen to fit the theoretical equation in a general viay, but some of

the points lie a considerable distance froir the curve. This is

probably because of the elastic vibration of the column of water in

the pipe. If the pressure in the pipe at the valve is P lb. per sq.

in. above atmospheric pressure; when the valve is suddenly opened

the water in the pipe near the valve immediately expands and takes

Patmospheric pressure. This causes a velocity in the pipe of ft.

per sec, and this flow continues until a wave of low pressure has

run to the source and a wave of increased pressure has run back to

the valve. The velocity of flow through the valve is then suddenly
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increased. This operation is repeated over and over again, until

the flow ha.'s become steady.

This boostinn; of the velocity of the water at the valve

can be clearly seen when the end of the pipe is turned up and an

orifice put on. The height of the jet issuing through the orifice

represents the velocity of the water at any instant. The jet rises

by jumps when the valve is suddenly opened.

In Fig. 34 are shown some diagrams taken when the valve

was suddenly opened and a little later suddenly closed.

WATER HAMIffiR DUE TO SUDDEN PARTIAL OPENING OF A VALVE. It seems

paradoxical

that water hammer may be caused by the opening of a valve at the end

of a pipe, but in certain cases this may occur. V.'hen the valve is

only partially opened, the pressure will be reduced to near atmos-

pheric pressure, and a wave of this pressure will run from the valve

to the open end. l/Then this wave gets to the source a wave whose

pressure is as much above the pressure of the source as the low press-

ure wave was below it, will run to the valve. If the valve is nearly

closed, it will act as a reflecting surface, and double the pressure

(diminished by the relief valve action of the partially closed valve)/

In Fig, 3d are tracings of diagrams taken in this manner. Notice

how the pressure rises in steps.
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VELOCITY WHEN FLOW BECOMES STEADY >t
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